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Abstract: An efficient numerical algorithm is presented for the numerical modeling of the propagation of ultrashort pulses 

with arbitrary temporal and frequency characteristics through linear homogeneous dielectrics. The consequences of proper 

sampling of the spectral phase in pulse propagation and its influence on the efficiency of computation are discussed in detail. 

The numerical simulation presented here is capable of analyzing the pulse in the temporal-frequency domain. As an example, 

pulse propagation effects such as temporal and spectral shifts, pulse broadening effects, asymmetry and chirping in dispersive 

media are demonstrated for wavelet decomposition. 
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1. Introduction 

Recent developments in short pulse laser technology have 

led to significant advances in our fundamental understanding 

of ultrafast phenomena in physics, chemistry and biology, as 

well as stimulating the development of applications in fields 

as diverse as optical communications, biomedical imaging 

and femtosecond micromachining (Florenta,2006). 

Ultrafast laser technology has advanced over recent years 

to the point that pulses with high peak power and a duration 

of less than 10 fs can be generated directly from mode-locked 

Ti:sapphire lasers. Propagation of ultrashort optical pulses in 

a linear optical medium consisting of free space (Chritov, 

1985) (Ziolkowski, 1992), (Sheppard, 1997), (Agrawal, 

1998), (Kpalan, 1998), dispersive media (Porras, 1999), 

diffractive optical elements (Ichikawa, 1999),(Piestun, et. Al 

2001), focusing elements (Matei, 1999) and apertures (Liu, 

2004), (Hwang, 2003) has been extensively studied 

analytically; though only a few isolated attempts have been 

made on numerical simulation. However, analytical methods 

have the limitations of not being able to handle arbitrary 

pulse profiles.  

Propagation of ultrashort optical pulses in a linear optical 

medium consisting of free space (Chiritov 1985, Agrawal 

1998), dispersive media (Kaplan 1998, Agrawal 1999), 

diffractive optical elements (Porras 1999, Chikawa 1999), 

focusing elements   (Piestun 2001, Kempe 1999) and 

apertures  has been extensively studied analytically, though 

only a few isolated attempts have been made on numerical 

simulation. Most studies are based analytical calculations 

assuming a plane wave or TEM00 Gaussian transverse profile 

and a Gaussian temporal profile for the pulse. The change in 

the spectral properties of the pulse on propagation of the 

pulse was investigated analytically by Sheppard and Gan 

(Sheppard, 1999) taking special forms of Gaussian pulsed 

beams. Agrawal considered spatial broadening of diffracted 

pulses assuming Gaussian transverse and temporal profile. 

However, analytical methods have the limitations of not 

being able to handle arbitrary pulse profiles. Also, closed 

form solutions are often obtained after certain levels of 

approximations. This has motive a few studies based on the 

use of numerical simulation techniques in the analysis of 

pulse propagation. For example, Kaplan introduced 

numerical evaluation by fast Fourier transform to analyze 

pulses of arbitrary temporal profile and investigated on-axis 

temporal evolution of the pulse in the far field. In view of the 

recent advance in ultrashort pulse propagation, a strong need 

is felt for developing a numerical formalism capable of 

performing such a complete analysis of the issues involved in 

pulse propagation.  
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Here we introduce a numerical simulation tool for 

propagation of ultrashort pulses of arbitrary shape through 

linear homogeneous media based on wave optical field 

representation which enables an easy evaluation for the merit 

functions of the pulsed field. This allows us to analyze the 

pulse in the time-frequency domain at any arbitrary plane. 

With this tool, we investigate the spectral and temporal 

evolution of ultrashort pulses at any arbitrary propagation 

distance. The propagation of the pulse is achieved in terms of 

its spectral equivalent. Further, we introduce certain sampling 

rules for the spectral phase so that the phase information is 

sampled properly when we move from one spectral 

component to another in the spectral equivalent of the pulse. 

As a consequence, the algorithm becomes computationally 

efficient since we only considered a small number of spectral 

components for simulation of pulse propagation. 

2. Ultarshort Laser Pulses Generations 

The central aim of this section is to give a concise 

introduction to nonlinear optics and to provide basic 

information about the most-widely used tunable femtosecond 

laser sources, in particular tunable Ti:sapphire oscillators and 

Ti:sapphire amplifiers or optical parametric amplifiers. 

2.1. The Ti:Sapphire Oscillator 

In 1982, the first Ti:sapphire laser was built by 

(Moulton,1982). The laser tunes from 680 nm to 1130 nm, 

which is the widest tuning range of any laser of its class1. 

Nowadays Ti:sapphire lasers usually deliver several watts of 

average output power and produce pulses as short as 6.5 fs.  

 

Fig 1. A Ti: sapphire oscillator. The compensation of dispersion speed of 

group is ensured by both prisms, producing a negative dispersion speed of 

group. The blocking of mode is ensured by Kerr effect. On the one hand, in 

the temporal field, the non-linear phase makes it possible to compensate for 

the negative quadratic component resulting from the dispersion of the cavity 

in linear mode, which makes it possible to have perfectly equidistant 

longitudinal modes. In addition, in the space field, self focusing by a Kerr 

lens makes it possible to decrease the losses when the various longitudinal 

modes are in phase, thus privileging the pulse mode. 

2.1.1. The Kerr Lens Mode-Locking 

For simplicity, consider the spatial propagation of a 

Gaussian laser beam in a nonlinear material. The intensity 

profile of the beam is a function of its radius r and of a shape 

parameter g [12]. At high intensities, the refractive index 

depends nonlinearly on the propagating field. The lowest 

order of this dependence can be written as follows: 

�(�) = 	�� �	�	
(�)                                (1) 

where �	 is the nonlinear index coefficient and describes the 

strength of the coupling between the electric field and the 

refractive index �. The intensity is: 


(�) = ��
��                                     (2) 

Hence, the refractive index changes with intensity along 

the optical path and it is larger in the center than at the side of 

the nonlinear crystal. This leads to the beam self-focusing 

phenomenon, which is known as the Kerr lens effect (see 

Fig.2). This process is enhanced along the optical path 

 

Fig 2. The Kerr lens effect and self-focusing. The index of refraction varies 

with intensity along the beam diameter. Depending on the sign of the 

nonlinear term �	 in the expression (1) the index of refraction increases or 

decreases towards the center of the laser beam. For positive �	  the laser 

beam self-focuses. 

 

Fig 3. The Kerr Lens Mode-Locking (KLM) principle. The axial modes of a 

laser cavity are separated by the intermode frequency spacing � = �/2�. (a) 

The net gain curve (gain minus losses). In this example, from all the 

longitudinal modes in the resonator (b), only six (c) are forced to have an 

equal phase. 

because focusing the beam increases the focal "power" of this 

"lens". The increase of the focusing stops when the diameter 

of the beam is small enough and the linear diffraction is large 

enough to balance the Kerr effect. Consider now a seed beam 

with a Gaussian profile propagating through a nonlinear 

medium, e.g. a Ti:sapphire crystal, which is pumped by a cw 

radiation. As aforementioned, for high intensity light, due to 
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the intensity dependent refractive index, the Kerr lens effect 

occurs. When the laser operates in its most usual regime 

(free-running laser ), it can oscillate simultaneously over all 

the resonance frequencies of the cavity. These frequencies 

make up the set of longitudinal modes of the laser. For the 

stronger focused frequencies, the Kerr lens favors a higher 

amplification. Thus the self-focusing of the seed beam can be 

used to suppress the cw operation, because the losses of the 

cw radiation are higher. Forcing all the modes to have equal 

phase (mode-locking) implies that all the waves of different 

frequencies will interfere (add) constructively at one point, 

resulting in a very intense, short light pulse. The pulsed 

operation is then favored and it is said that the laser is mode-

locked. Thus the mode-locking occurs due to the Kerr lens 

effect induced in the nonlinear medium by the beam itself 

and the phenomenon is known as Kerr-lens mode-locking. 

The modes are separated in frequency by � = �/2� , L 

being the resonator length, which also gives the repetition 

rate of the mode-locked lasers: 

���� = �� = �	�                                 (3) 

Moreover the ratio of the resonator length to the pulse 

duration is a measure of the number of modes oscillating in 

phase. For example if � = 1	� and the emerging pulses have 100	�� time duration, there are 105 modes contributing to the 

pulse bandwidth. There are two ways of mode-locking a 

femtosecond laser: passive mode-locking and active mode-

locking. 

Briefly, active mode-locking implies that the radiation in 

the laser cavity is modulated by a signal coming from an 

external clock source (e.g. acousto-optical modulator (AOM), 

electro-optical modulator). The modulation frequency of the 

AOM is continuously adjusted to match the reciprocal cavity 

round trip time ����  by an algorithm which records the 

instantaneous repetition rate of the laser. This method, also 

known as regenerative mode-locking, is used to initialize 

mode-locking in the Ti:sapphire oscillator (Spectra Physics 

Tsunami), where the AOM works at 80 MHz. 

The passive mode-locking technique does not require an 

external clock in the laser resonator. Here the laser radiation 

itself generates a modulation through the action of a 

nonlinear device (e.g. moving a prism into or out of the 

cavity) situated in the resonator. The modulation is 

automatically synchronized to the cavity round trip frequency. 

The Ti:sapphire oscillator (Kapteyn-Murnane) uses the 

passive mode-locking technique. 

Modelocking, as the word suggests, involves locking a 

large number of longitudinal modes of a laser in phase. In a 

modelocked laser, the electric fields associated with the 

different modes add constructively at one point and 

destructively elsewhere to create a short spike number of 

frequency components with same phase gives an infinite 

series of short pulses in time (Rulliere, 1998). In a laser 

cavity, these modes are equally spaced (with a spacing 

depending on the cavity length). The electric field 

distribution with N such modes in phase (considered to be 

zero, for convenience) can be written as: 

 (!) = ∑  #�$%&'#∆%) ∝ �+,∆-.��+-&.�+∆-.��/��#           (4) 

Where 0�  is the central frequency and ∆w  is the mode 

spacing, this appears as a carried wave with frequency 

domain. The laser intensity is given by 

I(t) ∝ 4A(t)6	 = 789�4(	9'�)∆:.</	6789�(∆:.</	)               (5) 

This is series of pulses with width inversely proportional to 

the number of modes that are locked in phase of the mode 

spacing. The concept of mode-locking is easier said than 

done. 

 

Fig 4. The influence of the phase relation between oscillating modes on the output intensity of the oscillation. (a) two modes in phase, and (b) five modes in 

phase. 

Fig.4. shows how the time distribution of a laser output 

depends upon the phase relations between the modes. Fig.4.a 

is the resultant intensity of two modes in phase Fig.4.b, is the 

resultant intensity of five modes in phase and a period 

repetition of a wave packet from the resultant constructive 

interference can be seen. In a general continuous wave multi-

mode laser, the modes will oscillate independently from each 

other and will have random phases relative to one another.  
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One of the many advantages of Ti:sapphire oscillator is its 

high repetition rate (70-100 MHz). This allows a good duty 

cycle where the clusters in the molecular beam are irradiated 

several times by the output laser pulses of a relatively low 

energy (several nJ). Thus the laser operates in the weak-field 

regime. This avoids perturbation of potential energy surfaces 

(PES) produced by the intense laser pulse, simplifying the 

interpretation of the results and theoretical description. 

Moreover, non-resonant two-photon processes are not 

expected to occur. 

2.1.2. CPA Laser System 

Chirped pulse amplification (CPA) is a technique to 

produce ultrashort strong pulses. Although a CPA output can 

be very strong, it is poorly tunable in a small range around its 

output central wavelength. Various optical techniques have 

been innovated to make the output pulses tunable and/or 

shorter while keeping the pulse power as high as possible. 

CPA is the abbreviation of chirped pulse amplification. 

Chirped pulse amplification is a technique to produce a 

strong and at the same time ultrashort pulse. The concept 

behind CPA is a scheme to increase the energy of an 

ultrashort pulse while avoiding very high peak power in the 

amplification process. 

 

Fig 5. Schematics of a chirped pulse amplification system, showing the 

duration and energy level of the signal at the different stages of the system. 

In the CPA technique, ultrashort pulses are generated 

typically at low energy~ 10
-9

 J, with a duration around 10
-12

 – 

10
-14 

seconds and at a high repetition rate of about 10
8
 1/s in 

an oscillator. To amplify these ultrashort pulses without any 

damage to the amplifier, they first are stretched. The 

stretched pulses now have a duration of order the of a few 

hundred picoseconds. These chirped pulses can then be 

amplified in one or two amplification stages (Ruiz, et al, 

2005). 

In a CPA system, there are basically three components: a 

stretcher, an amplifier and a compressor; the first and latter 

components are basically the same for all CPA systems. For 

the amplifier stage there are two commonly used designs: 

multi-pass and regenerative (Joanna, 2007). 

2.2. Multipass and Regenerative Amplification 

Two of the most widely used techniques for amplification 

of femtosecond laser pulses are the multipass and the 

regenerative amplification. In the multipass amplification 

different passes are geometrically separated (see Fig.6.a). The 

number of passes (four to eight) are usually limited by the 

difficulties on focussing all the passes on a single spot of the 

crystal. The amplifier bandwidth has to be broad enough to 

support the pulse spectrum. This is why Ti:sapphire crystals 

are widely used in the amplification process. 

The regenerative amplification technique implies trapping 

of the pulse to be amplified in a laser cavity (see Fig 2.b). 

Here the number of passes is not important. The pulse is kept 

in the resonator until all the energy stored in the amplification 

crystal is extracted. Trapping and dumping the pulse in and 

out of the resonator is done by using a Pockel cell (or pulse-

picker) and a broad-band polarizer. The Pockel cell consists 

of a birefringent crystal that can change the polarization of a 

travelling laser field by applying high voltage on it. In the 

regenerative amplifier the Pockel cell is initially working like 

a quarter-wave plate. When the pulse is sent to the resonator, 

the voltage on the Pockel cell is switched (delay one) and it 

becomes the equivalent of a half-wave plate. In this way the 

pulse is kept in the cavity until it reaches saturation. Then a 

second voltage is applied (delay two) and the pulse is 

extracted from the resonator (Holzwarth, 2000). 

 

Fig 6. (a) The amplifier configuration uses two spherical mirrors in a multi-

pass confocal Configuration to make the signal pass eight times through the 

amplifying medium, (b) Schematic principle of a regenerative amplifier. 

Of all potential amplifier media, titanium- doped sapphire 

has been the most wide spread used. It has several desirable 

characteristics which make it ideal as a high power amplifier 

medium such as a very high damage threshold (~8 -10J/cm
2
), 

a high saturation fluence, and high thermal conductivity. 

2.3. Stretcher-Compressor 

 

Fig 7. Principle of a stretcher (a) and a compressor (b). The stretcher setup 

extends the temporal duration of the femtosecond pulse, whereas the 

gratings' arrangement in the compressor will compress the time duration of 

the pulse. Both setups are used in femtosecond amplifiers. 

By using a dispersive line (combination of gratings and/or 

lenses), the individual frequencies within a femtosecond 
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pulse can be separated (stretched) from each other in time 

(see Figure 7a). 

2.4. Compressors 

In normal materials, low frequency components travel 

faster than high frequency components; in other words, the 

velocities of large wavelength components are higher than 

that of shorter ones. These materials induce a positive group 

velocity dispersion on a propagating pulse. To compensate 

the positive GVD and rephase the dephased components a 

setup which produces negative group velocity dispersion is 

needed. Some designs have been devised to produce negative 

group velocity dispersion, like grating compressor, prism 

compressor, Gires-Tournois interferometer and etc. They are 

called compressors, because they compress a pulse (in time 

domain) which is broadened due to dispersion and chirp. The 

grating compressor and the prism compressor are two 

conventional setups (Holzwarth, 2000). 

2.4.1. Grating Compressor 

Four identical gratings in a sequence as shown in Fig.8 

make up a grating compressor. A pulse impinges on the first 

gratings with an angle of = . Different wave length 

components of the pulse spectrum are diffracted off with 

different angles from the first grating. Orientation of the 

grating is such that the longer wavelength path to the second 

grating is longer than the shorter wavelengths pathes. Then 

from the second grating the spectral components in the 

spectrum travel together in parallel directions but with 

wavelength dependent position (spatially chirped). The 

gratings are set in such a way that their wavelength 

dispersions are reversed which implies that the exiting ray 

from the second grating is parallel to the incident ray to the 

first grating.  

 
Fig 8. Grating pairs used in the control of dispersion. r and b indicate the 

relative paths of arbitrary long- and short-wavelength rays. γ is the 

(Brewster) angle of incidence at the prism face. Light is reflected in the 

plane (p1–p2) in order to remove the spatial dispersion shown. 

Travelling through the third and the forth gratings 

recombines all the components and removes the spatial chirp. 

It is possible to compact the design more by inserting a 

mirror in the plane of symmetry of the two gratings pairs. 

The beam will be reflected back and pass through the second 

and then the first grating. To compensate a certain amount of 

group velocity dispersion or third order dispersion of a pulse 

incoming to the compressor we need to know how much 

GVD and TOD are produced by the compressor (Holzwarth, 

2000). The group delay induced by the grating compressor is 

given  

T? = 	@
A.B��CDE�789FG�

H1 + CJK − sinγG sinγQ            (6) 

where  ̧is the light wavelength, L is the distance between the 

gratings, d is the grating's constant and R  is the incidence 

angle of the beam to the first grating. Dispersion of the group 

delay is obtained as: 

GDD = K�∅K:� = − λ
V@

πA�K� W1 − CJK − sinγG	X�Y/	      (7) 

The third order dispersion produced in the grating 

compressor will be: 

TOD = �@ KV∅K:V = − K�∅K:� [\JA ]�'DE789F�789�F��CDE�789FG� ^          (8) 

2.4.2. Prism Compressor 

A prism compressor is built of four sequentially arranged 

identical prisms used in a geometry similar to Fig.9 (left); 

often at their minimum deviation (to decrease geometrical 

(spatial) distortion of prisms on the beam) and in their 

Brewster angle (to minimize power loss). Because of the 

symmetry in the arrangement, it is possible to place a mirror 

after the second prism (as we did in the grating compressor 

setup) perpendicular to the beam propagation direction. The 

first prism spreads the pulse spectral components out in space. 

In the second prism the red frequencies of the spectrum must 

pass through a longer length in the glass than the blue 

frequencies. 

By moving the prism in and out of the beam path, the 

amount of the prism glass that the beam passes through can 

be changed for exact balancing of the pulse dispersion. The 

back reflected beam will pass through the prisms at a height 

slightly higher or lower than the incoming beam. To calculate 

the group velocity dispersion and the third order dispersion 

produced by the prism compressor we assume that the beam 

inside the compressor propagates near apices of the prisms.  

 

Fig 9. Pulse compressor, with a negative GDD. Longer wavelengths traverse 

more glass. The use of two prisms and a mirror simplifies the device 

somewhat, but it remains difficult to vary its GDD over a wide range and to 

tune it. 

The optical path of a ray propagating in the compressor is 

defined as (Holzwarth, 2000): GDD will result 
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_`` = a�bV	c��� d�e�f Wg�#gb� + Cg#gbG	 C2� − �#VGX − 2 cos f Cg#gbG	j  (9) 

The third order dispersion can also be evaluated in the 

same manner to that used above 

kl` = − �mac��V� H3 g��gb� − o gV�gbVQ                 (10) 

2.5. Mathematical Description of Laser Pulses 

In order to understand the behavior of ultrashort light 

pulses in the temporal and spectral domain, it is necessary to 

formulate the relation between the two domains 

mathematically. 

They are linked through a Fourier transform, and so the 

modification of a laser pulse in one of the two domains either 

by propagation due to dispersion or actively by pulse shaping 

implies a modification of its properties in the conjugate 

domain as well. It is important to introduce the concept of the 

amplitude and the phase of the electric field because the 

generation, measurement, and shaping of ultrashort laser 

pulses is based on measuring and influencing these properties. 

The time behavior of a laser pulse at a fixed point in space 

including the envelope, the oscillations and the phase can be 

fully described by the real electric field	 (!). The electric 

field in the time-domain is invariably connected with its 

counterpart  (0)  in the frequency-domain via a Fourier 

transform: 

2.5.1. Pulse Duration and Spectral Width 

The statistical definitions are usually used in theoretic 

calculations and given as 

〈!	〉 = r )�|t())|�g)uvwvr |t())|�g)uvwv ; 〈0	〉 = r %�|t(%)|�g%uvwvr |t(%)|�g%uvwv       (11) 

where t is the intensity weighted average time. Duration of 

very complex pulse cannot be defined in the direct and 

simple way and statistical definitions is only approximation. 

In case of Gaussian pulse is easy to determine pulse duration 

and spectral width by applying FWHM of intensity. One can 

show that these quantities are related through the following 

universal inequality 

∆0∆� ≥ 1/2                                 (12) 

For instance, a Gaussian-shaped pulse with pulse duration 

of 100 fs has a minimum spectral bandwidth of 4.41 THz. 

Relation (12) can only be fulfilled for the case when ∆0∆� is 

directly equal 1/2 with Gaussian temporal and spectral 

envelopes and the pulse is said to be a Fourier-transform 

limited or unchirped pulse. In this case, the instantaneous 

frequency is a time-independent quantity. 

In practice, half-maximum quantities are easier to measure. 

Therefore, one defines the pulse duration ∆�  as the Full 

Width at Half Maximum (FWHM) of the intensity profile 

and the spectral width ∆0  as the FWHM of the spectral 

intensity. The Fourier inequality is then usually given by 

∆0∆� ≥ y                                    (13) 

where K is a numerical constant, depending on the assumed 

shape of the pulse. 

Gaussian pulse 

In this subsection we would like to consider an example of 

Gaussian pulse, which is most commonly used in ultrashort 

laser pulse characteristics. The pulse is linearly chirped an 

represented by 

z(!) = z��{| }�(�'$~))���� � with ∆�� = �2��2�
   (14) 

The instantaneous frequency is given as 

0(!) = 0� + g�())g) = 0� − 	~��� !               (15) 

Pulse is down-chirped for a positive chirp parameter α, for 

negative is upchirped and when α = 0 then the pulse is 

unchirped. The spectral instensity can be derived by taking 

the Fourier-transform of eq.14, it also has the Gaussian shape 

(RULLIERE,1998) 

If follows directly from eq.13 that the minimum achievable 

duration is limited by the spectrum of the pulse. In other 

words, in order to produce ultrashort pulses a very broad 

spectral bandwidth is needed. The shortest possible pulse, for 

a given spectrum, is known as the transform-limited pulse 

duration. It should be noted that eq.13 is not equality, i.e. the 

product can very well exceed	y. If the product exceeds y the 

pulse is no longer transform-limited and all frequency 

components that constitute the pulse do not coincide in time, 

i.e. the pulse exhibits frequency modulation is very often 

referred to as a chirp. 

 

Fig 10. Self-phase modulation. Variation in the instantaneous frequency 0(!)  of the transmitted pulse after the propagation through a nonlinear 

medium with a positive nonlinear index of refraction, n2. 

Ultrashort laser pulses are coherent bursts of 

electromagnetic radiation, confined in time and space. They 

are characterized by several parameters: temporal coherence, 

spatial coherence (i.e. focusing ability) contrast, power, etc. 

Here the description is concentrated on their temporal aspects.  

2.5.2. Time Domain Description 

Since in this paper the main emphasis is on the temporal 

dependence, all spatial dependence is neglected, i.e.,  ({, �, �, !) =  (!). the electric field  (!), is a real quantity 

and all measured quantities are real. However, the 

mathematical description is simplified if a complex 

representation is used: 

 �(!) = z�(!). ��$%&)                        (16) 

where z�(!)  is the complex envelope, usually chosen such 

that the real physical field is twice the real part of the 
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complex field, and 0� is the carrier frequency, usually chosen 

to the center of the spectrum. In this way the rapidly varying 

is separated from the slowly varying enveloppe	z� (!).  �(!) 
can be further decomposed into: 

 �(!) = � �(!)�. �$�& . ��$�()) = � �(!)�. �$�& . ��$(∅())�%&) (17) 

�(!) is often to as the temporal phase of the pulse and ��the 

absolute phase, which relates the position of the carrier wave 

to the temporal envelope of the pulse (see fig.11). In ∅(!) the 

strong linear term due to the carrier frequency, 0!, is omitted. 

which means that a nonlinear temporal phase yields a time-

dependent frequency modulation- the pulse is said to carry a 

chirp (illustrated in Fig.11b) 

 

Fig 11. (a) The electric field of an ultra-short lasers pulse, (b) The electric field of an ultrashort lasers pulse with a strong positive chirp. 

An ultrashort pulse of light will lengthen after it has passed 

through glass as the index of refraction, which dictates the 

speed of light in the material, depends nonlinearly on the 

wavelength of the light. The wavelength of an ultrashort 

pulse of light is formed from the distribution of wavelengths 

either side of the center wavelength with the width of this 

distribution inversely proportional to the pulse duration. Note 

the frequency variation as a function of time; at the leading 

edge (to the left) the wavelength is longer than at the trailing 

edge consisting of only a few cycles. 

Phase and chrisp  

Instantaneous phase function of  (!) can be described as 

the sum of temporal phase and product of carrier frequency 

with time by the relation 0(!) = gg)∅(!) + 0�! 
Carrier frequency 0� has been choosen by minimizing of 

temporal variation of phase ∅(!) . The first deriviation of 0(!)is defined by temporally-dependent carrier frequency as 

the result of applying the derivation we receive relation 

expended in series. Then carrier frequency time denotes 

quadratic chirp.  

 

Chirp can be generated due to dispersion of materials they 

propagate through. Up-chirp is the signal with increasing 

frequency in time and down-chirp with decreasing frequency 

in time. Positive chirp is when leading edge of pulse is red-

shifted in relation to central wavelength and trailing edge is 

blue-shifted. Negative chirp happens in opposite case. Linear 

chirp, instantaneous frequency varies linearly with time. The 

presence of chirp results in significant different delays 

between the spectrally different components of laser pulse 

causing pulse broadening effect and leading to a duration-

bandwidth.  

Chirps always appear when ultrashort laser pulses 

propagate through a medium such as air or glass, where the 

spectral components of the pulse are subject to a different 

refractive index. This effect is called Group Velocity 

Dispersion (GVD). Therefore, for pulse durations on the 

order of 100 fs, the contribution of the quadratic and higher 

order chirps is negligible. Yet, shorter pulses require the 

consideration of higher order chirps due to the increasing 

frequency bandwidth. 

2.5.3. Lens Frequency Domain Description 

It is usually more convenient to represent the pulse in the 

frequency domain rather than in the time domain. The 

frequency representation is obtained from the time domain by 

a complex Fourier transform, 

 (0) = �√	π
r  (!). ��$%)'∞�∞

. �!.               (18)  

Just as in the time domain,  �(0) can be written as: 

 �(0) = � �(0)��$�(%)                        (19) 

where �(0)  now denotes the spectral phase. An inverse 

transform leads back to the time domain, 

 �(!) = 	 �√	c r  �(!). �$%)'��� . �0              (20) 

From eq.20 it is clear that  �(!)  can be seen as a 

superposition of monochromatic waves. The spectral phase 
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can, in the same manner as the temporal phase, be 

decomposed into different parts. A common procedure is to 

employ Taylor expansion 

∅(0) = ∅� + ∑ �#! �#	�#�� (0 − 0�)#				with				�# = �g��g%��%�%& (21) 

It can be seen by inserting this Taylor expansion into eq.21 

that the first, two terms will not change the temporal profile 

of the pulse. A linear phase variation does not change the 

shape of the pulse, but only introduces a temporal shift of the 

entire pulse. Therefore, usually only the nonlinear part of the 

spectral phase is of interest. Any nonlinear addition to the 

phase will redistribute the frequency components and alter 

the temporal shape of the pulse. 

2.6. Ultrashort Pulse Measurement Techniques 

Measuring of the pulse width and structure of the complex 

laser pulses in range under 10 ps is not as routine as the 

measurement of their repetition rate of wavelength. All 

techniques for determining the temporal resolution 
(!) can 

be in general classified into direct and indirect methods. 

The most commonly used technique of ultrashort laser 

pulse width measurement is concerned with the study of the 

temporal intensity profile 
(!)  through its second-order 

correlation function that is obtained by the second-harmonic 

generation. It provides an extremely high time resolution 

down to tens of femtoseconds. However, being an indirect 

technique, the intensity autocorrelation cannot provide 

unequivocal information on the pulse shape and, in particular, 

its asymmetry. Strictly speaking, higher order correlation 

functions are necessary for the exact determination of the 

pulse shape and duration. On the other hand, when performed 

with interferometric accuracy, second - order autocorrelations 

provide a much more contrasted pattern and information 

about the pulse shape and chirp may be extracted. However 

all techniques employ principle of probing ultrashort pulse 

with time delayed replica of pulse itself. Indirect methods can 

be distinguished into self – referenced and nonself-referenced, 

interferometric or non-interferometric. According to pulse 

retrieval that can be direct (non-iterative) or indirect (iterative) 

and the data can be captured and analyzed in the real time or 

not. Ultrashort - pulse characterization techniques, such as 

the numerous variants of frequency resolved optical gating 

(FROG) and spectral phase interferometry for direct electric-

field reconstruction (SPIDER), fail to fully determine the 

relative phases of well separated frequency components. If 

well-separated frequency components are also characterized 

gate pulses are used (Joanna, 2007). 

2.6.1. Non-Interferometric Techniques 

2.6.1.1. Intensity Autocorrelation 

Complex electric field  (!)  corresponds to intensity 
(!) = | (!)|	  and an intensity autocorrelation function is 

defined by 

 

Fig 12. Setup for an interferometric autocorrelator, similar to the field 

autocorrelator above, with the following optics added: L: converging lens, 

SHG: second-harmonic generation crystal, F: spectral filter to block the 

fundamental wavelength. 

z(�) = r 
(!)
(! + �)�!'���                   (22) 

Two parallel beams with a variable delay are generated, 

then focused into a second-harmonic-generation crystal to 

obtain a signal proportional to  (!) +  (! + � . Only the 

beam propagating on the optical axis, proportional to the 

cross product  (!) (! − �) is retained. This signal is then 

recorded by a slow detector, which measures 


(�) = r | (!) (! − �)|	�! = r 
(!)
(! − �)�!'���'���  (23) 


(�)  is exactly the intensity autocorrelation z(�) . Both 

beams must be focused at the same point inside the crystal as 

the delay is scanned in order for the second harmonic to be 

generated. It can be shown that the intensity autocorrelation 

width of a pulse is related to the intensity width. For a 

Gaussian time profile, the autocorrelation width is longer 

than the width of the intensity, and it is 1.54 longer in the 

case of an hyperbolic secant squared (sech2) pulse. This 

numerical factor, which depends on the shape of the pulse, is 

sometimes called the deconvolution factor. If this factor is 

known, or assumed, the time duration (intensity width) of a 

pulse can be measured using an intensity autocorrelation. 

However, the phase cannot be measured (Joanna, 2007), 

(abdolah, 2007). 

From the construction of the setup point of view as 

intensity autocorrelation as also interferrometric 

autocorrelation consist of the some components, only the 

geometry and processing the captured data is different. In 

case of intensity autocorrelation is applied non-collinear 

geometry and in case of interferrometric setup the collinear 

geometry of beams incomming to the nonlinear medium. 

2.6.1.2. FROG 

The technique of Frequency-Resolved Optical Gating 

(FROG) has been introduced by Trebino and coworkers. In 

FROG technique signal  � has been temporally shifted about 

τ through time-delay element in respect with signal  	. Then, 

two signals have been in nonlinear medium non-

interferometrically overlapped. As the result of SFG or DFG 

process (at the efficient phase matching conversion) one 

receive the FROG signal. 
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Fig 13. FROG reconstruction scheme. When both E1 and E2 have been 

unknown, then we deal with Blind-FROG problem. When  � =  	 then we 

have to do with SHG-FROG problem. 

In construction with process II also collinear geometry is 

possible. 

 ����(�, �) ∝ r  �(! − �) 	(!)exp	(e�!)�!'���       (24) 

∝ r  ��(0) �	(� − 0)exp	(e0�)�0'���           (25) 

∝ r �!	 r  ��(0) 	(!)exp	(−e0!)'��� exp	(e�! + e0�)�0'���  (26) 

The spectral intensity 


����(�, �) ∝ | ����(�, �)|	                   (27) 

has been at the various τ by spectrometer measured and 
����(�, �)  is called FROG-trace. Relations (25), (26) are 

only the mathematical representation of eq.24. The task of 

receiving unknown complex signals  �  and  	  from 

measured FROG trace is known as the FROG reconstruction 

problem 

FROG involves measuring the spectrum of the signal pulse 

as a function of the delay between two input pulses. The 

resulting trace of intensity versus frequency and delay is 

related to the pulse’s spectrogram, a visually intuitive 

transform containing both time and frequency information. 

Using phase retrieval concepts that the FROG trace yields the 

full intensity 	
(!)  and phase ∅(!)of an arbitrary ultrashort 

pulse. As has been already mentioned, several schemes and 

methods exist for frequency-resolved optical gating as a 

technique for the full characterization of ultrashort optical 

signals as complex electric fields. However, the uniqueness 

of the reconstructed fields has never been shown. There exist 

no proof of PCGP algorithm and some papers showing a lot 

of trivial and non-trivial ambiguities, but going into the 

details it depends on the applied conditions (Greg, 

1996),(Marco, 1996). 

2.6.2. Interferometric Techniques 

2.6.2.1. Interferometric Autocorrelation 

Setup for an interferometric autocorrelator is similar to the 

field autocorrelator above, with the following optics added: L: 

converging lens, SHG: second harmonic generation crystal, F: 

spectral filter to block the fundamental wavelength. A 

nonlinear crystal can be used to generate the second 

harmonic at the output of a Michelson interferometer in a 

collinear geometry. In this case, the signal recorded by a slow 

detector is 

 

Fig 14. Setup for an interferometric autocorrelator, similar to the field 

autocorrelator above, with the following optics added: L: converging lens, 

SHG: second-harmonic generation crystal, F: spectral filter to block the 

fundamental wavelength. 

(�) = r | (!) +  (! − �)|	�!'���                    (28) 


(�)  is called the interferometric autocorrelation. It 

contains some information about the phase of the pulse: the 

fringes in the autocorrelation trace wash out as the spectral 

phase becomes more complex 

2.6.2.2. SPIDER 

The Spectral Phase Interferometry for Direct Electric-field 

Reconstruction technique (SPIDER) is based on spectral 

interferometry and needs no components which has to be 

shifted over the measurement process. From the signal  (!) 
that should be characterized, the copy-signal is being 

generated by beam splitter 

 (! − �)�{|4e0��6                         (29) 

The time between the signal and copy itself has been 

established through fixed position at the optical delay-line. 

Then the copy of signal goes through phase filter (dispersive 

medium, for instance SF10 glass), so arises the signal 

	 �(!) =  ��¡ �(0)�{|4e∅�(0)6¢         (30) 

Through the phase filter electric field  �(0)get additional 

spectral phase ∅�(0) , which corresponds to temporal 

extension  (!). From the signals 

 �(!)		���	 (! − �)�{|4e0��6 +  (!)        (31) 

SFG-Signal can be created 

 £��(!) ∝  �(!)¡ (! − �)�{|4e0��6 +  (!)¢        (32) 

= 	 �(!) (! − �)�{|4e0��6 + 	 �(!) (!)         (33) 

As square law detectors are not sensitive to the phase, the 

measurement of the intensity (whether it is spatial or spectral) 

is an easy task but the measurement of the phase needs 

indirect solutions. Spectral shearing is similar in concept to 

intensity autocorrelation except that, instead of gating pulse 
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with a time-shifted copy of itself, a pulse is interfered with 

frequency-shifted or spectrally sheared copy of itself. 

SPIDER uses nonlinear mixing (usually SFG) as combination 

of filters to generate signal that can be measured by slow 

detector. 

 

Fig 15. Main steps of SPIDER technique. 

 

Fig 16. generation of two sheared replicas of the input pulse by non-linear 

interaction with a chirped pulse 

Sending through linear spectral phase modulator (adds 

spectral shear to pulses in its arm of interferometer). Sending 

through linear temporal modulator - adds temporal delay to 

the pulse in its arm, then two pulses are recombined and send 

through a spectrometer. Spectral interferometry allows us 

obtain difference between two spectral phases. To the spectral 

interferometry spectrum one should apply fast Fourier 

transform and as the product one will achieve in form of one 

center peak and two sidebands lower peaks in the time 

domain. 

Centered peak contains only spectrum information. One 

filter out two peaks and from existing one can receive 

spectral phase difference by applied inverse fast Fourier 

transform. To the main advantages of the SPIDER method 

can be counted following properties: pulse retrieval is direct 

(non-iterative), minimal data are required: only one spectrum 

yields spectral phase. It naturally operates single-shot. 

Disadvantages: apparatus is very complicated (13 alignment 

parameters). and unability to measure long and complex 

pulses, the temporal delay τ should be chosen very accurate, 

also the zeros in complex pulses make a problems. In 

stretched pulse we have continuous waves approximately, so 

there are usually weak pulses, sampling, aliasing effects in 

Fourier Transforms when would be too much fringes and if 

would be too not enough fringes then is not good resolved, so 

this issue needs a compromise (Hofmann, 2005). 

2.6.2.3. The VAMPIRE Technique 

Abbreviation VAMPIRE means: Very Advanced Method 

of Phase and Intensity Retrieval of E-fields. The optical 

scheme of idea of VAMPIRE technique is shown in Fig.17 

below. One can classified VAMPIRE as the 

noninterferometric spectrographic technique. The 

conditioning filter is a temporal phase filter and a key 

element of VAMPIRE. Every spectrogram generated by 

VAMPIRE has special mathematical properties. For that 

reason a unique retrieval of two independent and arbitrary 

ultrafast pulses is possible. Every spectrogram generated by 

Vampire has special mathematical properties. For that reason 

a unique retrieval of two independent and arbitrary ultrahort 

pulses is possible (Joanna, 2007). 

 

Fig 17. General view on idea of VAMPIRE technique  

Ultrashort pulses with well-separated multiple frequency 

components cannot be retrieved by all variants of self-

referenced FROG or self-referenced SPIDER. Ultrashort 

signals with well-seperated multiple frequency components 

are no problem for VAMPIRE. Complex ultrashort signals 

cannot be retrieved by SHG- FROG, PG - FROG or Blind - 

FROG in general. Reconstruction scheme is presented below. 

The main features of VAMPIRE technique can be listed as 

follows 

� Unique retrieval of two independent and arbitrary 

ultrafast pulses; 

� Very fast real-time retrieval algorithm without 

stagnation problems; 

� Pulse width range: from 10fs to 1ps; 

� Wavelength range: depends on the given pulse, in the 

Vampire model a wide range from UV to IR is 

applicable; 

� Input energy requirements: 10mW average power or 50	¥¦ single pulse (but depends on the two signals in 

general); 

� Easy alignment. 

All existing techniques usually present the good results by 

analysis simple pulse shapes. More complex amplitude 

profiles become problematic, especially when there are 

zeroes or well separated parts in temporal or spectral domain. 

In such experiments, iterative FROG algorithm often does 

not converge and give wrong output. Therefore, in case of 

more complex signals full field reconstruction could not be 

guaranteed by conventional FROG methods. VAMPIRE 



 American Journal of Physics and Applications 2015; 3(1-1): 1-17 11 

 

method is derived from Blind-FROG and is based not on 

autocorrelation of the signal, but rather on its cross-

correlation with suitable reference pulse. Signal and 

reference are also known as probe pulse and gate pulse. The 

VAMPIRE spectrogram (strictly speaking, 

spectrochronogram) can be expressed by 


(�, �) ∝ �r  �
§)�(0) ���¨©�(� − 0)�{|(e0�)�0�	 (34) 

where  �  is the complex spectral field, � defines the specrtal 

axis, and �  is the delay. Vampire can guarantee the 

uniqueness of full field reconstruction because  �
§)�can be 

chosen such that 
(�, �) does not suffer from non-trivial 

ambiguities. Ideally, this would be achieved by a well-

separated double pulse structure with an asymmetry in 

duration, peak power, and chirp of the individual pulses. 

A sufficient symmetry is required, but detailed knowledge 

of the structure is definitely not. In VAMPIRE spectrogram 

exists non-centrosymmetric geometry due to existing of two 

spectrally dispersed signals from the cross-correlations of the 

probe pulse with two different components of the gate pulse. 

In comparison to autocorrelation based techniques, this 

asymmetry in the cross-correlation represents just that extra 

amount of information that allows a unique relation between 

probe pulse and spectrogram. 

3. Propagation of a Light Pulse in a 

Transparent Medium 

What happens to a short optical pulse propagating in a 

transparent medium? Because of its wide spectral width and 

because of group velocity dispersion in transparent media, it 

undergoes a phase distortion inducing an increase of its 

duration (Khelladi, 2005). 

When an electromagnetic wave interacts with the bound 

electrons of a dielectric medium the medium response in 

general depends on the optical frequency of the wave. This 

property is referred to as chromatic dispersion. It manifests 

itself through frequency dependence of the refractive index 

of the medium. Its origin is related to the characteristic 

resonance frequencies at which the medium absorbs the 

electromagnetic radiation through the oscillation of the bound 

electron. Far from resonances, the refractive index of the 

medium is well approximated by the Sellmeier equation. The 

frequency Fourier transform of a Gaussian pulse has already 

been given as  

 (0) = �{| C�(%�%&)�a.ª G                      (35) 

An ultrashort Fourier limited pulse has a broad spectrum 

and no chirp; when it propagates a distance through a 

transparent medium, the medium introduces dispersion to the 

pulse inducing an increase in the pulse duration. To 

investigate and determine the dispersion, we assume a 

Gaussian shape for the pulse. The electric field of the pulse is 

given as Eq.35 

After the pulse has propagated a distance z, its spectrum is 

modified to  

 (0, �) =  (0)�{|4±e¬(0)�6, ¬(0) = #(%).%� 	    (36) 

where k(w) is now a frequency-dependent propagation factor. 

In order to allow for a partial analytical calculation of the 

propagation effects, the propagation factor is rewritten using 

a Taylor expansion as a function of the angular frequency, 

assuming that ∆0 ≪ 0� (this condition is only weakly true 

for the shortest pulses). Applying the Taylor expansion to 

eq.37, the pulse spectrum becomes. 

¬(0) = ¬(0�) + ¬¯(0 − 0�) + �	 ¬¯¯(0 − 0�)	 +  (37) 

where ¬¯ = Cg°(%)g% G%& . and ¬¯¯ = Cg�°(%)g%� G%& ,	 
 (0, �) = �{| H−e¬(0�)� − e¬¯�(0 − 0�) − C �aª +e2¬′′(0−00)2           (38) 

The time evolution of the electric field in the pulse is then 

derived from the calculation of the inverse Fourier transform 

of eq.39, 

�(!, �) = r  (0, �). ��$%)�0'���               (39) 

so that 

�(!, �) = Bª(²)c 	. �{| He0� C! − ²³∅(%&)GQ × �{| W−µ(�) }! − ²³�(%&)�	X	 (40) 

where  

	¶∅(0�) = C%°G%& , 			¶
(0�) = Cg%g°G%& , 1/(µ(�) = 1/µ + 2e¬′′	�    (41) 

In the first exponential term of eq.40, it can be observed 

that the phase of the central frequency 0� is delayed by an 

amount 
²³∅ after propagation over a distance z. Because the 

phase is not a measurable quantity, this effect has no 

observable consequence. The phase velocity ¶∅(0�) 
measures the propagation speed of the plane wave 

components of the pulse in the medium. These plane waves 

do not carry any information, because of their infinite 

duration. 

The second term in eq.40 shows that, after propagation 

over a distance z, the pulse keeps a Gaussian envelope. This 

envelope is delayed by an amount		� ¶
	⁄ , ¶
 being the group 

velocity. The second term in eq.40 also shows that the pulse 

envelope is distorted during its propagation because its form 

factor µ(�), defined as 

1/(µ(�) = 1/µ + 2e¬′′	�                           (42) 

Depends on the angular frequency 0 through ¬¯¯(0), 
¬¯¯ = C�	¬ �0	¸ G%& = gg% } �³��%&                 (43) 

This term is called the “Group Velocity Dispersion”. The 

temporal width of the pulse at point z:  
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∆�² = ∆���1 + 4. (µ. ¬′′�)	.                   (44) 

with ¬¯¯ = bV	.c.�� 	g�#gb� 	µ = 	º¨
	∆&� , 

3.1. Application in Litharge Index SF57 Medium 

In optical materials, the refractive index is frequency 

dependent. This dependence can be calculated for a given 

material using a Sellmeier equation, typically of the form 

�	(0) = 1 + ∑ »+%+�%+��%�¼$��                        (45) 

The glass containing lead-oxide (PbO) are called Litharge 

glasses. Litharge has a high refractive index making it bright 

and a relatively soft surface making it easy to decorate by 

grinding, cutting and engraving. Its ability to refract light 

more efficiently than standard glass makes it an excellent 

material for prisms, decorative objects, and artificial jewelry. 

It is also favoured for electrical applications because of 

excellent electrical insulating characteristics, and the concave 

or diverging half on an achromatic lens is usually made of 

litharge glass. 

Lead-silicate glasses are especially promising materials for 

highly nonlinear fibers due to their suitable combination of 

properties. Although their material nonlinearities are lower 

than those of bismite, tellurite, and chalcogenide glasses, they 

provide higher thermal and crystallization stability and less 

steep viscosity temperature curves, while exhibiting low 

softening temperatures. The properties of PbO based glasses 

are summarized below. 

� High linear refractive index (1.75-2.4) 

� High nonlinear index coefficient (22 – 286.10
-20

 [m
2
/W]) 

� Wide transmission range (0.4¥�~3¥�) 
� Transition temperature (~700	°À)  and melting 

temperature (~1100°À) 
� Poor electrical conductivity  

� Highest atomic number of all stable elements 

The index of litharge SF57 is given by the following 

expression (45):  

Table 1. Parameters for litharge SF57 Glasses. 

Á$ 1.81651732 0.428893631 1.07186278  o$(µ�) 0.0143704198 0.0592801172   121.419942   

where 0$  is the frequency of resonance and Á$  is the 

amplitude of resonance. In the case of optical fibers, the 

parameters 0$  and Á$  are obtained experimentally by fitting 

the measured dispersion curves to eq.45 with � = 3  and 

depend on the core constituents (Jong Kook, 2005). 

3.2. Parameter of Dispersion  

An ultrashort Fourier limited pulse has a broad spectrum 

and no chirp; when it propagates a distance through a 

transparent medium, the medium introduces dispersion to the 

pulse inducing an increase in the pulse duration. We consider 

dispersions of orders two. The pulse broadens on propagation 

as a result of group velocity dispersion (GVD). 

 

Fig 18. Temporal broadening of the transform- limited pulse for different 

values of the propagation distance z. 

In summary, the propagation of a short optical pulse 

through transparent medium results in a delay of the pulse, a 

duration broadening and a frequency chirp. 

3.3. Group Velocity Dispersion 

The Group Velocity Dispersion (GVD) is defined as the 

propagation of different frequency components at different 

speeds through a dispersive medium. This is due to the 

wavelength-dependent index of refraction of the dispersive 

material. GVD causes variation in the temporal profile of the 

laser pulse, while the spectrum remains unaltered.  

To the first place we limited only to the order two of the 

Taylor expansion of the phase. It is noticed that the analysis 

of Fourier remains valid only for durations of pulse which are 

higher than ≈ 60 fs.  

In addition media we consider all higher order dispersion, 

which completely describes the physical processes involved 

in ultrashort dispersive pulse dynamics. The pulse broadens 

in time and becomes asymmetric. In addition, the off axis 

pulse becomes wider than the pulse on axis (Khelladi, 2008). 

�	(0) = �(0�) + (0 − 0�) �g�g%� + �	! (0 − 0�)	 �g��g%��%�%& +⋯+ �#! (0 − 0�)# �g��g%��%�Ω + =(0).%�%&          (46) 



 American Journal of Physics and Applications 2015; 3(1-1): 1-17 13 

 

ÄÅ
ÅÅ
ÅÅ
ÅÆ
ÅÅ
ÅÅ
ÅÅ
Ç �(o) = 2Èo �(o)��o�0 = 	−	 o22È����0 = 	−	�� H���o − �Q

�2��02 = 	+	 o34È3�2 �
2��o2 ��3��03 = 	−	 o44È2�3 H3 �2��o2 + o �3��o3Q ��4��04 = +	 o58È3�4 H12 �2��o2 + 8o �3��o3 + o2 �4��o4Q ��5��05 = −	 o616È4�5 H60 �2��o2 + 60o �3��o3 + 15o2 �4��o4 + o3 �5��o5Q ��6��06 = +	 o732È5�6 H360 �2��o2 + 480o �3��o3 + 180o2 �4��o4 + 24o3 �5��o5 + o4 �6��o6Q �

�                        (47) 

ËÌ
ÌÌÌ
Í∅(	)∅(Y)∅(a)∅(Î)∅([)ÏÐ

ÐÐÐ
Ñ
= (−1)#2. È. � H b	.c.�Q#























124180480360

01156060

001812

00013

00001
                                      (48) 

It seems to me that we can write 
i

i
i

dw

d ϕϕ =)(  as a recurrence, 

giving )(iϕ  based on derivatives of order i, the index of 

refraction. Matrix form, we can write  

The various terms of the Taylor expansion to order n can 

be written in the shape of a matrix [A], which’s we can 

express various terms A ij. 

∅	(0) = ∅(0�) + (0 − 0�)∅(�) 	+ ∑ �$! (0 − 0�)$�$�	 �∅($)�%�%& + =(0).                                 (49) 

	∅(�) = (−1)�. 2È. � H b	.c.�Q� ∑ oÒ��z(| − 1, Ó − 1)�(Ò)�Ò�	 	with				| > 2	                                (50) 

 

Fig 19. (a) the pulse broadens on propagation as a result of group velocity dispersion (GVD) (b) The pulse shape is no longer Gaussian and it becomes 

asymmetric due to higher order dispersions 

Analytically known and experimentally observed 

propagation affects such as spectral shift, pulse broadening 

and asymmetry in dispersive media can be easily brought out 

in the simulation using formalism presented here. In addition, 

such studies can be extended to pulses of arbitrary temporal 

shape without any further algorithmic complexity by 

numerical simulation. Higher order dispersion effects can be 

handled easily in the numerical simulation unlike in the case 

of analytical calculation (Khelladi, 2008). 

Discussion 

The Fourier theorem is the most classical approach for 

describing the propagation of electromagnetic signals 
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through dispersive media. In the case of signals characterized 

by a slow temporal varying envelope, the phase is usually 

approximated by the Taylor expansion in the neighborhood of 

the central frequency of the input pulse. For shorter pulses, 

the concept of group velocity is irrelevant and the envelope 

distortion is a function of the higher order terms. Ultrashort 

pulses less than 10 fs are now available. Their envelope 

harmonic content is so high that the Taylor expansion of the 

phase is now more possible. There is no other way than a 

numerical computation of the Fourier integral. 

However this method does not permit a straightforward 

physical understanding of the envelope propagation and 

principally does not picture the fact that this is the group 

velocity dispersion which generates the ultrashort pulses 

distortions. Such a situation claims for another type of 

decomposition involving both a time and frequency 

dependence of the components. 

Numerous bidimensional representations of acoustic and 

electromagnetic signals have already been suggested. We 

propose here a method derived from the Gabor 

transformation in order to decompose the signal into an 

infinite number of elementary components (wavelet) of same 

duration (much more longer than that of the original signal), 

each of them being centered at a frequency Ω belonging to 

the Fourier spectrum of the pulse (Khelladi, 2008). 

4. Time-Frequency Decomposition 

4.1. Wavelet Theory 

The wavelets are very particular elementary functions, 

these are the shortest vibrations and most elementary that one 

can consider. One can say that the wavelet east carries out a 

zooming on any interesting phenomenon of the signal which 

place on a small scale in the vicinity of the point considered 

(Meyer et al, 1987). 

4.2. Wavelet Techniques 

Starting with a signal �(!) , in plane � = 0 , we define 

wavelet centered at Ω by 

	=(Ω) =  (0). �{| Õ− (0 − Ω)	4R Ö ,								with						 (0) = 

t&	.cBcª 	�{| H(%�%&)�a.ª Q	                           (51) 

 

Fig 20. Gaussian envelope decomposed on a number of wavelet we 

calculates the electric field associated with the wavelet =(Ω, � = 0).
  =(!, � = 0) = k ¡=(Ω, � = 0)¢                   (52) 

=(!, � = 0) =  �B ××'ª . �{| H�(%&�Ω)�a(×'ª) Q . �{| H− ×ª×'ª !	Q . �{| HÓ ×%&'ªΩ×'ª !Q                                    (53) 

� In time, the pulse is also Gaussian, of parameter 
ØÙØ'Ù	. 

� The maximum of amplitude of the wavelet =(!, � = 0)
 

vary with Ω, center frequency of analysis on Gaussian 

of parameter R + µ. 

� The signal propagates in the positive �  direction in a 

linear dispersive and transparent medium, which fills 

the half space � > 0	and whose refractive index is �(0). 
After propagation, the wavelet =(Ω, {) may be written 

as 

=(Ω, �) = t&	.√c×  (0). �{| H− (%�Ω)�a× Q . �{|4Ó∅(0)6.   (54) 

As already mentioned, �%§Ú�º�)  is large enough to ensure 

that analyzing function has only non negligible values over a 

spectral range lying in the neighbourhood of Ω in (Fig 20). 

Under these circumstances, we have 

∅	(0) = ∅(Ω) + (0 − Ω) �g∅g%� + �	! (0 − Ω)	 �g�∅g%��%�Ω +⋯+ �#! (0 − Ω)# �g�∅g%��%�Ω + =(0).%�Ω                 (55) 

Neglecting the higher terms in eq.50: 

∅(0) = ∅(Ω) + (0 − Ω) �g∅g%�%�Ω + �	! (0 − Ω)	 �g�∅g%��%�Ω + =(0).                    (56) 

=(Ω, �) = t&	.√c×Bcª		�{| H− (%�%&)�aª Q . �{| H− (%�Ω)�a× Q . �{| HÓ∅(�) + Ó(0 − Ω)∅(�) + �	 Ó(0 −Ω)	. ∅(	)Q         (57) 

=(!, �) = �	c r =(Ω, �). �{|(Ó0!)�0'∞�∞
                                                                 (58) 

We calculates the temporal electric field associated with the wavelet =(Ω, �).
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=(!, �) = 12È  �2. √ÈRBÈµ		�W�
(Ω�%&)�aª X�ÛÒ∅(&)Ü × ��H �aª	'	 �a×	–	�		Ò∅(�)QΩ� . �W(Ω�%&)	ª 	–	Ò∅(Þ)XΩ

 

× }r ��H Þmß	'	 Þmà	–	Þ�Ò∅(�)Q%� . �H Þmß	'	 Þmà		�	Þ�Ò∅(�)Q	Ω%'��� � �× �W�(Ωw-&)��ß 	�Ò∅(Þ)X. �Ò%)á �0                              (59) 

The amplitude of the incident Ω wavelet is given from eq.60 by 

=(!, �) =  �2. √ÈR âµ(�)µ 	. �{|ÛÓ∅(�)Ü�{| ã−µ(�) Õ! + �¶
(Ω)Ö
	á  

× �{| C− (Ω�%&)�aª H1 − ª(²)ª QG . �{| HÓ C1 − ª(²)ª GΩ + ª(²)ª 0�Q }! + ²³�(Ω)�.		                                 (60) 

This wavelet is characterized by a Gaussian envelope. This 

decomposition is valid only for the values of ∆0 much larger 

than ä0 (∆0 ≫ ä0 ). 

The delay of group of the wavelet W! + ²³�(Ω)X	 is 

characterized by a Gaussian envelope which is the temporal 

width. 

The delay of group of the wavelet is inversely proportional 

to the velocity of group its envelope propagates without 

deformation (Khelladi, 2008). 

4.3. Simulations 

 

 

Fig 21. (a) Initial pulse, (c) pulse after propagation of the 20 cm in litharge medium, (e) Contour of the wavelet, (g) the wavelet Representation, (b) Initial 

pulse, (d) pulse after propagation of the 20 cm in the silica medium, (f) Contour of the wavelet, (h) the wavelet Representation (Khelladi et al, 2008). 
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Parameters of the simulations 

Pulse initial: ∆�� = 10	�� 

Wavelength : o = 800	�� 

Pulse of the wavelet: ∆�%§Ú�º�) = 1000	�� 

Longer of the medium: � = 20	�� 

To describe the propagation of the pulse, we only consider 

the propagation of the maximum of each wavelet in a three 

dimensional representation: 

5. Conclusion 

In this article we have described powerful methods for 

crafting femtosecond optical pulses with precisely 

controllable temporal envelopes. For optical control the 

generation of light fields in a very flexible manner is desired 

such that all the different open-loop or closed-loop schemes 

can be implemented. In the case of femtosecond laser pulses 

this means that one should be able to manipulate the phase, 

amplitude, and possibly also the polarization-state properties 

with a large number of degrees of freedom. Ultrashort laser 

pulses can be described in the time domain and in the 

frequency domain which are connected via Fourier 

transforms, thus shaping of an ultrashort laser pulse can in 

principle be achieved either in the frequency or time domain. 

Both phase and amplitude can be controlled, and great 

precision together with high complexity is possible. We 

began with a detailed discussion of generation of the 

ultrashort laser pulse and shaping methods which were 

largely developed by this author and his coworkers and 

which are now becoming widely adopted. We also reviewed a 

number of other pulse characterizations techniques, involving 

as FROG, SPIDER, VAMPIRE.  

Finally, we have demonstrated here the possible 

decomposition of an ultrashort pulse into an infinite number 

of longer Fourier transform limited wavelets which propagate 

without any deformation through a dispersive medium. After 

propagation through the medium, the pulse may be visualized 

in a three dimensional representation by the locus of the 

wavelet maxima. This representation permits the evaluation 

of the broadening suffered by the pulse. For a transparent 

medium, the propagation of the Ω wavelet is described by the 

convolution of the incident Ω wavelet with a =(Ω) 
distribution centered at the group delay relative to Ω. 

The application to absorbing media is relatively 

straightforward and will be presented in a further publication, 

as well as a generalization to nonlinear media. The time-

frequency representation is peculiarly suitable to the latter 

case for which the refractive index is phenomenological time 

dependent. Although this technique represents a vast 

improvement in our ability to describe such pulses, they 

require additional effort, both in the apparatus and in the 

extraction of the pulse intensity and phase from the 

experimental trace. 
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