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Abstract: The LLG equation including the spin-transfer torque term, and the frequency spectrum analysis method are used to 
study the dynamic process of ferromagnetic resonance. The effects of damping factor α, internal anisotropic field, magnetic field 
inclination, and spin-transfer torque caused by the spin current are studied. The following results are found as follows. The 
ferromagnetic resonance spectra as functions of the frequency ω for fixed magnetic field, and functions of magnetic field for 
fixed frequency are obtained, and it is found that the internal magnetic field also has contribution to the resonance field or 
frequency, and we know that the resonant frequency ω0≈he+h1 (in unit of γH0). In addition, when the damping factor increases 
from 0.01 to 0.03, the resonance frequencies increases slightly, and the resonance strength decreases. And the oscillatory waves 
of mx and my reach their stable values more quickly. Furthermore, the internal field perpendicular to the external field h0 as well as 
it parallel to h0 also has the effect to the resonant frequency. The positive and negative internal field will have reversed effects to 
the resonance field or frequency. And in the end when the spin current becomes larger the STT effect becomes stronger, even 
exceeds the ferromagnetic resonance effect, makes mz reversed, and mx and my decreased. 
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1. Introduction 

Ferromagnetic resonance has been used to study the 
magnetic properties and magnetization dynamics of 
ferromagnetic material [1-10], such as the Landé g factor, the 
Gilbert damping parameter α, and magnetic anisotropic 
properties, etc. 

Beaujour et al. studied the ferromagnetic resonance of the 
Fe1-xVx alloy thin films [11]. The Landé g factor, Gilbert 
damping parameter α are obtained as functions of the V 
component x. When x increases the Landé g factor increases 
from 2.11 for x=0 to 2.17 for x=0.6. And the damping 
parameter α also increases from 0.008 for x=0 to 0.015 for 
x=0.5. The films exhibit an out-of-plane anisotropy, and the 
anisotropy constant K⊥ decreases with x increasing, from 3.4 
erg/cm2 for x=0 decreases to 0.8 erg/cm2 for x=0.66. Wu et al. 
studied the ferromagnetic resonance in a CoFe/PtMn/CoFe 
multilayer film [12]. In experiments the sample plane was 
rotated with respect to the direction of the magnetic field. The 
g factor and the effective magnetic anisotropy parameters of 

the magnetic film were obtained from the angle dependence of 
the resonance peaks as: g=2.01, 2KA/M~0.1 T, 
4πM-2KU/M~1.9 T. Kakazei et al studied the ferromagnetic 
resonance of ultrathin Co/Ag superlattices on Si (111) [13]. 
FMR spectra have been recorded at various polar angles 
between the sample plane and the magnetic field. From the 
angle dependence of the resonance field the fitting parameters 
are obtained: g=2.07, the anisotropic field Heff=7.83 kOe for 
5×[Co (4 Å)/Ag (4.5 Å)] SL sample. Urban et al. studied the 
Gilbert damping in single and multilayer ultrathin Fe films: 
role of interface in nonlocal spin dynamics [14]. They found 
that the FMR linewidth for the Fe films in the double layer 
structures was larger than the FMR linewidth in the single Fe 
films having the same thickness. The additional FMR 
linewidth scaled inversely with the film thickness, and 
increases linearly with increasing microwave frequency. 
These results demonstrate that a transfer of electron angular 
momentum between the magnetic layers leads to additional 
relaxation torques. 
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2. LLG Equation 

The LLG equation has been successfully applied to study 
the spin reversion by the current driven spin torque. In that 
case the energy and the absolute value of the spin angular 
momentum are conserved. In the case of ferromagnetic 
resonance the energy is not conserved, especially at resonance 
the magnetic moment increases rapidly. In this paper we will 

use the LLG equation to study the ferromagnetic resonance. 
The LLG equation is written in Eq. (1), where m is the unit 
vector of the macro magnetic moment, thus m2=1. In studying 
ferromagnetic resonance we assume that before applying 
alternating microwave field m2=1, after applying alternating 
microwave field m2≠1. 

The LLG equation can be written as. 

�
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Where 
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γ≈2µB/ℏ is the gyromagnetic ratio, α is the Gilbert damping 
constant, H is the total magnetic field, including external 
magnetic field He and internal local anisotropic magnetic field 
Heff, ns is the unit vector of the magnetization in the fixed layer. 
aJ is a torque constant relative to the spin-polarized current. 
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where η is the spin polarization of electrons, I is the current, 
Ms is the saturated magnetization, S and d are the area and 
width of the free layer, respectively. Temporally we don't 
consider the term related to current aJ. 

In order to transfer Eq. (1) into the dimensionless form, we 
take the unit of the magnetic field as H0, H=hH0. The time unit 
is taken as τ0=1/γH0, t=ττ0. In this paper we took H0=104 
A/m~1.257×10-2 T, γH0=176 GHz/T×1.257×10-2 T=2.21 GHz. 
τ0=0.45 ns. With τ Eq. (1) becomes. 
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Where aJH=aJ/H0. 
H represents the sum of the internal and external fields on 

the magnet. The internal magnetic field is responsible for 
keeping the magnetization pointing along the easy axis. For 
example, a thin-film magnet oriented in the x-y plane with 
easy axis along z-axis is characterized by. 

��)) = �*	*+̂ + �-	-./             (5) 

Representing the internal "uniaxial anisotropy" effective 
field. It is noticed that the internal field is dependent on the 
magnetic moment m. 

We take the dimensionless magnetic field, 

ℎ� = ℎ�+̂ + ℎ0-./ + ℎ012/ + ℎ�	*+̂ + ℎ�	-./    (6) 

Where the first three terms are external magnetic field, h0 is 
the constant field in the z direction, h3 is the alternating field 
h3x=h3cosωτ, h3y=h3sinωτ. The last two terms are the internal 
effective anisotropic field, dependent on the magnetic moment 
component. Then we write the component form of the LLG 
equation without the current aJH terms. 
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Where 

	 ∙ ℎ� = 	-ℎ0- + 	1ℎ01 + 	*ℎ�           (8) 

The detail of the calculation see [15, 16]. 

3. Ferromagnetic Resonance Properties 

3.1. Variation of Magnetic Moments at Different Alternating 

Field Frequencies 

Figure 1-3 show the variation of the magnetic moment 
components with time at ω=1.06, 1.07, 1.08, respectively. In 
the calculation we take the dimensionless quantities: α=0.02, 

h0=1, h1=0.1, h2=0, h3=0.02. The initial conditions are: 
mx=0.01, my=0, mz=1. From Figure 1-3 we see that the 
magnetic moment components oscillate with the alternation 
field frequency, the period is τ0=2π/ω, but the amplitudes are 
different. At a definite frequency ω0 the resonance occurs, the 
amplitude is largest, the magnetic moment components mx and 
my increase rapidly with time, that is ferromagnetic resonance. 
At the same time, the mz decreases with time, it decreases 
largest at resonance.  Because except the external constant 
field h0=1, there is also internal anisotropic field h1=0.1 in the 
z direction, thus the resonant frequency is approximately 
determined by the sum of the two magnetic fields, though the 
properties of the two fields are different, the letter is mz 
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dependent. The resonant frequency ω0≈h0+h1=1.1 (in unit of 
γH0). 

From Figure 1 we can see that the amplitudes of mx and my 

increase initially, after definite time they reaches stable, and 
the mz decrease. 

 

Figure 1. Variation of the magnetic moment components with time for h0=1, h1=0.1, h2=0, h3=0.02, α=0.02. (a) ω=1.06. (b) ω=1.07. (c) ω=1.08, respectively. 

3.2. Ferromagnetic Resonance Spectrum 

We should transfer the ferromagnetic oscillations mi (t) (i=x, 

y) in the last section Figure 1, into the frequency spectrum mi 

ω), i.e. the ferromagnetic resonance spectra. By use of the sine 
Fourier transform for the mx oscillation,  

;
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C

D@ EF G
H� sin <H3H@
� K�

        (9) 

Where a is a large number respective to the oscillating 
period. For example, f (t)=sinω0t, then. 
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From the definition of the δ function, 
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We obtain, 
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Similarly we use the cosine Fourier transform for the my 
oscillation. 

Because the mi (τ) is given by the numerical method at the 
discrete points of dimensionless time points τn, we integrate 
the equation (9) by the fixed step Simpson integrating method. 
Figure 2 is the frequency spectrum for h0=1, h1=0.1, h2=0, 
h3=0.02, α=0.02, at ω=1.096 (resonance frequency), where 
the units of time and frequency are dimensionless τ and 2π/τ. 

In figure 2, there are two curves of mx and my, they are not 
distinguished as desired. From Figure 2 we see that there are 
three main resonance peaks for mx and my, respectively. The 
position of the main peak is around ω0=1.096. There are also 
two other harmonic waves for each component, i.e. 
ferromagnetic resonance waves, but the frequencies are 
different from the main frequency, and the amplitudes are 
smaller. 

 

Figure 2. Frequency spectra of mx and my at resonance frequency ω0=1.096. 

3.3. Ferromagnetic Resonance Spectra 

Figure 3 are the ferromagnetic resonance spectrum for 
h1=0.1, h2=0, h3=0.02, α=0.02, (a) h0=1, ω is the variable 
quantity, (b) ω=1, h0 is the variable quantity, respectively. 
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Figure 3. Ferromagnetic resonance spectrum for h1=0.1, h2=0, h3=0.02, α=0.02, (a) h0=1, ω is the variable quantity. (b) ω=1, h0 is the variable quantity. 

Comparing Figure3 (a) and (b) we found that the shape of 
resonance peak is more symmetric for ω as a variable, while it 
is non-symmetric for h0 as a variable. In Figure 3 (a) h0=1, 
h1=0.1 in the z direction, the resonance frequency ω0 = 1.096 ≈ 
h0+h1. In Figure 3 (b) ω=1, the resonance magnetic field 
h0=0.907≈ω-h1. It is noticed that here we use the 
dimensionless quantities so the values of ω and h are the same. 

3.4. Effect of Damping Factor α 

In Figure 4 the ferromagnetic resonance spectrum for h0=1, 
h1=0.1, h2=0, h3=0.02, and α=0.01, 0.02, 0.03 are shown as 
functions of ω. From Figure 4 we see that the resonance 
strength is smaller when the damping factor α is larger, and 
the resonance frequency blue shifts slightly, equal 1.09, 1.096, 
and 1.11, respectively. 

 

Figure 4. Ferromagnetic resonance spectrum for h0=1, h1=0.1, h2=0, 

h3=0.02, and α=0.01, 0.02, 0.03 as functions of ω. 

3.5. Effect of Internal Anisotropic Field h1 and h2 

In this paper we assume that the external magnetic h0 is in 
the z direction, the internal anisotropic field h1 is also in the z 
direction, while the internal anisotropic field h2 is in the x 
direction, perpendicular to h0. Besides, the internal fields are 
magnetic moment dependent, see Eq. (6). 

Figure5 (a) and (b) shows the frequency spectra and mx and 
my for α=0.02, h0=1, h1=0, h3=0.02, ω=1, and h2=±0.1, 
respectively. From Figure 5 we see that due to breaking of the 
axial symmetry in the z direction the curves of mx and my are 
different. For h2=+0.1 mx>my, for h2=-0.1 mx<my. 

 

 

Figure 5. Frequency spectra and mx and my for α=0.02, h0=1, h1=0, h3=0.02, 

ω=1, and (a) h2=+0.1 (b) h2=-0.1. 

 

Figure 6. Ferromagnetic resonance spectra as functions of h0 for α=0.02, 

h3=0.02, ω=1, and h1=±0.1, h2=0, or h1=0, h2=±0.1, respectively. 
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Figure 6 shows the ferromagnetic resonance spectra (from 
mx) as functions of h0 for α=0.02, h3=0.02, ω=1, and h1=±0.1, 
h2=0, or h1=0, h2=±0.1, respectively. As shown in Sec. 3.3 
because the internal field h1 is in the z direction, it will 
influence the resonance fields, which are 0.907 and 1.09 for 
h1=+0.1 and h1=-0.1, respectively. While the internal field h2 
is in the x direction, it also influence the resonance fields, 
which are 0.95 and 1.05 for h2=-0.1 and h2=0.1, respectively. 
When the absolute value of the internal field increases the 
resonance field will extend to both sides as in Figure 6. 

3.6. Effect of Magnetic Field Inclination 

In the previous calculations we assumed that the external 
magnetic field H0 is always in the z direction, here we consider 
the effect of the magnetic field inclination. Assume that the 
inclination angle between H0 and the z axis is θ, then the 
external magnetic field 

0 0 0 0
cos , sin .z xH H H Hθ θ= =  

Figure 7 shows the frequency spectrum of mx and my for 
θ=15°, α=0.02, h0=1, h1=0.1, h2=0, h3=0.02, ω=1.09. 
Comparing with Figure2, where θ=0°, the curves of mx and my 
are not duplicated again due to the axial symmetry breaking.  

 

Figure 7. Frequency spectrum of mx and my for θ=15°, α=0.02, h0=1, h1=0.1, 

h2=0, h3=0.02, ω=1.09. 

 

Figure 8. Ferromagnetic resonance spectra as functions of ω for α=0.02, 

h0=1, h1=0.1, h2=0, h3=0.02, and θ=0°, 15°, 30°. 

Figure 8 shows the ferromagnetic resonance spectra as 
functions of ω for α=0.02, h0=1, h1=0.1, h2=0, h3=0.02, and 

θ=0°, 15°, 30°, respectively. In the figure there are two curves 
for θ=15° and 30°, corresponding to my and mx, respectively 
(my > mx). The resonance frequency ω0~cosθ decreases as the 
θ increases. 

3.7. Effect of Spin-Transfer Torque (SST) Caused by Spin 

Current 

We suppose that in the case of ferromagnetic resonance a 
spin current J is applied to the sample from the fixed 
ferromagnetic layer to the free ferromagnetic layer, which 
is represented by the aJ term in the Eq. (1). Now consider 
the effect of the STT caused by spin current. When the 
current value aJ is smaller than a critical value the magnetic 
moment mz will not reverse, when the electric current aJ 
exceeds the critical value the mz will reverse [5], this is the 
principle of the SST. We study the ferromagnetic resonance 
in this process. 

Figure 9 shows the frequency spectra of mx and my for 
α=0.02, h0=0.907, h1=0.1, h2=0, h3=0.02, ω=1., and JH=0, 
0.02, 0.04, respectively. Where JH is the dimensionless 
current parameter, see [15]. When JH=0.02, the mz does not 
reverse, when JH=0.04, the mz reverses. From Fig.9 we see 
that along with the current increases there will be more 
resonance peaks, the peak frequency and height decrease. 
The STT effect will exceeds the ferromagnetic resonance 
effect. 

 

Figure 9. Frequency spectra of mx and my for α=0.02, h0=0.907, h1=0.1, h2=0, 

h3=0.02, ω=1., and JH=0, 0.02, 0.04. 

4. Summary 

We use the LLG equation including the spin-transfer torque 
term, and without the constraint of magnetic moment 
conservation to study the dynamic process of ferromagnetic 
resonance. We studied the effects of damping factor α, internal 
anisotropic field, magnetic field inclination, and spin-transfer 
torque caused by the spin current, and obtained the following 
results: 

1. We obtained the ferromagnetic resonance spectra as 
functions of the frequency ω for fixed magnetic field, and 
functions of magnetic field for fixed frequency from the 
solutions of LLG equation. It is found that the internal 
magnetic field also has contribution to the resonance field or 
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frequency. The resonant frequency (or field) is approximately 
determined by the sum of the two magnetic fields, though the 
properties of the two fields are different, the letter is mz 
dependent. The resonant frequency ω0≈he+h1 (in unit of γH0). 

2. When the damping factor increases from 0.01 to 0.03, the 
resonance frequencies increases slightly, and the resonance 
strength decreases. The oscillatory waves of mx and my reach 
their stable values more quickly. 

3. The internal field perpendicular to the external field h0 as 
well as it parallel to h0 also has the effect to the resonant 
frequency. The resonant fields are h0=0.907 (h1=0.1, h2=0), 
0.95 (h1=0, h2=-0.1), 1.05 (h1=0, h2=0.1), 1.09 (h1=-0.1, h2=0) 
for ω=1., h3=0.02, respectively. The positive and negative 
internal field will have reversed effects to the resonance field 
or frequency. 

4. When the spin current becomes larger the STT effect 
becomes stronger, even exceeds the ferromagnetic resonance 
effect, makes mz reversed, and mx and my decreased. 
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