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Abstract: In this paper, based on a combination of homogenous balance and the rational expansion method, the exact 
analytical and closed-form solutions of the Duffing equation with cubic and quintic nonlinearities are derived. We focus on 
heteroclinic and homoclinic solutions which are relevant for the prediction of chaos in forced mechanical systems. The 
conditions of existence of these solutions which also represent solitons of some wave equations are carefully analyzed. 
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1. Introduction 

In the description of complex physical processes, simple 
linear models are often insufficient. Linear effects simply do 
not fully possess the power to provide a satisfactory 
description of important processes in optical systems, 
biological systems, solid state physics, superconducting 
Josephson arrays, hydrodynamics, and many other subjects. 
Most real life problems are nonlinear in nature. This has made 
the study of nonlinear systems which are very complex an 
important area of study and research. In particular, the 
traveling wave solutions of nonlinear evolution equations 
have long been the concern of many mathematicians and 
physicists [1-5]. Despite the great variety of these nonlinear 
evolution equations, it is quite interesting to observe that their 
investigation are very often transformed to that of some 
universal nonlinear ordinary differential equations by means 
of appropriate transformations. For instance, the following 
ordinary differential equation 

3 5 0x x x xα β σ+ + + =ɺɺ               (1) 

which is a natural generalization of the well known Duffing 
equation, is commonly encountered in the study of wave 
phenomena in diverse physical systems. In effect, Aiyong 
Chen et al transformed the 6φ  model to cubic–quintic 
Duffing oscillator [6], he drawn phase portraits and proved the 

monotonicity and critical periods of periodic waves as a 
function of the wave amplitude. Later Zeid I. A. 
Al-Muhiameed et al reduced the generalized Zakharov system, 
the Rangwala and Rao equation and The Chen-Lee-Lin 
equation to Duffing oscillator [7] and derived the periodic 
solutions with the aid of the homogenous balance principle. 
Following this works and in the same spirit Kenmogne and 
Yemele obtained equation (1) from extended nonlinear 
Schrodinger equation (ENLS) governing the envelop of 
modulated waves in a nonlinear discrete electrical 
transmission line [8]. The associated dynamics was also 
described in terms of phase portraits. 

Besides these wave phenomena, Duffing type equations 
describe many other kinds of nonlinear oscillatory systems in 
physics, mechanics and engineering systems such as the 
classical nonlinear spring system with odd nonlinear restoring 
characteristics [9], magneto-elastic mechanical systems [10], 
large amplitude oscillation of centrifugal governor systems 
[11], nonlinear vibration of beams and plates [12,13] and fluid 
flow induced vibration [14]. 

The non-constant solutions of ordinary differential 
equations that are of physical interest are those which are 
bounded for all values of the independent variable. Among 
these are oscillatory (periodic, quasi-periodic or decaying 
amplitude) solutions for which a lot has been done in during 
the last several decades. For instance, these type of solutions 
have been obtained both in approximate [15] and exact [16,17] 
forms for (1) for the specific choice of initial conditions: 
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��0� = �, ���0� = 0. 
The particular solutions of ordinary differential equations 

qualified as homoclinic or heteroclinic are also very important 
in both of wave phenomena and mechanical systems. For 
wave supporting systems they correspond respectively to the 
pulse-type and shock or front-type soliton whose importance 
cannot be overemphasized. Homoclinic and heteroclinic 
solutions are also central, for example, to the Melnikov theory 
which is one of the rare analytical theories for predicting the 
appearance, and hence controlling of chaos in the dynamics of 
forced mechanical system. 

Despite this great importance of homoclinic and 
heteroclinic solutions there is, to the best of our knowledge, no 
work which focuses systematically on their analytical 
expressions for the ubiquituous Duffing equation oscillator (1). 
It is worth to mention that the knowledge of these exact 
solutions is also useful for generalizing and/or benchmarking 
the algorithms to automate the solving of ODEs by computer 
algebra systems. It is then our purpose in this paper to provide 
a systematic analysis of these specific types of solutions for 
this equation. We discuss the conditions of existence and give 
simple exact and closed-form expressions.  

This paper is structured as follows. In section 2 we present 
the methodology used to derive the solutions. Then the results 
follow in section 3. And lastly section 4 closes the paper with 
our conclusion. 

2. Methodology 

Our concern is the expressions of the solutions of (1) for 
which the trajectories are asymptotic to at least one unstable 
equilibrium position of the corresponding physical system. 
They can be determined as stationary solutions of (1) which 
correspond to a maximum of the potential.  

2 4 6( )
2 4 6

V x x x x
α β σ= + +              (2) 

These particular trajectories are called separatrixes because 
they are the boundaries between different types of trajectories 
in the phase plane: bounded/unbounded or cross-wells / 
confined-in-wells.  

Our methodology for computing the desired analytical 
solutions is a modified version of one which has been 
implemented in some softwares for the same purpose [18]. 
The strategy is to assume the solutions of the ODE in 
consideration in the form of a polynomial in an auxiliary 
function f (which may be one of tanh, sech, cosh, sinh, exp 
and the identity). The degree of this polynomial, m , is 
determined using the principle of homogenous balance [18]. It 
consists of requiring that the linear term with the highest order 
derivative and the highest nonlinear term of the equation 

balance each other for the monomial ( )mf t . In the case of (1) 

we find that 1/ 2m = . Then we make the change of dependent 

variable ( ) ( )x t y t=  and obtain 

2 2 3 42 4 4 4 0yy y y y yα β σ− + + + =ɺɺ ɺ            (3) 

By repeating the homogenous balance to the new equation, 
we find 2m = . Exact solutions which are polynomials in f , if 
they exist, must be at most of degree two. Our investigations 
lead to the conclusion that no such solution exists for 0σ ≠ . 
The solutions presented in the next section for this case have 
been obtained by going beyond polynomial representation, 
and considering rational forms with numerator and 
denominator of degree at most two in the auxiliary function 
f ; with the coefficients to be determined. As usual, each of 

this so-called “ansatz” is substituted in the differential 
equation (3). Upon reducing the resulting expression to the 
same denominator, the numerator can be put in the form of a 
polynomial in the auxiliary function f . By equating each of 
its coefficients to zero, one forms a system of nonlinear 
algebraic equations in the coefficients of the initial ansatz. 
Exact solutions of this system of algebraic equations, if any, 
also determine exact solutions of the initial ODE through the 
assumed ansatz. See [18] and references cited therein for more 
details. The whole analysis is performed with the help of the 
MAPLE software.  

3. Results 

3.1. Cubic Duffing Equation: 0σ =  

We consider first the now classical case of the cubic 
Duffing equation which is when 0σ = . It is well-known that 
for it to admit unstable equilibrium, the product of its two 
coefficients must be less than zero in a strict sense: 0αβ < . 
This condition can be fulfilled in two ways. 

3.1.1 Cubic Duffing Equation Associated With Double-Wells 

Potential: 0σ = and 0β >  and 0α <  

When 0β >  and 0α < in addition to 0σ = , the shape of 
the potential energy function defined in Eq.(2) is a 
double-wells, as depicted in Fig. 1a. We will use the 
superscript (s) and (u) to indicate respectively stable and 
unstable equilibrium; and the subscript l, 0 and r to denotes 
respectively negative, null and positive equilibrium values. In 

our figures, we use the notation such as ( )u
rX to represents the 

point of coordinates 
( ) ( )( ),
u u

r rx V x
 
 
 

 

The expressions of the fixed points and analytical solution 
of the separatrix for Eq.(1) for 0σ = , 0β >  and 0α < are 
given by 

( )u
rx

α
β

−= , ( )
0 0
u

x = , ( ) ( )s s
rlx x= − , ( ) ( ) ( )2 sech

s
ho rx t x t α= −   (4) 

Thanks to the fact that Eq.(1) is autonomous, we assume a 
choice of time reference such that the initial phase in our 
solution is zero. In a phase-portrait plot in the ( , )x xɺ  plane, the 

separatrix here connects the point ( )
0
ux  to itself. It is qualified 

as homoclinic orbit because a single unstable equilibrium 
point is involved in the connection. This separatrix is the 
boundary between confined-in-wells periodic motions and 
cross-wells periodic motions. It is worth to notice that the 
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“amplitude" ( )2
s

rA x= of the homoclinic solution ( )hox t  can 

be obtained as the solution of the algebraic equation 
( )
0( ) ( ) 0uV A V x− = . 

Remark: It is easy to verify that if ( )x t is a solution of (1) 
then ( )x t− and ( )x t− are also solutions. This implies that 
other solutions can be obtained by multiplying any of the 

“amplitude" or the pseudo-frequency ω α= −  by 1− . To 

save space, we give only one solution with positive amplitude 
and frequency. 

 

Figure 1a. A bounded double-well potential: ( , , ) ( 1,1, 0)α β σ = − . 

 

Figure 1b. Profile of homoclinic solution (4) for ( , , ) ( 1,1, 0)α β σ = − . 

 

Figure 1c. Phase portrait of homoclinic solution (4) for ( , , ) ( 1,1, 0)α β σ = − . 

3.1.2. Cubic Duffing Equation Associated with 

Double-Hump Potential: 0σ = and 0β <  and 0α > . 

 

Figure 2a. A double-hump potential: ( , , ) (1, 1, 0)α β σ = − . 

For 0σ = , 0β <  and 0α > in addition to 0σ = , the 
shape of the potential energy function defined in Eq.(2) is a 
double-hump, as depicted in Fig. 2a. The expressions of the 
fixed points and analytical solution of the separatrix for Eq.(1) 
are given in this case by 

( )u
rx

α
β

=
− , ( )

0 0
u

x = , ( ) ( )u u
rlx x= − , ( ) ( ) ( )tanh / 2

u
he rx t x t α=   (5) 

For this case, the separatrix connects ( )( ) ,0u
lx to ( )( ) ,0u

rx  

and is qualified as heteroclinic orbit because two distinct 
unstable equilibrium points are concerned with the connection. 
It separates bounded, periodic oscillatory motions about 

( )( )
0 ,0s

x from unbounded non-periodic ones. 

3.2. Cubic-Quintic Duffing Equation with Globally 

Bounded Potential 0σ >  

After the classical cubic Duffing equation, we turn our 
attention to the situations where the quintic coefficient is 
nonzero. We begin the investigation with the case where the 
potential is bounded globally, i.e., ( )V ±∞ = +∞ . This happens 
when 0σ > . 

3.2.1. The Double-Wells Cubic Quintic Duffing Oscillator : 

0σ > and 0α ≤  

The first case of globally bounded cubic-quintic Duffing 
potential we consider is the one for which this potential looks 
similar to that portrayed in Fig. 1a. This is the case when 

0α ≤ . Under this condition there exist three equilibrium 
points. Exactly as for the cubic Duffing equation with globally 

bounded wells, the origin is an unstable fixed point: ( )
0 0
u

x = ; 

and two stable ones are located symmetrically on each side of 
it: 

( ) 2

0
4

2

s
x

β ασ β
σ

− −
= , ( ) ( )s s

rlx x= −      (6) 
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The expression of the homoclinic orbit depends however on 
whether the linear coefficient α  is zero or not. 

For strictly negative linear coefficient, 0α < , the 
homoclinic orbit exists for any real value of the coefficient of 
the cubic term β  . It reads as 

( )
( )21 sinh

ho

A
x t

B t α
=

+ −            (7) 

with 

29 48 31

2
A

β ασ β
σ

− −
= , 

2 29 48 3 16

8
B

β ασ β ασ
ασ

− − +
=          (8) 

When 0α = , the homoclinic orbit still exists but only for 
0β < . Its expression degenerates to an algebraic one 

according to 

( ) 2 2

6

4
hox t

t

β
σ β

−=
+

               (9) 

 

Figure 2b. Analytical heteroclinic solution (5) for ( , , ) (1, 1,0)α β σ = − . 

 

Figure 2c. Phase portrait of heteroclinic solution (5) for 

( , , ) (1, 1, 0)α β σ = − . 

3.2.2. The Triple-Wells Cubic-Quintic Duffing Oscillator : 

0σ > , 0β < and 
2

0
4

βα
σ

< <  

The potential (2) can possess three wells for some 
combinations of its coefficients. Namely, for 0σ > , 0β <  

for and
2

0
4

βα
σ

< <  the profile of the potential is as depicted in 

Fig.3. There are five equilibrium positions for the system 
described by the associated cubic-quintic Duffing oscillator, 
Eq.(1). These comprise alternately from right to left: a stable 

fixed point, ( )s
rx , an unstable fixed point ( )u

rx , the middle 

stable fixed point ( )
0 0sx = together with their symmetric 

counterparts ( ) ( )u u
rlx x= − , and ( ) ( )s s

rlx x= −  

The expression of ( )s
rx  is the same as in Eq.(6) while that 

of ( )u
rx is 

2
( ) 4

2
u

rx
β ασ β

σ
− +

= −              (10) 

 

Figure 3. A triple-wells potential: 
9

( , , ) , 3, 2
10

α β σ  = − − 
 

. 

 

Figure 4a. Analytical homoclinic solution (9) for ( , , ) (0, 1,1)α β σ = − . 
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Figure 4b. Phase portrait of homoclinic solution (9) for ( , , ) (0, 1,1)α β σ = − . 

In this configuration, homoclinic orbits as well as 
heteroclinic exist simultaneously. The former connect either 

of the points ( )( ) ,0u
rx or ( )( ) ,0u

lx  to itself while the latter 

connect these two points to each other. Their expressions are 

independent of whether ( ) ( )
0( ) ( )s s

rV x V x> , ( ) ( )
0( ) ( )s s

rV x V x= or 

( ) ( )
0( ) ( )s s

rV x V x< i.e., whether the central wells is less, equally 

or more deep than the extreme wells respectively. We have  

( ) ( )
( )

( )

2

cosh

sinh

u
r

ho

x t
x t

t F

δ

δ
=

+
            (11) 

for the homoclinic solution and  

( ) ( )
( )

( )

2

sinh

cosh

u
r

he

x t
x t

t F

δ

δ
=

−
            (12) 

for the heteroclinic solution . In Eqs (11) –(12), is given by 
Eq.(10) while  

2 24 41

2

ασ β β β ασ
δ

σ
− + −

= , 

2 2

2 2

2 4 2

8 4
F

β β β ασ ασ

ασ β β β ασ

 + − − 
 =

− − −
         (13) 

3.3. Cubic-Quintic Duffing Equation with Globally 

Unbounded Potential 0σ <  

We consider now the case when the coefficient of the 
quintic term in Eq.(1) is negative: 0σ < . In this case, the 
potential (2) is globally unbounded, i.e.,. ( )V ±∞ = −∞ . 

There are three physically interesting profile considered 
below. 

3.3.1. Existence of Three Unstable Equi-Potential 

Equilibrium: 0σ < and 0β > and 
23

16

βα
σ

=  

When the coefficients of Eq.(1) are all nonzero and satisfy 

the relationship 0σ < and 0β > and 
23

16

βα
σ

=  there exists 

five equilibrium position, as shown in Fig. 5. Two of these 
fixed are stable and other unstable. The particularity of the 
potential here is that all the unstable fixed points are on the 
same potential level (the same holds for the stable ones). For 
this case, there are two pairs of heteroclinic orbits. 

 

Figure 5. A potential with three equipotential unstable 

equilibrium: 
3

( , , ) 1,1,
16

α β σ  = − − 
 

  

 

Figure 6a. Profile of homoclinic solution (11) for ( , , ) (0, 1,1)α β σ = − . 

 

Figure 6b. Phase portrait of homoclinic solution (11) for 

( , , ) (0, 1,1)α β σ = − . 
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One of the pairs connects ( )u

lX to ( )
0
u

X . Its analytical 

expression is 

( )
( )

( )

1 exp

u
r

he

x
x t

tη
=

+
             (14a) 

The other pair connects ( )
0
u

X with ( )
0
u

X ; its expression is 

obtained by replacing ( )u
rx  with ( )u

rx− . Here, ( )u
rx  and η

are given by 

3

2

βη
σ

=
−

 ( ) 1 3

2
u

rx
β
σ

=
−

        (14b) 

 

Figure 7. Heteroclinic solution (14a) for 
3

( , , ) 1,1,
16

α β σ  = − − 
 

. 

3.3.2. Other Unbounded Potential Profiles 

In each of the last two cases of interest the profile of the 
potential comprises two wells. On the one hand, if 0σ < , 

0β > and 
2 23

4 16

β βα
σ σ

< < the two wells will appear to be 

separated by a high potential barrier, as shown in Fig. 8. 

 

Figure 8. A potential with two well separated wells: 

3
( , , ) 1.25,1,

16
α β σ  = − − 

 
. 

We observe here that the origin is an absolute maximum of 
the potential. The homoclinic orbits exits and is exactly 
described by Eqs. (10), (12) and (13). This last configuration 
is obtained on the other hand for 0σ < , 0β > and 

23
0

16

β α
σ

< < . As one can see from Fig. 9, we may say that the 

two wells are embedded in a larger one. 

 

Figure 9. A potential with two well separated wells. 

3
( , , ) 0.875,1,

16
α β σ  = − − 

 
. 

Then there exist a heteroclinic orbit whose expression is 
given by Eqs.(10), (12) and (13) and a homoclinic orbit whose 
expression is given by Eqs.(7)-(8). 

4. Conclusion 

In this paper the Duffing equation with cubic and quintic 
nonlinearities which is ubiquitous to the description of many 
physical systems was considered. We focused on the 
determination of its solutions that are relevant to the 
prediction of chaos in forced mechanical systems using the 
Melnikov theory and which also correspond to solitons 
solutions of some wave equations. We have achieved this goal 
by using a combination of homogenous balance and the 
rational expansion method. Three main classes of solutions 
including algebraic, exponential and hyperbolic have been 
obtained and the conditions under which they exist have been 
unveiled. 
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