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Abstract: In a complex and changing a remote sensing system, which requires taking quick and informed decisions 

environment, connectionist methods have shown their great contribution in particular the reduction and classification of 

spectral data. In this context, this paper proposes to study the parameters that optimize the results of an artificial neural 

network ANN multilayer perceptron based, for classification of chemical agents on multi-spectral images. The mean squared 

error cost function remains one of the major parameters of the network convergence at its learning phase and a challenge that 

will face our approach to improve the gradient descent by the conjugate gradient method that seems fast and efficient. 
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1. Introduction 

Recent years have been marked by an extraordinary 

emergence of Artificial Neural Networks (ANNs) that were 

found very suitable for solving complex and unstructured 

classifications. The strength of these actually lies in their 

ability to adapt thanks to a learning phase through which 

they develop and establish relationships between variable 

from a dataset. In the field of remote sensing, ANN proved 

of great interest among researchers especially in case of 

non-linear phenomena.  

Nowadays, several threats proliferate and the most 

important remain chemical, biological or nuclear. These 

threats can occur in several scenarios and require 

immediate action. It should be noted that, facing such an 

eventuality, a large number of key elements turns 

essentially necessary to determine the particular nature or 

agents, their rates, their propagation speeds and especially 

the surfaces they could occupy. 

This involves the deployment of resources and 

identification of reliable and efficient classification. In this 

context the ANN appear to be a highly suitable tool [1]. 

Their diverse neuronal architectures allow justifying the 

choice of the type of neural networks to use for each case 

that may arise. In addition, during emergency cases, many 

optimization methods are proposed to reduce processing 

time and improve network performance, considering these 

constraints and characteristics related to the use of the type 

of network selected.  

Thus, the work of this paper focuses on this subject to 

the optimization of the back propagation learning in the 

network. 

2. Multi-Layer Perceptron Network 

2.1. MLP Network Architecture  

The model used is a Multi-layer Perception based (MLP) 

network, comprising a P layer of n inputs, the hidden layers 

and a Y layer of m outputs [2]. Adjacent layers are fully 

connected (Fig. 1). 

The input layer comprises a number of cells equal to the 

dimension of the sample vector. 
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The number of cells in each hidden layer may vary 

depending on the behavior of the network. However, the 

number of cells of the output layer corresponds to the 

dimension of projection which is 3.  

Activation functions adopted in this ANN model are 

sigmoid and linear for the output function.  

Diagram 1 shows a simplified diagram of the network. 

2.2. Learning Algorithm 

2.2.1. Back Propagation of Gradient  

The proposed algorithm is the back propagation gradient 

that helps learning the multi-layer network characteristics by 

updating and adjusting the weights of different layers to 

minimize a cost function [3].  

 

Figure 1. MLP network architecture. 

 

Diag 1. Simplified model of MLP network architecture. 

Where bj is the total input of the output layer sk and ak is 

the total input of the hidden layer yj. 

It goes through three phases: A first one that allows 

forward propagation of the cells state. The second step is a 

back propagation process that minimizes the error, and the 

third step is an adjustment of the weights connection [4]. 

Mathematical expressions of the different phases of the 

algorithm are expressed by the following equations. 

First, the cost function “E” must be defined: 

( ) ( )2
1

2
E v s sjk d kk k

∑= −            (3) 

Where, Sdk is the desired output; Sk is the effective  

To minimize E, we calculate its gradient with respect to 

the weightsν, then we change the weight in the opposite 

direction of the gradient. In other words, we update the 

weights of the gradient of the highest slope. 
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Where, η (0< η <1) is the gradient step, used to control the 

fast convergence of the algorithm. 

For a two-layer network: 
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After partial derivations, respectively to vhl and whl, we 

obtain: 
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Substituting the derivatives in the weights updating 

equations, we get: 

( )1v sd s f y w yjhl l l jl hjl
η ∑ ∑∆ = − ′ 

 
 

       (10) 

( )2w f y w f x w xj ihl jl il hj i
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       (11) 

2.2.2. Back Propagation of Gradient (Method of Newton) 

According to the Taylor expansion of n-th order v n
 (nth 

iteration), E may be approximated using the following 

equation [5]: 
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Where ( ) 1n n n
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To simplify, 
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Where the E’ matrix composed of partial derivatives of 

1st order is a jacobian matrix:  
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∂
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And E’’ is a matrix composed of second order partial 

derivatives, which is a Hessian symmetric positive definite 

matrix:  
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Deriving from (13) 

( ) ( ) ( ) ( )1n n n n
E v E v E v vjk jk jk jk
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We assume E' and E'' are continuous and exist for values  

of higher order derivatives, very negligible for this 

approximation to be minimized. 

From (16), the weights updating can be expressed as: 
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From (17), the gradient can be expressed as: 

( )1n n n n
G H v v

+= − ⋅ −           (20) 

To improve this method, we try to make G
n+1

 orthogonal 

to the line of the previous value of G
n
. So, we pose: 
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After weight adjustments according to (5) 
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And after substitution of (16)  
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Finally, multiplying this result by (G
n
)
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Note that H
n
 are constant:

 

For n=0   ( )1 0 0 1 0
G G H v v= + ⋅ −       (26) 

Where the minimal error is obtained for G
1
=0. That 

means:  

( ) 1
1 0 0 0

v v H G
−

− = −             (27) 

This corresponds to the results of the Newton's method, 

which is for updating weights: 

( ) 10n n n
v v G H

n

−
∑− = −           (28) 

Thus, the weights are updated in the direction of negative 

gradient following form: 

0n n nv v Gα− =−               (29) 

However the major disadvantage of this method is the 

calculation of the storage and the inversion of the Hessian 

matrix during iterations. This is why the conjugate gradient 

method, a quasi-Newton method likely to reduce these 

limitations, reveals more efficient.  

2.2.3. Methods of Improving Back-Propagation Gradient 

2.2.3.1. Method of BGFS (Quasi-Newton)  

This algorithm is the Broyden-Fletcher-Goldfarb- 

Shanno. The weight update is made according to the 

equation [6]:  

( )Tn n n
v H G∆ = −               (30) 
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2.2.3.2. Method of Levenberg-Marquardt (LM) 

This is a similar method to the BFGS algorithm with 

( ) ( ) ( )T Tn
H E E= ∇ ⋅ ∇  et ( )T

G G ε= ∇ ⋅  where G∇  is the 

jacobian matrix of 1
st
 order, and ε is the errors vector [7]. 

2.2.3.3. Method of Gradient Descent with Momentum 

To prevent learning phases causes oscillations, the weight 

difference comprises varying the previous weight by adding 

a kinetic energy term [8]. 

1n n n nv G vα ρ −∆ =− + ∆           (31) 

2.2.3.4. Method of the Conjugate Gradient  

The conjugate gradient method is similar to the descent 

of the steepest approach, but includes an inertial term 

which is calculated during iterations steps to search for the 

conjugate of the directions, the update process has been 

described by Fletcher -Reeves of the Polak-Ribiere [9]. 

According to Fletcher-Reeves, we operate on it, firstly 

by looking for the most important downward slope, and 

then by combining its direction with the previous one.  
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3. Application in Chemicals Agents 

Identification and Classification 

3.1. Classification Using Multi-Layer Perceptron  

In order to implement the followed theoretical process, a 

program has been written using Matlab and applies for a 

database with sample of the three agents (Table 1). 

Table 1. Three agents gas database. 

H2S-NO2 mixture 

Ech01  =  0.01  0.13  0.05  0.03  0.03  0.02  0.02  0.27  0.08  0.05  0.03  0.04  0.00  0.00  0.00  0.00  0.01  0.00; 

Ech02  =  0.01  0.12  0.04  0.03  0.03  0.02  0.01  0.31  0.08  0.05  0.03  0.04  0.00  0.01  0.00  0.00  0.00  0.00; 

Ech03  =  0.01  0.12  0.04  0.02  0.03  0.02  0.02  0.19  0.07  0.04  0.03  0.03  0.00  0.01  0.00  0.00  0.00  0.00; 

Ech04  =  0.01  0.12  0.04  0.03  0.03  0.02  0.10  0.31  0.09  0.07  0.04  0.05  0.00  0.01  0.01  0.01  0.00  0.00; 

Ech05  =  0.01  0.15  0.06  0.04  0.03  0.02  0.02  0.21  0.07  0.05  0.03  0.04  0.00  0.00  0.00  0.00  0.00  0.00; 

Ech06  =  0.01  0.14  0.05  0.03  0.03  0.02  0.02  0.26  0.08  0.05  0.03  0.04  0.00  0.01  0.00  0.00  0.00  0.00; 

Ech07  =  0.01  0.14  0.05  0.03  0.03  0.02  0.01  0.29  0.08  0.05  0.03  0.03  0.00  0.01  0.00  0.01  0.01  0.00; 

Ech08  =  0.01  0.12  0.05  0.02  0.03  0.02  0.01  0.30  0.08  0.06  0.03  0.04  0.00  0.01  0.00  0.00  0.00  0.00; 

Ech09  =  0.01  0.13  0.04  0.02  0.02  0.02  0.02  0.22  0.07  0.04  0.03  0.03  0.00  0.01  0.00  0.00  0.00  0.00; 

Ech10  =  0.01  0.12  0.05  0.03  0.03  0.02  0.10  0.25  0.09  0.06  0.04  0.05  0.00  0.01  0.01  0.01  0.01  0.00; 

Gaz H2S 

Ech11  =  0.01  0.22  0.05  0.04  0.06  0.02  0.02  0.24  0.07  0.05  0.06  0.03  0.00  0.01  0.00  0.00  0.00  0.00; 

Ech12  =  0.01  0.18  0.04  0.04  0.05  0.02  0.01  0.23  0.07  0.05  0.05  0.03  0.00  0.00  0.00  0.00  0.00  0.00; 

Ech13  =  0.01  0.17  0.03  0.03  0.05  0.02  0.05  0.27  0.09  0.07  0.06  0.04  0.00  0.01  0.00  0.00  0.00  0.00; 

Ech14  =  0.01  0.17  0.04  0.04  0.05  0.02  0.11  0.37  0.11  0.09  0.06  0.06  0.00  0.02  0.01  0.01  0.00  0.00; 

Ech15  =  0.02  0.17  0.04  0.04  0.05  0.02  0.17  0.44  0.11  0.10  0.07  0.07  0.01  0.02  0.01  0.01  0.00  0.00; 

Ech16  =  0.02  0.17  0.05  0.04  0.05  0.02  0.24  0.55  0.16  0.15  0.10  0.09  0.04  0.07  0.02  0.02  0.01  0.02; 

Ech17  =  0.09  0.19  0.04  0.05  0.05  0.02  0.12  0.30  0.07  0.07  0.05  0.04  0.00  0.01  0.00  0.00  0.00  0.00; 

Ech18  =  0.08  0.16  0.03  0.04  0.04  0.02  0.16  0.40  0.09  0.09  0.06  0.05  0.01  0.01  0.00  0.00  0.00  0.00; 

Ech19  =  0.08  0.15  0.03  0.04  0.04  0.02  0.28  0.67  0.14  0.16  0.08  0.08  0.01  0.01  0.01  0.01  0.00  0.00; 

Ech20  =  0.09  0.16  0.04  0.04  0.04  0.02  0.47  0.86  0.17  0.20  0.09  0.10  0.01  0.03  0.01  0.01  0.00  0.00; 

Gaz NO2 

Ech21  =  0.01  0.21  0.04  0.04  0.05  0.02  0.01  0.21  0.05  0.05  0.05  0.02  0.00  0.04  0.00  0.00  0.01  0.01; 

Ech22  =  0.01  0.19  0.04  0.04  0.04  0.02  0.01  0.19  0.04  0.04  0.04  0.02  0.00  0.01  0.00  0.01  0.01  0.00; 

Ech23  =  0.01  0.18  0.03  0.03  0.04  0.02  0.01  0.18  0.03  0.03  0.04  0.02  0.00  0.00  0.00  0.00  0.00  0.00; 

Ech24  =  0.01  0.16  0.03  0.03  0.04  0.01  0.00  0.16  0.03  0.03  0.04  0.01  0.00  0.00  0.00  0.00  0.00  0.00; 

Ech25  =  0.01  0.21  0.04  0.04  0.05  0.02  0.01  0.21  0.05  0.05  0.05  0.02  0.00  0.04  0.00  0.00  0.00  0.01; 

Ech26  =  0.01  0.19  0.04  0.05  0.04  0.02  0.00  0.18  0.04  0.04  0.04  0.02  0.00  0.00  0.00  0.00  0.00  0.00; 

Ech27  =  0.01  0.17  0.04  0.04  0.04  0.02  0.00  0.17  0.03  0.04  0.04  0.02  0.00  0.00  0.00  0.00  0.00  0.00; 

Ech28  =  0.01  0.16  0.03  0.04  0.04  0.02  0.00  0.14  0.02  0.02  0.04  0.01  0.00  0.00  0.00  0.00  0.00  0.00; 

Ech29  =  0.00  0.16  0.03  0.03  0.04  0.02  0.00  0.11  0.01  0.01  0.04  0.01  0.00  0.00  0.00  0.00  0.00  0.00; 

Ech30  =  0.01  0.15  0.03  0.03  0.04  0.02  0.00  0.10  0.01  0.01  0.04  0.01  0.00  0.00  0.00  0.00  0.00  0.00; 

 

The followed methodology during this computing phase 

in Matlab is based on fundamental steps, especially the 

creation of the network where  

� The Samples matrix that contains the input values of 

the network are r × s = 18 × 30 size; 

� The matrix with the desired results. Its size is 3× 30 

with the following vectors [-1 -1 +1]’, [-1 +1 -1]’ and 

[+1 -1 -1]’ as expected result per type of gas. 

Several networks models are tested using Mean Square 

Error criterion [10] (Fig. 4). 
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The outputs of the networks at each iteration are 

equivalent to the expected values in the samples where the 

total learning path length is associated to a gradient and E 

(Fig. 5).  

The initial weights have values near zero. 

3.2. Matlab Simulations 

We conducted various simulations in Matlab for testing 

and the results are plotted as follow: 

 

Figure 2. 3D classification of the three agents and performances in learning with Gradient Descent (GD) (traingd) 

    

Figure 3. 3D classification of the three agents and performances in learning with Levenberg-Marquardt (LM) (trainlm) 

    

Figure 4. 3D classification of the three agents and performances in learning with GD with Momentum (GDM) (traingdm) 

 

Figure 5. 3D classification of the three agents and performances in learning with Conjugate Gradient Descent (trainscg) 
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Figure 6. 3D classification of the three agents and performances in learning with CGD Fletcher-Reeves (traincgf) 

 

Figure 7. 3D classification of the three agents and performances in learning with CGD Polak-Ribière (traincgp) 

 

Figure 8. 3D classification of the three agents and performances in learning with Quasi-Newton (BFGS) (trainbfg) 

Table 2. Comparison of parameters of the different back-propagation networks  

Number of neurons for a hidden layer  Epochs Train time (s) Performances Gradient Mu 

Gradient Descent (GD) (traingd) 1000 07  0.0354 0.0724    - 

Levenberg-Marquardt (LM) (trainlm) 08 01 1.77e-27 9.66e-14 1.00e-11 

GD with Momentum (GDM) (traingdm) 1000 04 0.0181 0.0425    - 

Conjugate Gradient Descent (trainscg)  25 01 0.00680 0.0798    - 

CGD Fletcher-Reeves (traincgf) 45 01 0.00145 0.0445    - 

CGD Polak-Ribière (traincgp) 38 01 0.00237 0.0526    - 

Quasi-Newton (BFGS) (trainbfg) 37 31 0.000372 0.0133    - 

 

3.3. Results Analysis 

The simulation results obtained show that, the 

back-propagation of the gradient, which operates an iterative 

approximation along the line of the steepest slope, could be 

improved by the conjugate gradient algorithm with the 

search for a minimum which produces a faster convergence, 

and could also be improved by the Quasi-Newton method. 

However, in this case, this remains less efficient than the 

Levenberg-Marquardt. Compared to other back-propagation 

algorithms, the latter is much more effective in view of its 

high speed and high precision, considering the network does 

not reach saturation. 

4. Conclusions 

In this article, learning methods presented dealt with the 

back-propagation of the gradient for a neural network 

multilayer perceptron based, in order to establish a 
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classification of chemical agents. This classification is 

applied to a database which test statistic is the mean square 

error to be minimized to threshold value. From this study, it 

appears that multiple solutions are able to optimize the 

performance of learning, thereby creating special interest in 

functional classification. 

So if back propagation algorithms adjust the weights in 

the direction of greatest slope, direction in which the 

performance function decreases more rapidly, it is still 

possible that convergence can be made faster with the 

conjugate gradient algorithm or the Quasi-Newton method 

for fast optimization algorithm or Levenberg-Marquardt. 

The latter was designed for second order training approaches 

without having to calculate the Hessian matrix. Thanks to 

the implementation done in MATLAB, this algorithm seems 

to be very effective in classification problems of moderate 

size of this kind, in spite of its very high calculations at 

iterations. 
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