

American Journal of Physics and Applications
2014; 2(4): 88-94

Published online August 10, 2014 (http://www.sciencepublishinggroup.com/j/ajpa)

doi: 10.11648/j.ajpa.20140204.11

ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online)

Optimizing back-propagation gradient for classification
by an artificial neural network

Said El Yamani, Samir Zeriouh, Mustapha Boutahri, Ahmed Roukhe

Optronic and Information Treatment Team, Atomic, Mechanical, Photonic and Energy Laboratory, Faculty of Science, Moulay Ismail

University, B. P. 11201 Zitoune, Meknès, Morocco

Email address:
said.elyamani@yahoo.fr (S. E. Yamani)

To cite this article:
Said El Yamani, Samir Zeriouh, Mustapha Boutahri, Ahmed Roukhe. Optimizing Back-Propagation Gradient for Classification by an

Artificial Neural Network. American Journal of Physics and Applications. Vol. 2, No. 4, 2014, pp. 88-94.

doi: 10.11648/j.ajpa.20140204.11

Abstract: In a complex and changing a remote sensing system, which requires taking quick and informed decisions

environment, connectionist methods have shown their great contribution in particular the reduction and classification of

spectral data. In this context, this paper proposes to study the parameters that optimize the results of an artificial neural

network ANN multilayer perceptron based, for classification of chemical agents on multi-spectral images. The mean squared

error cost function remains one of the major parameters of the network convergence at its learning phase and a challenge that

will face our approach to improve the gradient descent by the conjugate gradient method that seems fast and efficient.

Keywords: Optimizing, Artificial Neural Networks, Classification, Identification, Conjugate Gradient,

Multi-Layer Perceptron, Back Propagation of the Gradient

1. Introduction

Recent years have been marked by an extraordinary

emergence of Artificial Neural Networks (ANNs) that were

found very suitable for solving complex and unstructured

classifications. The strength of these actually lies in their

ability to adapt thanks to a learning phase through which

they develop and establish relationships between variable

from a dataset. In the field of remote sensing, ANN proved

of great interest among researchers especially in case of

non-linear phenomena.

Nowadays, several threats proliferate and the most

important remain chemical, biological or nuclear. These

threats can occur in several scenarios and require

immediate action. It should be noted that, facing such an

eventuality, a large number of key elements turns

essentially necessary to determine the particular nature or

agents, their rates, their propagation speeds and especially

the surfaces they could occupy.

This involves the deployment of resources and

identification of reliable and efficient classification. In this

context the ANN appear to be a highly suitable tool [1].

Their diverse neuronal architectures allow justifying the

choice of the type of neural networks to use for each case

that may arise. In addition, during emergency cases, many

optimization methods are proposed to reduce processing

time and improve network performance, considering these

constraints and characteristics related to the use of the type

of network selected.

Thus, the work of this paper focuses on this subject to

the optimization of the back propagation learning in the

network.

2. Multi-Layer Perceptron Network

2.1. MLP Network Architecture

The model used is a Multi-layer Perception based (MLP)

network, comprising a P layer of n inputs, the hidden layers

and a Y layer of m outputs [2]. Adjacent layers are fully

connected (Fig. 1).

The input layer comprises a number of cells equal to the

dimension of the sample vector.

89 Said El Yamani et al.: Optimizing Back-Propagation Gradient for Classification by an Artificial Neural Network

The number of cells in each hidden layer may vary

depending on the behavior of the network. However, the

number of cells of the output layer corresponds to the

dimension of projection which is 3.

Activation functions adopted in this ANN model are

sigmoid and linear for the output function.

Diagram 1 shows a simplified diagram of the network.

2.2. Learning Algorithm

2.2.1. Back Propagation of Gradient

The proposed algorithm is the back propagation gradient

that helps learning the multi-layer network characteristics by

updating and adjusting the weights of different layers to

minimize a cost function [3].

Figure 1. MLP network architecture.

Diag 1. Simplified model of MLP network architecture.

Where bj is the total input of the output layer sk and ak is

the total input of the hidden layer yj.

It goes through three phases: A first one that allows

forward propagation of the cells state. The second step is a

back propagation process that minimizes the error, and the

third step is an adjustment of the weights connection [4].

Mathematical expressions of the different phases of the

algorithm are expressed by the following equations.

First, the cost function “E” must be defined:

() ()2
1

2
E v s sjk d kk k

∑= − (3)

Where, Sdk is the desired output; Sk is the effective

To minimize E, we calculate its gradient with respect to

the weightsν, then we change the weight in the opposite

direction of the gradient. In other words, we update the

weights of the gradient of the highest slope.

()
1

E v jk
v jk

v jk

η
∂

∆ = −
∂

 (4)

1n n n

jk jk jkv v v+= − ∆ (5)

Where, η (0< η <1) is the gradient step, used to control the

fast convergence of the algorithm.

For a two-layer network:

()s f y v f f x w vj i ijk jk jkj j i
∑ ∑ ∑= =   
   
   

 (6)

After partial derivations, respectively to vhl and whl, we

obtain:

() ()
E v sjk k

sd s
k kkv vhl hl

∂ ∂
∑= − −

∂ ∂
 (7)

() ()

()

f a f as ak kk k

v v a vhk hk k hk

y vj jk
f a jk

f y v yj jk h
ja vk hk

∂ ∂∂ ∂
= = ⋅

∂ ∂ ∂ ∂

∑∂
∂

∑= ⋅ = ′
∂ ∂

 
 

  
 
 

 (8)

() ()

()

()
()

()

()

()

f a f as ak kk k

w w a whl hl k hl

f b vj jk bf a j jk

a b wjk hl

f y v f x w v x wj i ijjk jk i ilj j i i

wx w hly v i ijj jk ij

f y v f x w xj ijk il hj i

∂ ∂∂ ∂
= = ⋅

∂ ∂ ∂ ∂

∑∂ ∂∂
= ⋅ ⋅

∂ ∂ ∂

∑ ∑ ∑∂ ∂ ∑∂
= ⋅ ⋅

∂∑∂∑∂

∑ ∑= ′ ′

 
 
 

   
   
   
 
 
 

 
 
 

 (9)

Substituting the derivatives in the weights updating

equations, we get:

()1v sd s f y w yjhl l l jl hjl
η ∑ ∑∆ = − ′ 

 
 

 (10)

()2w f y w f x w xj ihl jl il hj i
η ∑ ∑∆ = ′ ′ 

 
 

 (11)

2.2.2. Back Propagation of Gradient (Method of Newton)

According to the Taylor expansion of n-th order v n
 (nth

iteration), E may be approximated using the following

equation [5]:

 American Journal of Physics and Applications 2014; 2(4): 88-94 90

() () () ()

() () ()

1

2
1

2

n
E v

jkn n n
E v E v vmjk jk jkm v

n
E vT jkn n

v vpmjk jkm p v v

∂+
∑= + ⋅ ∆

∂

∂
∑∑+ ∆ ⋅ ∆

∂ ∂
 
 

 (12)

Where () 1n n n

jk jk jk
v v v+∆ = −

To simplify,

() () () ()
() () ()

1

1

2

n n n n
E v E v E v vjk jk jk jk

T
n n n

v E v vjk jk jk

+ ′= + ⋅ ∆

′′+ ∆ ⋅ ∆ 
 

 (13)

Where the E’ matrix composed of partial derivatives of

1st order is a jacobian matrix:

() ()n
E vjkn n

G E vjk m
m vjk

∂
′

∑= =
∂

 (14)

And E’’ is a matrix composed of second order partial

derivatives, which is a Hessian symmetric positive definite

matrix:

() ()2 n
E vjkn n

H E vjk pm
m p v vjk jk

∂
′′

∑∑= =
∂ ∂

 (15)

Deriving from (13)

() () () ()1n n n n
E v E v E v vjk jk jk jk

′ + ′ ′′= + ∆ (16)

We assume E' and E'' are continuous and exist for values

of higher order derivatives, very negligible for this

approximation to be minimized.

From (16), the weights updating can be expressed as:

() () () 1
n n n

v E v E vjk jk jk

−′ ′′∆ = − ⋅ 
 

 (17)

() () 1
1n n n n

v v E v E vjk jk jk jk

−+ ′ ′′= − ⋅   
   

 (18)

1
1n n n m

jk jkv v G H
−+    = − ⋅    (19)

From (17), the gradient can be expressed as:

()1n n n n
G H v v

+= − ⋅ − (20)

To improve this method, we try to make G
n+1

 orthogonal

to the line of the previous value of G
n
. So, we pose:

()1
0

T
n n

G G
+ = (21)

After weight adjustments according to (5)

1n n n n
v v Gη+ − = − (22)

And after substitution of (16)

1n n n n n
G G H Gη+ = − (23)

Finally, multiplying this result by (G
n
)

T
leads to:

() ()0
T Tn n n n n n

G G G H Gη= − (24)

Hence, from this last one, we obtain

()
()

Tn n
G G

n
Tn n n

G H G

η = (25)

Note that H
n
 are constant:

For n=0 ()1 0 0 1 0
G G H v v= + ⋅ − (26)

Where the minimal error is obtained for G
1
=0. That

means:

() 1
1 0 0 0

v v H G
−

− = − (27)

This corresponds to the results of the Newton's method,

which is for updating weights:

() 10n n n
v v G H

n

−
∑− = − (28)

Thus, the weights are updated in the direction of negative

gradient following form:

0n n nv v Gα− =− (29)

However the major disadvantage of this method is the

calculation of the storage and the inversion of the Hessian

matrix during iterations. This is why the conjugate gradient

method, a quasi-Newton method likely to reduce these

limitations, reveals more efficient.

2.2.3. Methods of Improving Back-Propagation Gradient

2.2.3.1. Method of BGFS (Quasi-Newton)

This algorithm is the Broyden-Fletcher-Goldfarb-

Shanno. The weight update is made according to the

equation [6]:

()Tn n n
v H G∆ = − (30)

91 Said El Yamani et al.: Optimizing Back-Propagation Gradient for Classification by an Artificial Neural Network

2.2.3.2. Method of Levenberg-Marquardt (LM)

This is a similar method to the BFGS algorithm with

() () ()T Tn
H E E= ∇ ⋅ ∇ et ()T

G G ε= ∇ ⋅ where G∇ is the

jacobian matrix of 1
st
 order, and ε is the errors vector [7].

2.2.3.3. Method of Gradient Descent with Momentum

To prevent learning phases causes oscillations, the weight

difference comprises varying the previous weight by adding

a kinetic energy term [8].

1n n n nv G vα ρ −∆ =− + ∆ (31)

2.2.3.4. Method of the Conjugate Gradient

The conjugate gradient method is similar to the descent

of the steepest approach, but includes an inertial term

which is calculated during iterations steps to search for the

conjugate of the directions, the update process has been

described by Fletcher -Reeves of the Polak-Ribiere [9].

According to Fletcher-Reeves, we operate on it, firstly

by looking for the most important downward slope, and

then by combining its direction with the previous one.

0 0
G g− = ,

n n n
v g

jk
α∆ = −

1n n n n
g G gβ −= − + ,

()
()1 1

Tn n
G G

n
T

n n
G G

β
+

=
− −+

 (32)

Or
()

()
1

1 1

T
n n

G G
n

T
n n

G G

β

−∆ +
=

− −+
 Polak-Ribiere according

3. Application in Chemicals Agents

Identification and Classification

3.1. Classification Using Multi-Layer Perceptron

In order to implement the followed theoretical process, a

program has been written using Matlab and applies for a

database with sample of the three agents (Table 1).

Table 1. Three agents gas database.

H2S-NO2 mixture

Ech01 = 0.01 0.13 0.05 0.03 0.03 0.02 0.02 0.27 0.08 0.05 0.03 0.04 0.00 0.00 0.00 0.00 0.01 0.00;

Ech02 = 0.01 0.12 0.04 0.03 0.03 0.02 0.01 0.31 0.08 0.05 0.03 0.04 0.00 0.01 0.00 0.00 0.00 0.00;

Ech03 = 0.01 0.12 0.04 0.02 0.03 0.02 0.02 0.19 0.07 0.04 0.03 0.03 0.00 0.01 0.00 0.00 0.00 0.00;

Ech04 = 0.01 0.12 0.04 0.03 0.03 0.02 0.10 0.31 0.09 0.07 0.04 0.05 0.00 0.01 0.01 0.01 0.00 0.00;

Ech05 = 0.01 0.15 0.06 0.04 0.03 0.02 0.02 0.21 0.07 0.05 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00;

Ech06 = 0.01 0.14 0.05 0.03 0.03 0.02 0.02 0.26 0.08 0.05 0.03 0.04 0.00 0.01 0.00 0.00 0.00 0.00;

Ech07 = 0.01 0.14 0.05 0.03 0.03 0.02 0.01 0.29 0.08 0.05 0.03 0.03 0.00 0.01 0.00 0.01 0.01 0.00;

Ech08 = 0.01 0.12 0.05 0.02 0.03 0.02 0.01 0.30 0.08 0.06 0.03 0.04 0.00 0.01 0.00 0.00 0.00 0.00;

Ech09 = 0.01 0.13 0.04 0.02 0.02 0.02 0.02 0.22 0.07 0.04 0.03 0.03 0.00 0.01 0.00 0.00 0.00 0.00;

Ech10 = 0.01 0.12 0.05 0.03 0.03 0.02 0.10 0.25 0.09 0.06 0.04 0.05 0.00 0.01 0.01 0.01 0.01 0.00;

Gaz H2S

Ech11 = 0.01 0.22 0.05 0.04 0.06 0.02 0.02 0.24 0.07 0.05 0.06 0.03 0.00 0.01 0.00 0.00 0.00 0.00;

Ech12 = 0.01 0.18 0.04 0.04 0.05 0.02 0.01 0.23 0.07 0.05 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00;

Ech13 = 0.01 0.17 0.03 0.03 0.05 0.02 0.05 0.27 0.09 0.07 0.06 0.04 0.00 0.01 0.00 0.00 0.00 0.00;

Ech14 = 0.01 0.17 0.04 0.04 0.05 0.02 0.11 0.37 0.11 0.09 0.06 0.06 0.00 0.02 0.01 0.01 0.00 0.00;

Ech15 = 0.02 0.17 0.04 0.04 0.05 0.02 0.17 0.44 0.11 0.10 0.07 0.07 0.01 0.02 0.01 0.01 0.00 0.00;

Ech16 = 0.02 0.17 0.05 0.04 0.05 0.02 0.24 0.55 0.16 0.15 0.10 0.09 0.04 0.07 0.02 0.02 0.01 0.02;

Ech17 = 0.09 0.19 0.04 0.05 0.05 0.02 0.12 0.30 0.07 0.07 0.05 0.04 0.00 0.01 0.00 0.00 0.00 0.00;

Ech18 = 0.08 0.16 0.03 0.04 0.04 0.02 0.16 0.40 0.09 0.09 0.06 0.05 0.01 0.01 0.00 0.00 0.00 0.00;

Ech19 = 0.08 0.15 0.03 0.04 0.04 0.02 0.28 0.67 0.14 0.16 0.08 0.08 0.01 0.01 0.01 0.01 0.00 0.00;

Ech20 = 0.09 0.16 0.04 0.04 0.04 0.02 0.47 0.86 0.17 0.20 0.09 0.10 0.01 0.03 0.01 0.01 0.00 0.00;

Gaz NO2

Ech21 = 0.01 0.21 0.04 0.04 0.05 0.02 0.01 0.21 0.05 0.05 0.05 0.02 0.00 0.04 0.00 0.00 0.01 0.01;

Ech22 = 0.01 0.19 0.04 0.04 0.04 0.02 0.01 0.19 0.04 0.04 0.04 0.02 0.00 0.01 0.00 0.01 0.01 0.00;

Ech23 = 0.01 0.18 0.03 0.03 0.04 0.02 0.01 0.18 0.03 0.03 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00;

Ech24 = 0.01 0.16 0.03 0.03 0.04 0.01 0.00 0.16 0.03 0.03 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00;

Ech25 = 0.01 0.21 0.04 0.04 0.05 0.02 0.01 0.21 0.05 0.05 0.05 0.02 0.00 0.04 0.00 0.00 0.00 0.01;

Ech26 = 0.01 0.19 0.04 0.05 0.04 0.02 0.00 0.18 0.04 0.04 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00;

Ech27 = 0.01 0.17 0.04 0.04 0.04 0.02 0.00 0.17 0.03 0.04 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00;

Ech28 = 0.01 0.16 0.03 0.04 0.04 0.02 0.00 0.14 0.02 0.02 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00;

Ech29 = 0.00 0.16 0.03 0.03 0.04 0.02 0.00 0.11 0.01 0.01 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00;

Ech30 = 0.01 0.15 0.03 0.03 0.04 0.02 0.00 0.10 0.01 0.01 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00;

The followed methodology during this computing phase

in Matlab is based on fundamental steps, especially the

creation of the network where

� The Samples matrix that contains the input values of

the network are r × s = 18 × 30 size;

� The matrix with the desired results. Its size is 3× 30

with the following vectors [-1 -1 +1]’, [-1 +1 -1]’ and

[+1 -1 -1]’ as expected result per type of gas.

Several networks models are tested using Mean Square

Error criterion [10] (Fig. 4).

 American Journal of Physics and Applications 2014; 2(4): 88-94 92

The outputs of the networks at each iteration are

equivalent to the expected values in the samples where the

total learning path length is associated to a gradient and E

(Fig. 5).

The initial weights have values near zero.

3.2. Matlab Simulations

We conducted various simulations in Matlab for testing

and the results are plotted as follow:

Figure 2. 3D classification of the three agents and performances in learning with Gradient Descent (GD) (traingd)

Figure 3. 3D classification of the three agents and performances in learning with Levenberg-Marquardt (LM) (trainlm)

Figure 4. 3D classification of the three agents and performances in learning with GD with Momentum (GDM) (traingdm)

Figure 5. 3D classification of the three agents and performances in learning with Conjugate Gradient Descent (trainscg)

93 Said El Yamani et al.: Optimizing Back-Propagation Gradient for Classification by an Artificial Neural Network

Figure 6. 3D classification of the three agents and performances in learning with CGD Fletcher-Reeves (traincgf)

Figure 7. 3D classification of the three agents and performances in learning with CGD Polak-Ribière (traincgp)

Figure 8. 3D classification of the three agents and performances in learning with Quasi-Newton (BFGS) (trainbfg)

Table 2. Comparison of parameters of the different back-propagation networks

Number of neurons for a hidden layer Epochs Train time (s) Performances Gradient Mu

Gradient Descent (GD) (traingd) 1000 07 0.0354 0.0724 -

Levenberg-Marquardt (LM) (trainlm) 08 01 1.77e-27 9.66e-14 1.00e-11

GD with Momentum (GDM) (traingdm) 1000 04 0.0181 0.0425 -

Conjugate Gradient Descent (trainscg) 25 01 0.00680 0.0798 -

CGD Fletcher-Reeves (traincgf) 45 01 0.00145 0.0445 -

CGD Polak-Ribière (traincgp) 38 01 0.00237 0.0526 -

Quasi-Newton (BFGS) (trainbfg) 37 31 0.000372 0.0133 -

3.3. Results Analysis

The simulation results obtained show that, the

back-propagation of the gradient, which operates an iterative

approximation along the line of the steepest slope, could be

improved by the conjugate gradient algorithm with the

search for a minimum which produces a faster convergence,

and could also be improved by the Quasi-Newton method.

However, in this case, this remains less efficient than the

Levenberg-Marquardt. Compared to other back-propagation

algorithms, the latter is much more effective in view of its

high speed and high precision, considering the network does

not reach saturation.

4. Conclusions

In this article, learning methods presented dealt with the

back-propagation of the gradient for a neural network

multilayer perceptron based, in order to establish a

 American Journal of Physics and Applications 2014; 2(4): 88-94 94

classification of chemical agents. This classification is

applied to a database which test statistic is the mean square

error to be minimized to threshold value. From this study, it

appears that multiple solutions are able to optimize the

performance of learning, thereby creating special interest in

functional classification.

So if back propagation algorithms adjust the weights in

the direction of greatest slope, direction in which the

performance function decreases more rapidly, it is still

possible that convergence can be made faster with the

conjugate gradient algorithm or the Quasi-Newton method

for fast optimization algorithm or Levenberg-Marquardt.

The latter was designed for second order training approaches

without having to calculate the Hessian matrix. Thanks to

the implementation done in MATLAB, this algorithm seems

to be very effective in classification problems of moderate

size of this kind, in spite of its very high calculations at

iterations.

References

[1] M. JANATI IDRISS and All, Reducing the number of
channels of multi-spectral images by connectionist approach,
Signal Processing 17, 2000, pp 491-500.

[2] A. Guerin, J.H. Crasy, Reconfigurable computing
architecture for simulating networks of neurons, Review
Signal Processing 5 (3), 1988, pp 178-186.

[3] J. Proriol, MLP: Network program multi-layer neurons,
Journal of Modulad, 1996, pp 24-28.

[4] S. Lahmiri, A comparative study of back-propagation
algorithms in financial prediction, International Journal of
Computer Science, Engineering and Applications (IJCSEA),
Vol.1, No.4, 2011, pp 15-21.

[5] L. N. M. Tawfiq Improving Gradient Descent Method for
Training Feed Forward Neural Networks, International
Journal of Modern Computer Science & Engineering, 2(1),
2013, pp 12-24.

[6] M. F. MEILLER, A Scaled Conjugate Gradient Algorithm for
Fast Supervised Learning, Neural Networks, Vol.6, 1993,
pp. 525-533.

[7] M. Wilamowski, and Hao Yu Improved Computation for
Levenberg–Marquardt Training, IEEE transactions on neural
networks, vol. 21, no. 6, 2010, pp 930-93.

[8] N. Qian1, On the momentum term in gradient descent
learning algorithms, Neural Networks, 1999, pp 145-151.

[9] R. S. Ransing and N. M. Nawi1, An improved conjugate
gradient based learning algorithm for back propagation
neural networks, World Academy of Science, Engineering
and Technology, Vol 2, 2008, pp 06-26.

[10] E.P. van Someren, L.F.A. Wessels, E. Backer, M.J.T.
Reinders, Multi-criterion optimization for genetic network
modeling, Signal Processing 83, 2003, pp 763-775.

