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Abstract: In this paper, a new approach for identification of the compliant contact parameters model in multibody systems 

simulation using a neural network algorithm is presented. Based on the training and testing the network for some input and 

output data sets, a general framework is established for identification of these parameters. For this purpose, first, the literature 

devoted to the identification of contact parameters using analytical approaches and methods based on the neural network is 

reviewed in brief. Next, the proposed approach is outlined. Finally, considering a classical example of contact of two bodies, 

the proposed approach is applied for verification of the obtained results. 
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1. Introduction 

The motion of bodies in multibody systems is concerned 

with formulating the equations of motion and calculating 

kinematic and kinetic quantities governing the motion. 

Contact and impact are among the most important and most 

difficult cases and play an essential role. From the modeling 

methodology point of view, several different methods have 

been introduced. As a rough classification, they may be 

divided into contact force based methods and methods based 

on geometrical constraints [1].  
As an effective method in contact analysis between 

complex objects with multiple contacts (which belongs to the 

first category of the above-mentioned classification), the 

surface compliance method uses a penalty formulation [2]. It 

is assumed that each contact region is covered with some 

spring-damper elements scattered over the body surfaces. 

The normal force including the elastic and damping shares 

prevents penetration, i.e., no explicit kinematic constraint is 

considered. The magnitudes of stiffness and damping 

coefficients of the spring-damper elements have to be 

computed based on the penetration, material properties and 

surface geometries of the colliding bodies. 

2. Statement of the Problem 

Modeling and simulation of multibody systems with 

compliant contact model suffers from some difficulties. 

Although the approaches based on such formulation are 

usually simple to be implemented, they face some problems 

in choosing suitable contact parameters (stiffness and 

damping coefficients, and penetration exponent in the contact 

force formula). They are not always applicable due to the 

problems arising from selection of high values of these 

coefficients for imposing non-penetration conditions which 

results in stiff systems with ill-conditioned numerical.  
There exist researches cited in the literature using 

analytical approaches for identification of contact 

parameters. In these approaches, the magnitudes of contact 

parameters are computed based on the penetration, material 

properties, surface geometries of the colliding bodies, and 

etc., see e.g. [3, 4, 5]. However, such methodologies are 

basically derived for contacting objects with simple 

geometries. Furthermore, these approaches may not lead to 
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realistic results when applying to the contact modeling of 

general multibody systems. Therefore, it is necessary to 

develop new methods which rely on the numerical algorithms 

and can be applied to the general cases of contact modeling, 

and still can preserve the required accuracy. 

3. Literature Review 

Among analytical approaches, in [4] the required 

parameters for representing contact force laws are obtained 

based on the energy balance during contact. This formulation 

uses a force-displacement law that involves determination of 

material stiffness and damping coefficients. In [5] two 

continuous contact force models are presented for which 

unknown parameters are evaluated analytically. In the first 

model, internal damping of bodies represents the energy 

dissipation at low impact velocities. However, in the second 

model local plasticity of the surfaces in contact becomes the 

dominant source of energy dissipation. Dias and Pereira [6] 

described the contact law using a continuous force model 

based on the Hertz contact law with hysteresis damping. The 

effect and importance of structural damping schemes in 

flexible bodies were also considered. A contact model with 

hysteresis damping is also presented in [5]. Hunt and 

Grossley [7] obtained also a model for computing the 

stiffness coefficient from the energy balance relations. In 

their approach, the damping force is a linear function of the 

elastic penetration which is estimated from the energy 

dissipated during impact. 

As a common approach, it is also possible to formulate the 

equations of motion in a compact form linear in the unknown 

contact parameters. Indeed, such approach defines the 

problem as a standard identification problem which can be 

solved to obtain the unknown contact parameters using 

different instantaneous or recursive techniques, to provide a 

time history of the estimated results [8].  
In contrast to the analytical approaches, very limited 

number of publications is devoted to the context of 

identification of contact parameters using neural network. 

The work presented in [9] introduces a neural network 

algorithm utilized for environment identification 

experiments. Indeed, this paper presents the first set of 

evaluations on the applicability of neural networks for on-

line identification and contact control of a robot in unknown 

environments. Based on a nonlinear visco-elastic model, the 

values of relevant contact parameters such as stiffness, 

damping, spring hardening, and shock absorbing effect 

coefficients are chosen arbitrary. Using these parameters, the 

amount of penetration, penetration rate, and contact force are 

evaluated, and then are used as inputs to the neural network. 

The outputs of the neural network are the chosen contact 

parameters. The inputs and outputs are used to train the 

network. In the next step, by performing an experiment, the 

inputs of the network are measured, and then are used in the 

trained network to determine the contact parameters.  
In another study [10], identification and modeling of 

contact parameters between holder and machine tool for 

different geometries are considered. The contact parameters 

depend on the clamped tool length, tool diameter, material, 

etc. First of all, the contact parameters for limited 

combinations of tool diameter and clamped tool lengths are 

identified experimentally using a procedure developed in an 

earlier study. The results are used to train a neural network 

which can be used to estimate the parameters for different 

cases. It is demonstrated that this approach can be used in the 

dynamic analysis of the machine tools for cutting stability 

predictions.  
The notion of collision identification in contact 

applications of robotic tasks based on the neural networks is 

introduced in [11]. The paper introduces a framework for 

collision identification in robotic tasks. The proposed 

framework is based on Artificial Neural Networks (ANNs) 

and provides fast and relatively reliable identification of the 

collision attributes. The simulation results are used to 

generate training data for the set of ANNs. A modularized 

ANN-based architecture is also developed to reduce the 

training effort and to increase the accuracy of ANNs. The test 

results indicate the satisfactory performance of the proposed 

collision identification system. 

4. Outline of the Proposed Approach 

Using the neural network for identification of compliant 

contact parameters requires to carry out the following steps. 

It is important to mention that the neural network is merely a 

tool which is based on a training process for identification of 

unknown systems. The accuracy of the results obtained from 

this tool is directly connected to the training step. Therefore, 

it is necessary to pay enough attention to this part to ensure 

obtaining reliable and feasible results.  
In a preliminary step, one should train the neural network. 

This means that, large number of input and output data sets 

have to be provided to the network for the problem under 

investigation. Generally, two approaches may be adopted: 1) 

performing contact simulations for some simple examples 

using approaches other than the compliant contact model, 

and 2) performing some simple experiments for measuring 

pre- and post-impact conditions. Both approaches can be 

chosen for this study.  
For the first approach, one may build variety of classical 

examples in a Finite Element Method (FEM) package, such 

as ANSYS, and model contact with different available 

approaches. FEMs were introduced to deal with problems of 

structural analysis including contact events [1]. The FEM is 

without doubt the most powerful numerical method in the 

field of contact simulation. Then, feasible and meaningful 

contact parameters are extracted based on the pre- and post-

impact conditions.  
For the second approach, some simple experiments for 

supplement the results will be set up. Again, using the pre- and 

post-impact conditions measured from the experiments, the 

corresponding compliant contact parameters are evaluated. For 

doing so, one may utilize the analytical formulations of contact 

parameters developed for simple geometries.  
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In the next step, the results can then be used in a neural 

network algorithm for a training process. In this secondary 

step, the inputs and outputs of the network can be taken from 

any of the above-mentioned approaches.  
After the network has been trained, it can be used for other 

more general cases of contact events. Based on this approach, 

after providing the corresponding inputs of the specific 

problem, the contact parameters are estimated. In this way, a 

framework is established for general identification of contact 

parameters. 

5. Illustrative Example 

Now consider here the longitudinal contact of a rigid rod 

and a rigid sphere. In this paper, focus is on identification of 

the penetration exponent in the contact force formula, and 

hysteresis damping coefficient. Based on the geometry of the 

contacting bodies, approximate value of the stiffness 

coefficient directly from Eq. (1) is estimated.  
As mentioned earlier, in order to achieve reliable results 

from the neural network, provide large number of input and 

output data sets to the network in the training step. For this 

purpose, model this example for 150 different inputs. Table 1 

shows these inputs. These various cases include: five different 

radii for sphere, five different radii for rod with circular cross 

section, three different lengths for rod, and two different initial 

velocities for sphere, which results 150 different input cases. 

For example, the first simulation starts with sphere radius 0.01 

(m), rod radius 0.01 (m), rod length 1 (m), and sphere velocity 

0.02 (m/s). Then, in the second simulation, change sphere 

velocity to 0.04 (m/s) while keeping other values constant. 

This approach will continue till getting finally 150 different 

input sets. In all these 150 simulations the rod is initially at rest; 

its initial velocity is zero. 

Table 1. Different values of inputs for simulation. 

Input name Sphere radius (m) Rod radius (m) Rod length (m) Sphere velocity (m/s) 

Magnitude 

0.01 0.01 1 0.02 

0.03 0.03 1.5 0.04 

0.06 0.06 2  

0.12 0.12   

0.24 0.24   

 
The sphere is made from steel with Young’s module 

E=210 (GPa), density � � 7780���
	
�  and Poisson’s ratio 

� � 0.3. The rod is made from aluminum with Young’s E=70 

(GPa), density � � 2750���
	
� and Poisson’s ratio � � 0.33. 

Based on the results cited in [2], the maximum approaching 

initial velocity of the sphere is chosen below v=0.05 (m/s) to 

prevent plastic deformation during impact. This value 

depends on the material properties of both sphere and rod. 

As the first step, model the contact between sphere and rod 

in ANSYS, see Figure 1. The contact modeling used in 

ANSYS requires no predefined user parameters for this 

simulation. It is based on an approach which belongs to 

another category of contact modeling (the Lagrange 

approach) rather than the compliant contact model. In this 

way, establish a framework for contact simulations which 

gives reliable and accurate results to be used for further steps. 

The outputs of the contact simulations in ANSYS are 

actually the contact forces arising from colliding the sphere 

and the rod, and the post-impact velocities of both sphere and 

rod. 

 
Figure 1. Longitudinal contact of a rigid sphere with a rigid rod. 
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In the next step, using the pre- and post-impact velocities 

and based on the Newton formula for coefficient of 

restitution e [12], the value of this coefficient is calculated. 

Then, the stiffness coefficient K is obtained from following 

equation [6] 

� � �√�

��
����

�

��
�
����

�

��
�
                                  (1) 

In which R denotes sphere radius, �� and �� are Young s 

module and passion ratio of sphere, respectively, and �� and 

�� are Young’s module and passion ratio of rod, respectively. 

By using coefficient of restitution together with stiffness 

coefficient and pre-impact velocity ���� , the hysteresis 
damping   is obtained from [5] as 

 	 � 3��1#$2�

4��#�
                                         (2) 

Now, we consider the Lankarani-Nikravesh formula [5] for 

contact force as 

&' � ��( ) 	 �(�*                                    (3) 

Which upon substituting   from Eq. (2) yields 

&' � ��(+1 ) ,��-�./*

�/* 	���
	0                                   (4) 

The penetration exponent n in the above equation is 

adjusted in a way that the maximum contact force from this 

equation would be equal to the maximum contact force 

obtained from ANSYS simulation for each separate input 

data set. Figure 2 illustrates values of n for inputs which are 

reported in Table 1 and for rod lengths 1 (m) and 2 (m). For a 

particular sphere radius from horizontal axis, and rod radius 

from right vertical axis, and based on the required rod length 

and sphere velocity, the associated n can be read from the left 

vertical axis. Based on the results shown in this figure, 

following remarks can be considered: 

1- For a constant sphere radius, increasing rod radius 

decreases n.  

2- For a constant rod radius, increasing sphere radius 

decreases n.  

3- For the same input data, increasing contact velocity 

increases n.  

4- For the same input data, increasing rod length decreases n. 

 
Figure 2. Values of the penetration exponent n for inputs of Table 1 and for rod lengths 1 (m) and 2 (m). dashed lines: v=0.02 (m/s); solid lines: v=0.04 (m/s). 
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6. Training and Testing the Neural 

Network 

In the next step, using the results from previous step, a 

neural network is trained to predict the penetration exponent 

n in the contact force formula by providing necessary inputs. 

In this network, the values for sphere radius, rod cross 

section radius, and sphere approaching velocity are given as 

inputs to the network, and the real values of n from Figure 2 

are given as outputs to the network. The assumed neural 

network specifications in our simulation are chosen based on 

Table 2. 

Table 2. The assumed neural network specifications. 

Network type Layers No. Neurons No. 

Feed Forward with back Propagation 

3 (Logsig, Logsig, Purline) 

1st layer 4 

Normalized Mean Square Error (nmse) 2nd layer 20 

Trainscg method for Training 3rd layer 1 

 
The correlation of estimating error and performance of 

network is: 

123$ � ∑ �56�576��6
∑ �56�5̅6��6

                                  (5) 

Where 9�  is real value, 97�  is predicted value by ANN 

and 9̅� is average value of 9�. 
Among 150 penetration exponents n, 140 exponents are 

chosen randomly and used together with their corresponding 

input sets in the training step. After the networked has been 

trained, we check it with the inputs which have already been 

used in the training.  
Figure 3 shows the real and the predicted values of these 

140 exponents which are obtained from the trained network. 

As can be seen clearly, the predicted values coincide well 

with their corresponding real values for most cases.  
The percentage of error in the training step is shown in 

Figure 4. For about 90% of the input data sets, the error is 

less than 2%, which implies the efficiency of the training step 

is good enough to proceed to further step. 

 
Figure 3. The real and the predicted values of 140 penetration exponents obtained from the trained network. 

 
Figure 4. The error of the network for penetration exponents in the training step. 
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In the next step, for testing the network, 10 other input sets 

which are different from the 140 input sets used previously 

for the training step. Figure 5 compares the results for these 

10 exponents obtained from ANSYS (real values) and from 

the network (predicted values). Based on this figure, the 

trained network is capable of predicting this exponent for 

new inputs. This approach may be utilized also for 

identification of stiffness and damping coefficients in the 

same way. Therefore, the neural network approach can be 

used as a reliable tool for identification of the contact 

parameters provided it is trained well with enough number of 

input sets.  
The percentage of error in the testing step is shown in 

Figure 6. The maximum error is less than 4% in this step. As 

the network has not used these 10 data sets before in the 

training step, the amount of error shows the capability of the 

network in predicting the penetration exponent n for 
unknown situations. 

 
Figure 5. Testing the network for penetration exponents. 

 
Figure 6. The error of the network for penetration exponents in the testing 

step. 

After predicting the penetration exponent n, we may 

continue with predicting the hysteresis damping coefficient 

. However, since the procedure is the same as already 

followed for n, we therefore will not duplicate the procedure. 

Figures 7 and 8 show the results for hysteresis damping 

coefficients in the training step. Additionally, figures 9 and 

(10) illustrate the corresponding results in the testing step. It 

can be clearly seen that the network has enough accuracy in 

both training and testing steps in predicting the hysteresis 

damping coefficients. 

 

Figure 7. The real and the predicted values of 140 hysteresis damping 

coefficients obtained from the trained network. 

 

Figure 8. The error of the network for hysteresis damping coefficients in the 

testing step. 

 

Figure 9. Testing the network for hysteresis damping coefficients. 

 

Figure10. The error of the network for hysteresis damping coefficients in the 

testing step. 
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In order to check the efficiency and capability of the 

trained network in predicting contact forces based on the 

predicted values of the penetration exponent and hysteresis 

damping coefficient, we consider some new sets of input 

data. These input data are different from the data used before 

for training the network. The results are reported in Table 3 

for five different cases. In each case, the network is tested for 

some input data, and finally, the predicted contact force is 

compared with the contact force obtained from ANSYS. 

Table 3. Results of the trained network in predicting contact force. 

Test No. 1 2 3 4 5 

Sphere radius (m) 0.08 0.01 0.03 0.12 0.08 

Rod radius (m) 0.12 0.2 0.03 0.19 0.12 

Rod length (m) 1 2 1.7 1.3 1 

Sphere velocity (m/s) 0.02 0.04 0.02 0.04 0.02 

Predicted penetration exponent 1.057 1.484 1.221 0.985 1.057 

Predicted hysteresis 21.72 19.31 34.15 13.60 21.72 

damping coefficient (s/m) 21.72 27.30 437 48100 32.96 

Predicted contact force (N) 7240 27.22 402 49479 7240 

Real contact force (N) 7240.5 0.2 8.7 2.8 7240.5 

% Error 0.006 27.30 437 0.12 0.006 

The percentage of errors is relatively small for the new 

inputs. However, it is important to note that the amount of 

error may vary for inputs which are not close to the inputs 

previously used for training the network. This point implies 

that the error can be reduced by increasing the number and 

variety of the input data sets. 

7. Conclusions 

In this paper, we proposed an algorithm for identification 

of compliant contact parameters in multibody systems based 

on the neural network approach. Specifically, we focused 

here on the identification of the penetration exponent and 

hysteresis damping coefficient in the contact force formula. 

First, an FEM model of the contact model of a rigid sphere 

and a rigid rod was created. This example was simulated for 

150 different input sets. The results obtained from these 

simulations were used to evaluate the real values of 

penetration exponent and hysteresis damping coefficients 

(outputs) corresponding to the input sets. Then, a neural 

network was trained using theses inputs and outputs. In the 

next step, the already trained network was served to identify 

the value of the unknown variables for new input sets. The 

obtained results confirmed that the trained network can be 

used as a reliable tool for identification of contact parameters 

provided that enough number of input data sets with suitable 

variety is used in the training step. 
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