

American Journal of Networks and Communications
2014; 3(5-1): 29-42
Published online July 30, 2014 (http://www.sciencepublishinggroup.com/j/ajnc)
doi: 10.11648/j.ajnc.s.2014030501.13
ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Modeling of communication complexity in parallel
computing
Juraj Hanuliak

Dubnica Technical Institute, Sladkovicova 533/20, Dubnica nad Vahom, 018 41, Slovakia

Email address:
hanuliak@dti.sk

To cite this article:
Juraj Hanuliak. Modeling of Communication Complexity in Parallel Computing. American Journal of Networks and Communications.
Special Issue: Parallel Computer and Parallel Algorithms. Vol. 3, No. 5-1, 2014, pp. 29-42. doi: 10.11648/j.ajnc.s.2014030501.13

Abstract: Parallel principles are the most effective way how to increase parallel computer performance and parallel
algorithms (PA) too. Parallel using of more computing nodes (processors, cores), which have to cooperate each other in
solving complex problems in a parallel way, opened imperative problem of modeling communication complexity so in
symmetrical multiprocessors (SMP) based on motherboard as in other asynchronous parallel computers (computer networks,
cluster etc.). In actually dominant parallel computers based on NOW and Grid (network of NOW networks) [31] there is
necessary to model communication latency because it could be dominant at using massive (number of processors more than
100) parallel computers [17]. In this sense the paper is devoted to modeling of communication complexity in parallel
computing (parallel computers and algorithms). At first the paper describes very shortly various used communication
topologies and networks and then it summarized basic concepts for modeling of communication complexity and latency too.
To illustrate the analyzed modeling concepts the paper considers in its experimental part the results for real analyzed
examples of abstract square matrix and its possible decomposition models. These illustration examples we have chosen first
due to wide matrix application in scientific and engineering fields and second from its typical exemplary representation for
any other PA.

Keywords: Parallel Computer, NOW, Grid, Shared Memory, Distributed Memory, Parallel Algorithm, MPI, Open MP,
Model, Decomposition, Communication, Complexity, Modeling, Optimization, Overhead

1. Introduction
Communications in parallel and distributed computing

has been considered as two separate research disciplines.
Parallel computing has addressed problems of
communication and intensive computation on highly
coupled computing nodes while distributed computing has
been concerned with coordination, availability, timeliness,
etc., of more likely coupled computing nodes. Current
trends, such as parallel computing on networks of high
performance computing nodes (workstations) and Internet
computing, suggest the advantages of unifying these two
research disciplines.

Parallel and distributed computing share the same basic
computational model consisting on physically distributed
parallel processes that operate concurrently and interact
with each other in order to accomplish a task as a whole. In
parallel computing, processes are assumed to be placed
closer to each other and they could communicate frequently

and hence the ratio of computation/communication of
parallel applications is usually much smaller than that in
distributed applications. On the other hand, distributed
computing focuses on parallel processes that could be
allocated in a wide area i. e., communication between some
parallel processes is assumed to be more costly than in
parallel computing.

A number of recent trends point to a convergence of
communication research in parallel and distributed
computing [9, 15]. First, increased communication
bandwidth and reduced latency make geographical
distribution of computing nodes less of a barrier to parallel
computing.

2. Communications in Parallel
Computing

From the point of necessary communication modeling in
parallel computing we can divide communications as

30 Juraj Hanuliak: Modeling of Communication Complexity in Parallel Computing

follows
� communications in parallel computers
� communications in parallel algorithms.

2.1. Communications in Parallel Computers

Communications in parallel computers we can divide as
follows
� communications in parallel computers with shared

memory
� communications in parallel computers with

distributed memory.

2.1.1. Communication Networks with Shared Memory
To parallel computers with shared memory belong

parallel computers as follows
� classic parallel computers

� multiprocessors
� massive parallel computers (supercomputers)

[17, 28]
� modern symmetrical multiprocessor systems (SMP)

� SMP multiprocessors
� SMP multicores
� mixed (processors, cores).

Typical actual example of SMP multiprocessor systems
(Intel Xeon) illustrates Fig. 1.

Figure 1. Architecture of SMP parallel computer (8-Intel processor).

From illustrated Fig. 1 we can see that parallel using of
computing nodes (processors) requires at least one
communication network (at Fig. 1 PROfusion) to realize
computing nodes cooperation solving any complex problem
in a parallel way. Concretely it means two basic types of
communications and that
� inter process communications (IPC) of processors

via shared memory
� access of computing nodes to shared input/output

(I/O) devices (I/O communications).
To this time various realized communication network

(switches) mainly in classic parallel computers with shared
memory have used topologies or communication networks
as follows [2, 25, 32]
� deterministic

� bus (multibus)
� multistage
� array
� crossbar
� annulus (ring)
� mesh, annuloid (torus)
� boolean n-dimension cubes (hypercube)
� butterfly
� omega
� shuffle (perfect, logarithmic, with exchange,

k-routes)
� De Bruin network
� Banyan network
� Batcher network
� Benes network
� ATM (asynchronous transfer mode)
� FDDI (Fiber Distributed Data Interface)
� trees (X-tree, H-tree, fat tree, hyper tree)

� stochastic
� hash networks.

2.1.2. Communication Networks for Parallel Computers
with Distributed Memory

For parallel computers with distributed memory
(computer networks, cluster, NOW, Grid) the typical used
topologies or communication networks are as follows [27,
33]
� bus, multibus
� star
� tree
� ring
� Ethernet (Fast, Giga, 10 Giga)
� high speed communication networks

� Myrinet
� Infiniband
� Quadrics.

2.2. Communications in Parallel Algorithms

In principal we can divide communication in parallel
algorithms (PA) to the following groups
� inter process communications in parallel algorithm

using shared memory (PAsm). Shared memory (at
least a part) allow to use it for communications via
I/O instructions of given computing node
(processor) or supported parallel developing
standards

� inter process communications in parallel algorithm
using distributed memory (PAdm). All needed
cooperation of parallel processes have to use only
asynchronous data message communication via
parallel supported developing standards

� inter process communications in hybrid PA which
combine using of both previous PA (PAhyb).

 American Journal of Networks and Communications 2014; 3(5-1): 29-42 31

The main difference between PAsm and PAdm is in form
of inter process communication (IPC) among created
parallel processes [5, 17]. Generally we can say that IPC
communication in parallel system with shared memory can
use more existed communication possibilities (I/O
instructions, communication services in shared memory)
than in distributed systems (only network communication).

2.2.1. Inter Process Communication
In general we can say that dominated elements of

parallel algorithms are their sequential parts (Parallel
processes) and inter process communication (IPC) among
performed parallel processes.

2.2.1.1. Inter Process Communication in Shared Memory
Inter process communication (IPC) for parallel algorithm

with shared memory (PAsm) is defined within supporting
developing standards as following

• OpenMP
• OpenMP threads

� Pthreads
� Java threads
� other.

The concrete communication mechanisms use existence
of shared memory which allows every parallel process to
story communicating data at some addressed memory place
and then another parallel process to read stored data.

2.2.2.2. Inter Process Communication in Distributed
Memory

Inter process communication (IPC) for parallel algorithm
with distributed memory (PAdm) is defined within
supporting developing standards as following

� MPI (Message passing interface)
• point to point (PTP) communication commands

� send commands
� receive commands

• collective communication commands
� data distribution commands
� data gathering commands

� PVM (Parallel virtual machine)
� Java (Network communication services)
� other.
Typical MPI network communication is at Fig. 2. Based

on existed communication links MPI contains mentioned
collective communication commands.

2.3. Influence of Communications to Performance
Tuning

Performance tuning means performance modeling and
optimization of PA (effective PA). This step contents
modeling and analysis in such a way to minimize the whole
execution time of parallel computing. To achieve effective
PA depends mainly from following factors
� optimal selection of communication networks in

parallel computers
� minimization of needed inter process

communication and other accompanying overheads

(parallelization, control of PA, waiting times) [16].
In actually dominated asynchronous parallel computers

(NOW, Grid) there are necessary to reduce (optimize)
mainly number of inter process communications IPC
(Communication complexity) for example through possible
using of alternative decomposition model.

Figure 2. Typical MPI network communication.

3. Parallel Computing Models
Parallel computational model is an abstract model of

parallel computing, which should include overhead and
accompanying delays. Model is characterized by the
possibility of parallel computers, which are for parallel
computing deterministic. Abstraction degree should
characterize also communication structure and
contemporary permit at least approximation of its basic
parameters (complexity, performance etc.) [14, 29]. On the
other hand approximation accuracy is limited by
requirement that abstract communication models have to
represent similar parallel computer architectures and
parallel algorithms [18]. It is clear that for every specific
parallel computer and parallel algorithm too we are able to
create their own communication model, which
characterizes in detail their specific characteristics. Parallel
communication models can be classified according various
criterions. One of most used criteria is presentation way of
model parameters. Typical used communication parameters
can be divided into two groups as follows
� semantic

� communications network architecture
(architecture, channels, control)

� communication methods (communication
protocols)

� communication delay (latency)
� performance (complexity, efficiency). Typical

parameters are
� working load s for given PA
� size of the parallel system p (number of

processors)
� workload w - number of operations
� sequential program execution time T(s, 1)
� the computation execution time T(s, p)comp
� the whole execution time of a parallel algorithm

T(s, p)

32 Juraj Hanuliak: Modeling of Communication Complexity in Parallel Computing

� parallel speed up S(s, p)
� efficiency E(s, p)
� isoefficiency w(s)
� average time of computation unit tc (instruction,

defined computing step etc.)
� communication technical parameters

� average time to initialize communication
(startup time) – ts

� average time to transmit data unit (data word) -
tw.

3.1. Communication Model with Shared Memory

3.1.1. PRAM Model
Model of parallel computer with shared memory PRAM

(Parallel Random Access Machine) was previously used for
its high degree of universality and abstractness. PRAM
model still represents an idealized model, because it is not
considering any delay. Although this approach has an
important role in the theoretical design and development of
parallel computers and parallel algorithms but for real
modeling it is necessary to complete it by modeling at least
of communication delays. Typical PRAM model illustrates
Fig. 3.

Figure 3. PRAM model.

In PRAM model computing nodes communicate via
shared memory whereby every addressed place according
PRAM model is available at the same time. Computing
nodes are at their activities synchronized and communicate
via shared memory. For practical design of a parallel
algorithm programmer specifies sequences of parallel
operations using shared memory. In performing parallel
processes may come to long waiting delays which are
increased proportionally to number of used parallel
processes [4]. These time delays is necessary to model,
analyze their behavior and make their real evaluation
(removing of idealized PRAM model assumption).

3.1.1.1. Fixed Communication Model
Fixed communication model GRAM (Graph Random

Access Machine) was one of the ways how to solve
problem of waiting delays in PRAM model using
distributed memory with precisely defined structure of its
communication network in which symbol G determines
topology graph of used communication network [25]. As

examples we can name two dimensional communication
networks and hypercube topology.

3.2. SPMD Model

Parallel computing model SPMD (Single Process
Multiple Data) corresponded to classical parallel computers
with shared memory (supercomputers, massive SMP)
which were primary focused on massive data parallelism.
Illustration of this model is shown at Fig.4. Such an
orientation program assumes mostly following
decomposition models [1, 17]
� domain decomposition
� manager / worker.

Figure 4. SPMD model.

3.3. Flexible Models

Previous models were not sufficiently precise, because
increasing robustness of parallel computers cause also rises
of communication overheads in parallel algorithms. The
precise developed parallel computer represented robustness
by number of computing nodes with parameter p, whereby
every computing node was ready to work with n / p parallel
processes. Parallel algorithm then consisted of sequence of
defined parallel steps named as super steps, in which were
done needed local calculations followed by communication
exchange of data messages. It is obvious that such
implemented parallel algorithm, in which number of super
steps was small and independent of input load n, will be
effective in any parallel computer providing efficient
implementation just of communications procedures.

3.3.1. Flexible GRAM Model
Basic difference between fixed and flexible GRAM

model is in number of computing nodes (Processors),
which was considered with defined parameter p. At every
stage of communication phase computing node could send
data messages with their variable length to its neighbor
computing nodes. Communication prize could be also
subject of modeling and included following parts
� communication section to initialize communication

(Startup time)
� own transmission part of communication defined as

number of transmitted considered data units
(Words).

 American Journal of Networks and Communications 2014; 3(5-1): 29-42 33

3.3.2. BSP Model
Communication model BSP (Bulk Synchronous Parallel)

is a realistic alternative of PRAM model (Fig. 5.). Number
of parallel super steps (input load n) was divided to p
computing processors. Updates of this communication
model have used instead of synchronization after every
performed instruction only synchronization at the end of
performed partial computation referred as super step. Super
step consisted from defined number of instructions (bulk).
Each super step consisted of three following phases
� own partial computation
� global communications of processors
� barrier synchronization.
At super step used processors are performing their

instructions asynchronously, whereby all read operations of
collective memory of every processor were performed
before performing the first write operation to shared
memory. Existing delays of parallel algorithm were defined
as follows
� parallel computation time were given by the

maximum number of computation cycles w
� synchronization delay has its lower bound as the

waiting time for transmission of minimal
communication data messages through
communications network

� • communication delay was given as the product
g.h cycles, where parameter g characterizes
throughput of communication network. Parameter h
specified number of cycles for communication of
maximal data message at super step. To avoid
conflicts due to asynchronous communication
network activities, send data message in stage by
some processor is not dependent on received
messages in the same phase of communication

� execution time for one super step is then given as
the sum of the partly considered sub delays and that
w + g.h + l.

BSP model does not exclude overlapping of individual
super step activities. In the case of overlapping of defined
actions execution time of super step were given as max (w,
g.h, l).

Figure 5. BSP model.

3.3.2.1. Adjusted BSP Model
Further innovation of BSP model includes adjustments

PRAM and BSP models in such a way that modified model
could be precisely characterize behavior of real parallel
computers. These innovations were based on following
� parallel algorithm is performed in sequence of

phases. There were following three types of phases
and that namely
� parallelization overheads T(s, p)overh
� own parallel computing T(s, p)comp
� interaction of computing nodes T(s, p)interact

(communication, synchronization).
� for given computation phase were determinate input

load with parameters that indicate average value
of performed operations tc(p)

� different interaction imposes different execution
times. Execution time could be computed according
following relation

() () () ().),(int ptmpt
pr

m
ptpmT csseract +=+=

∞

In this relationship m indicates data message length in
bytes, ts(p) is communication start up time and r ∞ (p) is
bandwidth limit of used communication channels.

3.3.2.2. CGM (Coarse Grained Multicomputer) Model
This model is based on BSP model and is represented by

p processors whereby each of them with O(n / p) local
memories for which every super step has h = O(n / p)
communication cycles. The aim is to concentrate on a
proposal with fewer super steps in order to achieve higher
effectiveness of developed parallel algorithms. The ideal
situation means to perform constant number of super steps
as it was done in developed parallel algorithms as sorting,
image processing, optimization problems etc.

3.3.2.3. Log P Model
Log P model is based on BSP model and focuses on a

looser bound parallel computer architectures
(Asynchronous parallel computers).The emphasis is on a
parallel computer with distributed memory with parameters
according Fig. 6 where
� L: time for communication initialization (Startup

time)
� o: overflow due to communication activities. It is

defined as the time interval during which
computing node performs only control of
performed communication

� g:gap between two consecutive transmitted data
messages. It is defined as the inversion of
bandwidth of the communication control processor

� p: number of computing nodes of parallel computer.

34 Juraj Hanuliak: Modeling of Communication Complexity in Parallel Computing

Figure 6. Log P model.

In this model they are considered the resources with their
limited capacity. Consequently then only L / g data
messages can be at a given time in communication network.
Price for basic communication data block between two
computing nodes is L + 2 o. If we require
acknowledgement (ACK) then price is given as 2 L 2 + o.

3.4. Communication Models with Distributed Memory

3.4.1. Model MPMD
Computational model MPMD (Multiple Process

Multiple Data) is associated with computer networks
mainly in asynchronous parallel computers. As network
topologies in computer networks (LAN, WAN) there is
typically used following topological structure [6]
� bus
� star
� tree
� ring.
Suitable decomposition models are those which tend to

functional parallelism, that mean to create of parallel
processes, which can then perform allocated part of parallel
algorithms on corresponding data. Typical decomposition
models are as following [8]
� functional decomposition
� manager / server (Server / client, master / worker)
� object oriented programming OOP.

4. Complexity in Communication
Networks

Typical communication network using single shared
communication channel is illustrated at Fig. 7. The main
disadvantage of such communication network is a serial
communication among connected computer nodes. To
analyze communication complexity we can apply analytical
method of complexity theory. Then upper limit of
communication complexity at Ethernet is given as O (p) for
supposed network connection according Fig. 7.
Communication network with this communication
complexity limits development of effective parallel
algorithms using serial communications as in case of

Ethernet network.

Figure 7. Communication in Ethernet network.

Typical communication network in NOW is based on
Ethernet network. The communication principles in this
network are illustrated at Fig. 7 where P1, P2, ... Pp-1, Pp
could by common powerful single workstations or SMP
parallel computers. Generally implementing computational
model MPMD brings different overhead delays as follows
� parallelization of complex problem
� synchronization of decomposed parallel processes
� inter process communication (IPC) delay.
All these delays in parallel computers with distributed

memory are reflected to communication complexity of used
communication network.

Figure 8. Real communication models.

Real application models should take into account
potential lack of limited communication channels at
implementation of parallel algorithms (technical
communication limits) respectively other limited required
technical resources [19]. Illustration of resource technical
limits illustrates Fig. 8.

4.1. Modeling of Communication Complexity

To model communication complexity in actual parallel
computing is of high importance from these causes [20]
� it plays important role in achieving high

performance of all actual parallel computers (SMP,
Now, Grid)

� to develop effective PA there is necessary to model
and optimize inter process communications mainly
for parallel algorithms with distributed memory
[10].

Fig. 9 illustrates typical relation between parallel
computation time T(s, p)comp (Processing time) in parallel
computing and communication latency T(s, p)comm in

 American Journal of Networks and Communications 2014; 3(5-1): 29-42 35

parallel algorithms with intensive IPC communications.

Figure 9. Relations among parts of parallel execution time.

We can easily show that limit of processing time T(s,
p)comp with increasing number of computing nodes p goes
to null using theory of complexity. Processing time
complexity T(s, p)comp is given through quotient of running
time of the greatest parallel process PP (product of its
complexity Zpp and a constant tc as an average value of
performed computation operations) through number of used
computation nodes of the given parallel computer. Based
on them we are able to derive for parallel computation time
T(s, p)comp following relation

p

tZ
sT cpp

comp

.
)p ,(=

Supposing ideally parallelized problem (for example
matrix PA) and theoretical unlimited number of
computation nodes p mathematical limit of T(s, p)comp is
given as

0
.

lim)p ,(== ∞→ p

tZ
sT cpp

pcomp

For effective parallel algorithms we are seeking for the
bottom part of whole execution time according Fig. 9.

4.2. Communication Latencies

Inter process communication of parallel processes (IPC)
T(s, p)comm (communication latency) influences in a
decisive degree used decomposition model of PA.
Obviously it is higher in parallel algorithms with
distributed memory PAdm than in other ones. To model
communication latency we have applied theory of
complexity to inter process communication T(s, p)comm of
parallel processes in a similar way as in modeling
computation latency T(s, p)comp focusing to a number of
performed communication steps (communication
complexity). Then communication complexity Z(s, p)comm
is given through number of performed communication
steps (communication complexity) for used
decomposition model of given PA. Every communication
step within parallel computer based on NOW module we

can characterized through two basic communication
parameters as follows
� communication parameter ts defined as parameter

for initialization of communication step (startup
time)

� communication parameter tw as parameter for
transmission latency of considered data unit
(typically word).

Illustration of defined communication parameters is at
Fig. 10. These communication parameters ts, tw are
constants for defined parallel computer [11]. Then the
communication latency T(s, p)comm using communication
complexity Z(s, p)comm and the defined communication
parameters is given as follows

)(),(),(wscommcomm ttpsZpsT +=

The whole communication latency is given through two
basic following functions
� function f1(ts) which represents the whole number

of communication initializations for given parallel
process

� function f2(tw) which correspondents to whole
performed data unit transmission (usually time of
word transmission for given parallel computer) in
given parallel process.

Figure 10. Illustration of communication parameters.

These two defined functions limit performance of used
parallel computer on defined NOW module of parallel
computer. Then using a superposition we can write for
communication latency in NOW module T(s, p)comm. as
follows

)()(),(21 wscommNOW tftfpsT +=

The most difficult but in practice a common example of
communication complexity for massive and Grid (network
of NOW networks) is network communication included
crossing through several communications networks (hops),
which are interconnected by routers respectively other
connecting communication elements (repeaters, switches,
bridges, gates etc.).In such case, communication is done
through number of control communications processors, or
communication switches whereby in such transmission
chain could occur communication networks with remote
data transmission. Number of network crossings through

36 Juraj Hanuliak: Modeling of Communication Complexity in Parallel Computing

various communication networks is defined as number of
hops [21, 24].

To model communication latency we need to extend the
considered two communication functions f1(ts), f2(tw) in
NOW module by third function component f3(th), which
will determine potential multiple crossing used NOW
modules of integrated parallel computer. This third function
is characterized through multiplying hops parameter lh
among NOW modules (generally u NOW networks) and
average communication latency time of jumped NOW
modules with the same communication speed or a sum of
individual communication latencies for jumped NOW
modules with their different communication speed. Then in
general to the whole communication latency in Grid is
valid

∑
=

++=
u

i
hwswscommGRID lttftftfpsT

1
321),,()()(),(

In general communication latency time f3(ts, tw, lh) is
time to send data message with m words in one
communication step among integrated NOW modules with
lh hops. The communication time for one communication
step is then given as ts+ m tw lh th, where the new
parameters are
� lh is the number of network hops
� m is the number of transmitted data units (usually

words)
� th is average communication time for one hop.
The new communication parameters th, lh depend from a

concrete architecture of Grid communication network and
used routing algorithm. In [9] we have developed unified
models which could help to establish these parameters for
dominant parallel computers. For the complex analytical
modeling there is necessary to derive for given parallel
algorithm or a group of similar algorithms (matrix parallel
algorithms) needed communication functions and that
always individually for any decomposition strategy) for
known technical parameters (computational,
communication) of used parallel computer (classic, NOW,
Grid).

5. Communication Latencies of PA
To this time known results in complexity modeling on

the in the world have used mainly classical parallel
computers with shared memory (supercomputers) or
massive multiprocessors with distributed memory which in
most cases did not consider the influences of overheads in
parallel computing (communication, synchronization,
parallelization, waiting etc.) supposing that they would be
lower in comparison to the latency of performed massive
parallel computations [22].

In this sense analysis and modeling of complexity in
parallel algorithms (PA) are to be reduced to only
complexity analysis of own computations T(s, p)comp, that
mean that the function of all existed control and

communication overhead latencies h(s, p) were not a part of
derived relations for whole parallel execution time T(s, p).
In this sense the dominated function in the relation for used
isoefficiency function w(s) of the parallel algorithms is
complexity of performed massive computations T(s, p)comp.
Such assumption has proved to be really true in using
classical parallel computers (supercomputers, massive SMP,
SIMD architectures etc.). Putting put on this assumption to
the relation for asymptotic isoefficiency w(s) we get w(s) as
follows

[] compcomp psTpshpsTsw),(),(,),(max)(<=

In opposite at parallel algorithms for actually dominant
parallel computers based on NOW and Grid there is for
complex modeling necessary to analyze at least to
evaluate most important overheads from all existed
overheads which are [8, 10]
� architecture of parallel computer T(s, p)arch
� own computations T(s, p)comp
� communication latency T(s, p)comm

� start - up time (ts)
� data unit transmission (tw)
� routing

� parallelization latency T(s, p)par
� synchronization latency T(s, p)syn
� waiting caused by limiting shared technical

resources T(s, p)wait (memory modules,
communication channels etc.).

All these named overhead latencies build in defined is
efficiency function the whole overhead function h(s, p). In
general the influence of h(s, p) is necessary to take into
account in complex performance modeling of parallel
algorithms or at least to evaluate their important individual
components. The defined overhead function h(s, p) is as
follows

()∑= syncommpararch psTpsTpsTpsTpsh),(),(,),(,),(),(

Overhead function T(s, p)arch is projected into used
technical parameters tc, ts, tw, which are constants for given
parallel computer.

The second overhead function T(s, p)par depend from
chosen decomposition strategy and their consequences are
projected so to computation part T(s, p)comp as to
communication part T(s, p)comm.

The third overhead function T(s, p)syn we can eliminate
through optimization of load balancing among individual
computing nodes of used parallel computer. For this
purpose we would measure performance of individual used
computing nodes for given developed parallel algorithm
and then based on done measured results we are able to
redistribute better given input load. These activities we can
repeat until we have optimal redistributed input load (Load
balancing).

In general possible nonlinear influence of overhead
function h(s, p) should be taken into account in complex

 American Journal of Networks and Communications 2014; 3(5-1): 29-42 37

performance modeling of parallel algorithms. Then for
asymptotic isoefficiency analysis of complex performance
analysis we should consider w(s) as follows

[]),(,),(max)(pshpsTsw comp=

, where the most important parts for dominant parallel
computers (NOW, Grid) in overhead function h(s, p) are in
relation to done analysis of individual overhead latencies
the influence of communication latency of T(s, p)comm.

Then the kernel of asymptotic analyze of h(s, p) is
analysis of communication latency T(s, p)comm including
projected consequences of used decomposition methods. In
general derived isoefficiency function w(s) could have
nonlinear character at gradually increasing number of
computing nodes p. Analytical deriving of isoefficiency
function w(s) including communication latency T(s, p)comm
allow us to predict PA performance of given parallel
algorithm so for real as for hypothetical parallel computers.

6. Applied Modeling of Communication
Latency

We will illustrate modeling process of communication
latency on approximation solution of steady state solution
Ф (x, y) for points in the interior by the function u (x, y)
according Fig. 11. Given a two dimensional region and
values for points of the region boundaries, We can do this
by covering the region with a grid of points and to obtain
the values of u (xi, yj) = ui,j of the area. Each inner point is
initialized to some initial value. Other stationary values of
inner points will by computed applying iterative methods.
In each iteration step, the new point value (next) will be
defined as average of previous (old) or a combination of
previous and new set of values of neighboring points.
Iterative computation ends either after performed fixed
number of iterations or after reaching defined precision
acceptable difference E > 0 (epsilon value) for each new
value. Epsilon accuracy is determined as desired difference
between the previous and the new point value.

Figure 11. Grid approximation of two dimensional region.

These limits of points that indicate the boundary
conditions as follows
� according to Dirichlet [10] giving the values of

given function analyzed function at both ends of the
field (at U = 0 for x = 0, 0 ≤ Y ≤ 1, U = 1 for X = 1,

0 ≤ Y ≤ 1)
� according to the Neumann [10] giving the values

with solution derivations (for example uy= 0 for Y =
0, 0 ≤ X ≤ 1, uy = 0 for Y = 1 0 ≤ X ≤ 1).

To model communication complexity we will represent
two dimensional grid of points with matrix in abstract form
that means for empty matrix. Then we are considering the
typical following n x m matrix

A =
�
��
�
a��, a�	, … , a��a	�, a		, … , a	�a��, a�	, … , a���

��
�		

To reduce number of variables in deriving modeling
process we will consider matrix with m = n (square matrix).
For this purpose there are also following causes

• we can transform any matrix n x m to n x n matrix
through expanding rows (if m < n) or columns (if m >
n)

• derivation process will be the same only when
considering the workload instead of n2 (square matrix)
we should consider n x m (oblong matrix).

Communication model structure is involved in the
communication complexity of the parallel algorithm. We
would analyze the basic communication requirements
potential using of iterative method. Analysis via iterative
methods is based on iterative computation of the new
iterative value of given internal point from fixed number of
neighboring points according concrete iterative relationship.
To compute each new value of one point of approximated
network points they are setting to used iteration relation set
of specified number of neighboring point values (iteration
step). In our case it could be derived to compute the new
value X I, j on a two dimensional network of points
iterative relation where each new point value is computed
as the arithmetic average of the four neighboring points as
follows

X i, j
(t +1) = (Xi-1, j

(t) + Xi +1, j
(t) + Xi, j-1

(t) + Xi, j +1
(t)) / 4

Iterative calculation according to the following iterative
relationship and are repeated sequentially in each iteration
step, the new gain values Xi, j

(1), Xi, j
(2)...etc., while the name

X i, j
(t) determines the value at a given point Xi, j t - step.

Suppose applying decomposition models create parallel
processes for each point, respectively group of points as the
two-dimensional network points.

For iterative finite difference method a two dimensional
grid is repeatedly updated by replacing the value at each
point with some function of the values at a small fixed
number of neighboring points. The common approximation
structure uses a four point stencil to update each element
X i,j (Fig. 12.).

38 Juraj Hanuliak: Modeling of Communication Complexity in Parallel Computing

Figure 12. Communication for 4 - point approximation.

The needed communication process is as follows
for t = 0 to t–1 do
begin
send Xi,j

(t) to each neighbor;
receive Xi-1,j

(t),Xi+1,j
(t),Xi,j-1

(t),Xi,j+1
(t) from the neighbors;

compute Xi,j
(t+1) using the specified iteration relation for Xi;

end;

6.1. Matrix Decomposition to Strips

Decomposition method to rows or columns (Strips) are
algorithmic the same and for their practical using is critical
the way how are the matrix elements putting down to
matrix.

Figure 13. Communication consequences for decomposition to strips
(rows).

In this way it is possible send very simple through
specification of the beginning address for a given row and
through a number of elements in row. Let for every parallel
process (strips) two messages are send to neighboring
processors and in the same way two messages are received
from neighboring processors (Fig. 13) supposing that it is
possible to transmit for example one row to one message.
Communication time for a calculation step T(s, p)coms is
then given as

() 4),(wscomms tntpsT +=

Using these variables for the communication overheads
in decomposition method to strips is correct

)t(t 4),(),()p ,(ws npshpsTsT commscomm +===

In this case a communication time for one calculation
step does not depend on the number of used calculation
processors.

6.1.1. Matrix Decomposition to Blocks
For mapping matrix elements in blocks a inter process

communication is performed on the four neighboring edges
of blocks, which it is necessary in computation flow to
exchange. Every parallel process therefore sends four
messages and in the same way they receive four messages
at the end of every calculation step (Fig. 14.) supposing that
all needed data at every edge are sent as a part of any
message).

Figure 14. Communication model for decomposition to blocks.

Then the requested communication time for this
decomposition method is given as

)(8),(wscommb t
p

n
tpsT +=

This equation is correct for p ≥ 9, because only under
this assumption it is possible to build at least one square
because only then is possible to build one square block with
for communication edges. Using these variables for the
communication overheads in decomposition method to
blocks is correct

)(8),(),()p ,(wscommbcomm t
p

n
tpshpsTsT +===

Then the requested communication time for this
decomposition method is given as

)(8 wscomb t
p

n
tT +=

Data exchange at all shared edges points for both
decomposition strategies (blocks, strips) illustrates Fig. 15.

Figure 15. Data exchange among processors.

 American Journal of Networks and Communications 2014; 3(5-1): 29-42 39

6.1.2. Optimization of Decomposition Model Selection
For comparison based on derived relations for

communication complexity decomposition method to
blocks demands higher communication time as
decomposition to strips (more effective decomposition to
strips) if

)(4)(8 wsws tntt
p

n
t +>+

or after adjusting for technical parameter ts.

.)
2

1(ws t
p

nt −>

or for second technical parameter tw as follows

.)
2

1(sw t
p

nt −>

This relation is valid under assumption that p ≥ 9, which
is real condition in developed iterative parallel algorithms
to build real square block. Fig. 16 illustrates choice
optimization of suitable decomposition method based on
derived dependences to establishing ts for n = 256 and
following values of tw

• tw = 230 ns = 0,23 µs (NOW IBM SP-2)
• tw = 2,4 µs (NCUBE 2).
For higher values ts as at given tsi (ts1for tw = 0, 23 µs and

ts2 for tw = 2, 4 µs) from the appropriate curve line for n =
256 is more effective decomposition method to strips.
Limited values in choice optimal decomposition strategy
are at given n for higher values tw. Therefore in general
decomposition to strips is more effective for higher values
of ts.

Figure 16. Optimization of decomposition method.

Threshold values ts to select the optimal model of matrix
decomposition strategy are for given n for larger values of
tw greater. Then in generally decomposed into strips (rows,
columns) is more effective for higher values of ts (NOW,
Grid) and decomposition into blocks again for smaller
values of ts (classic massive SMP, supercomputers etc.).
Generally the times of ts are significant higher for parallel
computers as NOW and Grid. For example NOW for FDDI

based optical cables with ts = 1100 µs, tw = 1.1 µs and for
architecture with Ethernet ts= 1500 µs, tw= 5 µs) [8]. In
such systems, the use of matrix decomposition method to
strips then more effectively.

7. Measurement of Communication
Latency

For experimental measurements of PA delays we can use
available services of used parallel development
environment (MPI services, Win API 32, Win API 64, etc.).
For example to measurement of execution time of parallel
processes we have been used following functions Win 32
API and Win API 64

• Query Performance Counter which returns actual
value of counter

• Query Performance Frequency which defines counting
frequency per second.

Values of both functions depend on used computer nodes.
Using of above measuring time functions we can obtain
execution times with high accuracy. For example for
common Intel Pentium processors or higher it is 0.0008 ms
which is sufficient for the time analysis of PA.

To measure communication latencies we can define
function to measure time between two points of performed
parallel algorithm respectively parallel process. An
example of following pseudo code to measure time
between two points T1 and T2 is as follows
T1: time (&t1); /*start of time*/
T2: time (&t2); /*stop time*/
measured_ time = difftime (t2,t1); /*measured time =
t2-t1*/
printf (“Measured time = % 5.2 f ms“, measured_time);

Illustrated approach is for measurement of monitoring
times universal that is we can use it so for measurements of
parallel algorithms as for measuring monitoring overheads
of parallel processes, or measuring delays which are typical
to establish technical parameters of parallel computers.

7.1. Communication Technical Parameters

7.1.1. Classic Parallel Computers
We have been derived relations to communication

comparisons of possible matrix decomposition models. We
have been derived that decomposition model to strips (rows,
columns) demands lower inter process communication
delays than decomposition model to blocks with respecting
derived condition that for blocks p ≥ 9, for communication
parameter ts according following inequality

)
2

1(
p

tnt ws −>

At this time at general conclusion that decomposition
model to strips (Rows, columns) is advantageous for higher
values of technical parameter ts, that using of this
decomposition model is more effective. For applied matrix

40 Juraj Hanuliak: Modeling of Communication Complexity in Parallel Computing

parallel algorithms MPA from this is resulting allocation of
n = p. In case of massive equations in which n > p
computing nodes will be repeatedly perform needed
algorithm activities for remaining n > p strips (rows,
columns). For example if we supposed for simplicity that
the value of parameter n is divisible through parameter p
without rest, used computing nodes of parallel computers
will be repeatedly perform k times needed algorithm
activities till exhausting quotient value of k = n/p. For both
complexities (computation, communication) it mean k –
multiplying factor of both mentioned complexities as
derived complexities for pre n = p. From this fact it is clear
that the base outgoing problem is to derive so
computational as communication complexity for given n =
p. Setting previous equality to the relation for technical
parameter ts after needed performed adjustments we get
finally following relation

)2(nntt ws −>

In Tab. 1 we have computed the values ts for known
values of communication parameter tw [7, 15].

Table 1. Optimization of decomposition method for ts.

tw
[µs]

T(s, p)comm. – computed values

n=256 n=512 n=1024

ts1 [µs] ts2 [µs] ts3 [µs]

0,063 14,11 29,40 60,48

0,070 15,68 32,67 67,20

0,080 17,92 37,34 76,80

0,230 50,60 107,35 220,8

0,440 97,68 205,37 422,4

0,540 119,88 252,04 518,4

1,100 244,20 513,4 1056

2,400 532,80 1 072,2 2 304

5,000 1 110,00 2 233,7 4 800

Graphical illustrations of optimal decomposition strategy
for computed values in Tab. 1 are illustrated are at Fig. 17
(smaller values of ts) and Fig. 18 (higher values of ts).

Figure 17. Optimization of decomposition methods for smaller values of ts.

Figure 18. Optimization of decomposition methods for higher values ts.

This inequality for ts we are able modified for other input
parameter (tw, n) and compute remaining parameter. For
example after adjustment for value of parameter tw is valid

nn

t
t s
w

2−
<

At Tab. 2 we have been computed the values tw for
known values of communication parameter ts [7, 15].

Table 2. Optimization of decomposition method for tw.

ts
[µs]

T(s, p)comm. – computed values

n=256 (224) n=512 (466,75) n=1024 (960)

tw1 [µs] tw2 [µs] tw3 [µs]

3 0,01339 0,0064 0,0031

35 0,01560 0,0750 0,0365

64 0,2857 0,1371 0,0666

77 0,3437 0,1650 0,0802

82 0,3661 0,1757 0,0854

87 0,3884 0,1864 0,0906

154 0,6875 0,3299 0,1604

1 150 5,1339 2,4638 1,1979

1 500 6,6964 3,2137 1,5625

Limiting values for optimal selection of decomposition
strategy will be at given n for higher values of tw also
higher. Then decomposition model to strips will be more
effective for higher values of ts (NOW, Grid) and
decomposition models to blocks for lower values of ts.

7.2. NOW Parallel Computer

For analyzed decomposition models we are going to
analyze generally their communication complexity.
Communication function T(s, p)comm for given
decomposition strategy is principally defined in NOW with
defined two communications parameters and that namely

• communication latency due to parameter ts
• communication latency due to parameter tw.
Typical architecture of communication network used in

NOW in our country (Slovakia) is still Ethernet. The
bottleneck of this communication network is in its serial
communication performing multiply point to point
communications and this communication character remains
unchanged also at collective communication mechanism but
collective command Broadcast. We will therefore evaluate in

 American Journal of Networks and Communications 2014; 3(5-1): 29-42 41

an analytical way relations of all MPI collective
communication commands in Ethernet. There is possible to
evaluate it also for other concrete communication network
architectures.

7.2.1. Evaluation of Collective Communication
Mechanisms

For the following typical MPI communication
mechanisms on the Ethernet network are valid the
following relationships

• MPI command of data dispersion
� MPI command Broadcast
� MPI command Scatter

• MPI command of data collection
� MPI command Gather
� MPI command All gather
� MPI command Reduce.

7.2.2. Collective Communication Mechanism Type
Broadcast

Collective communication mechanism Broadcast is the
only collective communication mechanism that can be
effective also in Ethernet communications network. In this
case of transmission of one of the same data unit (Byte,
word) to all other p computing nodes (Processors) in terms
of Ethernet network. Communication complexity T(s,
p)comm of this command is O(1) respectively using of
established communication parameters ts, tw as

wscommbr ttpsT +=),(

To transmit data units various m always only one
processor (Point to point) computational complexity is
given as O(m), respectively supporting communication
parameters established by the following formula

)(),(wscommbr ttmpsT +=

For transmission of different data unit’s m-1 remaining
processor computational complexity is given by O(p),
respectively with the support of established communication
parameters as

∑
−

=

+=
1

1

)(),(
p

i
wscommbr ttmpsT

The same communication delays are for any other
collective communication mechanisms of Ethernet
communication network. Communication complexity T(s,
p)commEth common relationship will be determined as

)()1()(),(
1

1
ws

p

i
wscommEth ttmpttmpsT +−=+=∑

−

=

In general the value of the parameter ts is highly
significant for asynchronous parallel computers NOW and
Grid. For example for parallel computer NOW based on
fiber optic cable these communication parameters have

concrete values and that ts = 1100 µs and tw = 1,1 µs and for
Ethernet communication network are these parameters even
higher and that ts = 1500 µs a tw = 5 µs. The realized
measurements in our home conditions (DTI Dubnica and
University of Zilina, Slovakia) of these communication
parameters on an unloaded Ethernet network were higher
than previous specified values. Causes for the substantial
differences are mainly the following

• built sophisticated technical support to data block
transmission based on direct memory access (DMA)
for collective communication mechanisms

• multiple transmission channels based on multistage
structure of communication network

• high speed communication network switches named
as HPS (High Performance Switch)

• used high speed communications network as
Infiniband, Quadrics and Myrinet [34].

8. Conclusions
Modeling of communication latency as a discipline has

repeatedly proved to be critical for design and successful
use of parallel computers and parallel algorithms too. At the
early stage of design, communication models can be used
to project the system performance, scalability and evaluate
design alternatives [26, 30]. At the production stage,
communication evaluation methodologies can be used to
detect bottlenecks and subsequently suggests ways to
alleviate them. Analytical methods (order analysis, queuing
theory systems), simulation, experimental measurements,
and hybrid modeling methods could be successfully used
for the evaluation of system and its components too [14,
23]. Via the extended form of theory of complexity to
modeling of communication latency we are able to
predicate communication latency behavior also in other
applied parallel algorithms than analyzed matrix
decomposition models.

This paper continues in applying complex analytical
modeling of PA including modeling communication
complexity and latency too [12, 13]. To present used
modeling concepts of communication complexity we have
chosen abstract matrix with its possible decomposition
models (rows or columns, blocks). Based on these
decomposition models we have described communication
complexity via deriving analytical relations including their
comparisons and optimization. The both considered
analyzed examples we have been evaluated so on classic
supercomputers (hypercube, mesh, torus) as on actually
dominant parallel computers NOW and Grid. It is obvious
that in some cases using of network of workstations
(NOW) or its higher integration parallel computers named
as Grid (integrated network of NOW networks) could be
less effective than on innovated classic massive parallel
computers but NOW and Grid belong to more flexible and
perspective parallel computers also for the future time.

42 Juraj Hanuliak: Modeling of Communication Complexity in Parallel Computing

Acknowledgements
This work was done within the project “Complex

modeling, optimization and prediction of parallel computers
and algorithms” at University of Zilina, Slovakia. The
author gratefully acknowledges help of project supervisor
Prof. Ing. Ivan Hanuliak, PhD.

References
[1] Abderazek A. B., Multicore systems on chip - Practical

Software/Hardware design, Imperial college press, UK, pp.
200, 2010

[2] Arie M.C.A. Koster Arie M.C.A., Munoz Xavier, Graphs
and Algorithms in Communication Networks, Springer
Verlag, Germany, pp. 426, 2010

[3] Arora S., Barak B., Computational complexity - A modern
Approach, Cambridge University Press, UK, pp. 573, 2009

[4] Barria A. J., Communication network and computer systems,
Imperial College Press, UK, pp. 276, 2006

[5] Casanova H., Legrand A., Robert Y., Parallel algorithms,
CRC Press, USA, 2008

[6] Dubois M., Annavaram M., Stenstrom P., Parallel computer
organization and design, UK, pp. 560, 2012

[7] Hager G., Wellein G., Introduction to High Performance
Computing for Scientists and Engineers, CRC Press, USA,
pp. 356, 2010

[8] Hanuliak P., Analytical method of performance prediction in
parallel algorithms, The Open Cybernetics and Systemics
Journal, Vol. 6, Bentham, UK, pp. 38-47, 2012

[9] Hanuliak M., Unified analytical models of parallel and
distributed computing, American J. of Networks and
Communication, Science PG, Vol. 3, No. 1, USA, pp. 1-12,
2014

[10] Hanuliak P., Hanuliak I., Performance evaluation of iterative
parallel algorithms, Kybernetes, Vol. 39, No.1/ 2010, UK,
pp. 107- 126

[11] Hanuliak M., Modeling of parallel computers based on
network of computing nodes, American J. of Networks and
Communication, Science PG, Vol. 3, USA, 2014

[12] Hanuliak P., Complex modeling of matrix parallel
algorithms, American J. of Networks and Communication,
Science PG, Vol. 3, USA, 2014

[13] Hanuliak M., Hanuliak I., To the correction of analytical
models for computer based communication systems,
Kybernetes, Vol. 35, No. 9, UK, pp. 1492-1504, 2006

[14] Harchol-Balter Mor, Performance modeling and design of
computer systems, Cambridge University Press, UK, pp. 576,
2013

[15] Hwang K. and coll., Distributed and Parallel Computing,
Morgan Kaufmann, USA, pp. 472, 2011

[16] Kshemkalyani A. D., Singhal M., Distributed Computing,
University of Illinois, Cambridge University Press, UK, pp.
756, 2011

[17] Kirk D. B., Hwu W. W., Programming massively parallel
processors, Morgan Kaufmann, USA, pp. 280, 2010

[18] Kostin A., Ilushechkina L., Modeling and simulation of
distributed systems, Imperial College Press, USA, pp. 440,
2010

[19] Kumar A., Manjunath D., Kuri J., Communication
Networking , Morgan Kaufmann, USA, pp. 750, 2004

[20] Kushilevitz E., Nissan N., Communication Complexity,
Cambridge University Press, UK, pp. 208, 2006,

[21] Le Boudec Jean-Yves, Performance evaluation of computer
and communication systems, CRC Press, USA, pp. 300,
2011

[22] McCabe J., D., Network analysis, architecture, and design
(3rd edition), Elsevier/ Morgan Kaufmann, USA, pp. 496,
2010

[23] Meerschaert M., Mathematical modeling (4-th edition),
Elsevier, pp. 384, 2013

[24] Misra Ch. S., Woungang I., Selected topics in
communication network and distributed systems, Imperial
college press, UK, pp. 808, 2010

[25] Mieghem P. V., Graph spectra for Complex Networks,
Cambridge University Press, UK, pp. 362, 2010

[26] Park K., Willinger W., Self-Similar Network Traffic and
Performance Evaluation, John Wiley & Sons, Inc., USA, pp.
558, 2000

[27] Peterson L. L., Davie B. C., Computer networks – a system
approach, Morgan Kaufmann, USA, pp. 920, 2011

[28] Resch M. M., Supercomputers in Grids, Int. J. of Grid and
HPC, No.1, Germany, pp. 1 - 9, 2009

[29] Riano l., McGinity T.M., Quantifying the role of complexity
in a system´s performance, Evolving Systems, Springer
Verlag, Germany, pp. 189 – 198, 2011

[30] Ross S. M., Introduction to Probability Models, 10th edition,
Academic Press, Elsevier Science, Netherland, pp. 800,
2010

[31] Wang L., Jie Wei., Chen J., Grid Computing: Infrastructure,
Service, and Application, CRC Press, USA, 2009

[32] Wolf Marilyn, High-Performance Embedded Computing
(Second Edition), Morgan Kaufmann, USA, pp. 600, 2014

[33] Zhuge Hai., The Knowledge Grid, Imperial College Press,
USA , pp. 360, December 2011
www pages

[34] www.top500.org.

