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Abstract: Parallel principles are the most effective way how to increase parallel computer performance and parallel 
algorithms (PA) too. Parallel using of more computing nodes (processors, cores), which have to cooperate each other in 
solving complex problems in a parallel way, opened imperative problem of modeling communication complexity so in 
symmetrical multiprocessors (SMP) based on motherboard as in other asynchronous parallel computers (computer networks, 
cluster etc.). In actually dominant parallel computers based on NOW and Grid (network of NOW networks) [31] there is 
necessary to model communication latency because it could be dominant at using massive (number of processors more than 
100) parallel computers [17]. In this sense the paper is devoted to modeling of communication complexity in parallel 
computing (parallel computers and algorithms). At first the paper describes very shortly various used communication 
topologies and networks and then it summarized basic concepts for modeling of communication complexity and latency too. 
To illustrate the analyzed modeling concepts the paper considers in its experimental part the results for real analyzed 
examples of abstract square matrix and its possible decomposition models. These illustration examples we have chosen first 
due to wide matrix application in scientific and engineering fields and second from its typical exemplary representation for 
any other PA. 
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1. Introduction 
Communications in parallel and distributed computing 

has been considered as two separate research disciplines. 
Parallel computing has addressed problems of 
communication and intensive computation on highly 
coupled computing nodes while distributed computing has 
been concerned with coordination, availability, timeliness, 
etc., of more likely coupled computing nodes. Current 
trends, such as parallel computing on networks of high 
performance computing nodes (workstations) and Internet 
computing, suggest the advantages of unifying these two 
research disciplines.  

Parallel and distributed computing share the same basic 
computational model consisting on physically distributed 
parallel processes that operate concurrently and interact 
with each other in order to accomplish a task as a whole. In 
parallel computing, processes are assumed to be placed 
closer to each other and they could communicate frequently 

and hence the ratio of computation/communication of 
parallel applications is usually much smaller than that in 
distributed applications. On the other hand, distributed 
computing focuses on parallel processes that could be 
allocated in a wide area i. e., communication between some 
parallel processes is assumed to be more costly than in 
parallel computing.  

A number of recent trends point to a convergence of 
communication research in parallel and distributed 
computing [9, 15]. First, increased communication 
bandwidth and reduced latency make geographical 
distribution of computing nodes less of a barrier to parallel 
computing. 

2. Communications in Parallel 
Computing 

From the point of necessary communication modeling in 
parallel computing we can divide communications as 
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follows 
� communications in parallel computers 
� communications in parallel algorithms.  

2.1. Communications in Parallel Computers 

Communications in parallel computers we can divide as 
follows 
� communications in parallel computers with shared 

memory 
� communications in parallel computers with 

distributed memory. 

2.1.1. Communication Networks with Shared Memory 
To parallel computers with shared memory belong 

parallel computers as follows 
� classic parallel computers 

� multiprocessors 
� massive parallel computers (supercomputers) 

[17, 28] 
� modern symmetrical multiprocessor systems (SMP) 

� SMP multiprocessors 
� SMP multicores 
� mixed (processors, cores). 

Typical actual example of SMP multiprocessor systems 
(Intel Xeon) illustrates Fig. 1. 

 

Figure 1. Architecture of SMP parallel computer (8-Intel processor). 

From illustrated Fig. 1 we can see that parallel using of 
computing nodes (processors) requires at least one 
communication network (at Fig. 1 PROfusion) to realize 
computing nodes cooperation solving any complex problem 
in a parallel way. Concretely it means two basic types of 
communications and that 
� inter process communications (IPC) of processors 

via shared memory 
� access of computing nodes to shared input/output 

(I/O) devices (I/O communications). 
To this time various realized communication network 

(switches) mainly in classic parallel computers with shared 
memory have used topologies or communication networks 
as follows [2, 25, 32]    
� deterministic 

� bus (multibus) 
� multistage 
� array 
� crossbar 
� annulus (ring) 
� mesh, annuloid (torus) 
� boolean n-dimension cubes (hypercube) 
� butterfly 
� omega 
� shuffle (perfect, logarithmic, with exchange, 

k-routes) 
� De Bruin network 
� Banyan network 
� Batcher network 
� Benes network 
� ATM (asynchronous transfer mode)  
� FDDI (Fiber Distributed Data Interface) 
� trees (X-tree, H-tree, fat tree, hyper tree) 

� stochastic 
� hash networks. 

2.1.2. Communication Networks for Parallel Computers 
with Distributed Memory 

For parallel computers with distributed memory 
(computer networks, cluster, NOW, Grid) the typical used 
topologies or communication networks are as follows [27, 
33]  
� bus, multibus 
� star 
� tree 
� ring 
� Ethernet (Fast, Giga, 10 Giga) 
� high speed communication networks  

� Myrinet 
� Infiniband 
� Quadrics. 

2.2. Communications in Parallel Algorithms 

In principal we can divide communication in parallel 
algorithms (PA) to the following groups 
� inter process communications in parallel algorithm 

using shared memory (PAsm). Shared memory (at 
least a part) allow to use it for communications via 
I/O instructions of given computing node 
(processor) or supported parallel developing 
standards  

� inter process communications in parallel algorithm 
using distributed memory (PAdm). All needed 
cooperation of parallel processes have to use only 
asynchronous data message communication via 
parallel supported developing standards 

� inter process communications in hybrid PA which 
combine using of both previous PA (PAhyb). 
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The main difference between PAsm and PAdm is in form 
of inter process communication (IPC) among created 
parallel processes [5, 17]. Generally we can say that IPC 
communication in parallel system with shared memory can 
use more existed communication possibilities (I/O 
instructions, communication services in shared memory) 
than in distributed systems (only network communication).  

2.2.1. Inter Process Communication 
In general we can say that dominated elements of 

parallel algorithms are their sequential parts (Parallel 
processes) and inter process communication (IPC) among 
performed parallel processes. 

2.2.1.1. Inter Process Communication in Shared Memory 
Inter process communication (IPC) for parallel algorithm 

with shared memory (PAsm) is defined within supporting 
developing standards as following 

• OpenMP 
• OpenMP threads 

� Pthreads 
� Java threads 
� other. 

The concrete communication mechanisms use existence 
of shared memory which allows every parallel process to 
story communicating data at some addressed memory place 
and then another parallel process to read stored data.  

2.2.2.2. Inter Process Communication in Distributed 
Memory 

Inter process communication (IPC) for parallel algorithm 
with distributed memory (PAdm) is defined within 
supporting developing standards as following 

� MPI (Message passing interface) 
• point to point (PTP) communication commands  

� send commands 
� receive commands 

• collective communication commands 
� data distribution commands 
� data gathering commands 

� PVM (Parallel virtual machine) 
� Java (Network communication services) 
� other. 
Typical MPI network communication is at Fig. 2. Based 

on existed communication links MPI contains mentioned 
collective communication commands. 

2.3. Influence of Communications to Performance 
Tuning 

Performance tuning means performance modeling and 
optimization of PA (effective PA). This step contents 
modeling and analysis in such a way to minimize the whole 
execution time of parallel computing. To achieve effective 
PA depends mainly from following factors 
� optimal selection of communication networks in 

parallel computers  
� minimization of needed inter process 

communication and other accompanying overheads 

(parallelization, control of PA, waiting times) [16]. 
In actually dominated asynchronous parallel computers 

(NOW, Grid) there are necessary to reduce (optimize) 
mainly number of inter process communications IPC 
(Communication complexity) for example through possible 
using of alternative decomposition model. 

 

Figure 2. Typical MPI network communication. 

3. Parallel Computing Models 
Parallel computational model is an abstract model of 

parallel computing, which should include overhead and 
accompanying delays. Model is characterized by the 
possibility of parallel computers, which are for parallel 
computing deterministic. Abstraction degree should 
characterize also communication structure and 
contemporary permit at least approximation of its basic 
parameters (complexity, performance etc.) [14, 29]. On the 
other hand approximation accuracy is limited by 
requirement that abstract communication models have to 
represent similar parallel computer architectures and 
parallel algorithms [18]. It is clear that for every specific 
parallel computer and parallel algorithm too we are able to 
create their own communication model, which 
characterizes in detail their specific characteristics. Parallel 
communication models can be classified according various 
criterions. One of most used criteria is presentation way of 
model parameters. Typical used communication parameters 
can be divided into two groups as follows 
� semantic 

� communications network architecture 
(architecture, channels, control) 

� communication methods (communication 
protocols) 

� communication delay (latency) 
� performance (complexity, efficiency). Typical 

parameters are 
� working load s for given PA 
� size of the parallel system p (number of 

processors) 
� workload w - number of operations 
� sequential program execution time T(s, 1) 
� the computation execution time T(s, p)comp 
� the whole execution time of a parallel algorithm 

T(s, p) 
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� parallel speed up S(s, p) 
� efficiency E(s, p) 
� isoefficiency w(s) 
� average time of computation unit tc (instruction, 

defined computing step etc.) 
� communication technical parameters 

� average time to initialize communication 
(startup time) – ts 

� average time to transmit data unit (data word) - 
tw. 

3.1. Communication Model with Shared Memory 

3.1.1. PRAM Model 
Model of parallel computer with shared memory PRAM 

(Parallel Random Access Machine) was previously used for 
its high degree of universality and abstractness. PRAM 
model still represents an idealized model, because it is not 
considering any delay. Although this approach has an 
important role in the theoretical design and development of 
parallel computers and parallel algorithms but for real 
modeling it is necessary to complete it by modeling at least 
of communication delays. Typical PRAM model illustrates 
Fig. 3. 

 

Figure 3. PRAM model. 

In PRAM model computing nodes communicate via 
shared memory whereby every addressed place according 
PRAM model is available at the same time. Computing 
nodes are at their activities synchronized and communicate 
via shared memory. For practical design of a parallel 
algorithm programmer specifies sequences of parallel 
operations using shared memory. In performing parallel 
processes may come to long waiting delays which are 
increased proportionally to number of used parallel 
processes [4]. These time delays is necessary to model, 
analyze their behavior and make their real evaluation 
(removing of idealized PRAM model assumption). 

3.1.1.1. Fixed Communication Model 
Fixed communication model GRAM (Graph Random 

Access Machine) was one of the ways how to solve 
problem of waiting delays in PRAM model using 
distributed memory with precisely defined structure of its 
communication network in which symbol G determines 
topology graph of used communication network [25]. As 

examples we can name two dimensional communication 
networks and hypercube topology. 

3.2. SPMD Model  

Parallel computing model SPMD (Single Process 
Multiple Data) corresponded to classical parallel computers 
with shared memory (supercomputers, massive SMP) 
which were primary focused on massive data parallelism. 
Illustration of this model is shown at Fig.4. Such an 
orientation program assumes mostly following 
decomposition models [1, 17] 
� domain decomposition 
� manager / worker. 

 

Figure 4. SPMD model. 

3.3. Flexible Models 

Previous models were not sufficiently precise, because 
increasing robustness of parallel computers cause also rises 
of communication overheads in parallel algorithms. The 
precise developed parallel computer represented robustness 
by number of computing nodes with parameter p, whereby 
every computing node was ready to work with n / p parallel 
processes. Parallel algorithm then consisted of sequence of 
defined parallel steps named as super steps, in which were 
done needed local calculations followed by communication 
exchange of data messages. It is obvious that such 
implemented parallel algorithm, in which number of super 
steps was small and independent of input load n, will be 
effective in any parallel computer providing efficient 
implementation just of communications procedures. 

3.3.1. Flexible GRAM Model 
Basic difference between fixed and flexible GRAM 

model is in number of computing nodes (Processors), 
which was considered with defined parameter p. At every 
stage of communication phase computing node could send 
data messages with their variable length to its neighbor 
computing nodes. Communication prize could be also 
subject of modeling and included following parts 
� communication section to initialize communication 

(Startup time) 
� own transmission part of communication defined as 

number of transmitted considered data units 
(Words). 
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3.3.2. BSP Model 
Communication model BSP (Bulk Synchronous Parallel) 

is a realistic alternative of PRAM model (Fig. 5.). Number 
of parallel super steps (input load n) was divided to p 
computing processors. Updates of this communication 
model have used instead of synchronization after every 
performed instruction only synchronization at the end of 
performed partial computation referred as super step. Super 
step consisted from defined number of instructions (bulk). 
Each super step consisted of three following phases 
� own partial computation 
� global communications of processors 
� barrier synchronization. 
At super step used processors are performing their 

instructions asynchronously, whereby all read operations of 
collective memory of every processor were performed 
before performing the first write operation to shared 
memory. Existing delays of parallel algorithm were defined 
as follows 
� parallel computation time were given by the 

maximum number of computation cycles w 
� synchronization delay has its lower bound as the 

waiting time for transmission of minimal 
communication data messages through 
communications network 

� • communication delay was given as the product 
g.h cycles, where parameter g characterizes 
throughput of communication network. Parameter h 
specified number of cycles for communication of 
maximal data message at super step. To avoid 
conflicts due to asynchronous communication 
network activities, send data message in stage by 
some   processor is not dependent on received 
messages in the same phase of communication  

� execution time for one super step is then given as 
the sum of the partly considered sub delays and that 
w + g.h + l. 

BSP model does not exclude overlapping of individual 
super step activities. In the case of overlapping of defined 
actions execution time of super step were given as max (w, 
g.h, l). 

 

Figure 5. BSP model. 

 

3.3.2.1. Adjusted BSP Model 
Further innovation of BSP model includes adjustments 

PRAM and BSP models in such a way that modified model 
could be precisely characterize behavior of real parallel 
computers. These innovations were based on following 
� parallel algorithm is performed in sequence of 

phases. There were following three types of phases 
and that namely 
� parallelization overheads T(s, p)overh 
� own parallel computing T(s, p)comp 
� interaction of computing nodes T(s, p)interact 

(communication, synchronization). 
� for given computation phase were determinate input 

load with parameters that indicate  average value 
of performed operations tc(p) 

� different interaction imposes different execution 
times. Execution time could be computed according 
following relation 

( ) ( ) ( ) ( ). ),(int ptmpt
pr

m
ptpmT csseract +=+=

∞
 

In this relationship m indicates data message length in 
bytes, ts(p) is communication start up time and r ∞ (p) is 
bandwidth limit of used communication channels. 

3.3.2.2. CGM (Coarse Grained Multicomputer) Model 
This model is based on BSP model and is represented by 

p processors whereby each of them with O(n / p) local 
memories for which every super step has h = O(n / p) 
communication cycles. The aim is to concentrate on a 
proposal with fewer super steps in order to achieve higher 
effectiveness of developed parallel algorithms. The ideal 
situation means to perform constant number of super steps 
as it was done in developed parallel algorithms as sorting, 
image processing, optimization problems etc. 

3.3.2.3. Log P Model 
Log P model is based on BSP model and focuses on a 

looser bound parallel computer architectures 
(Asynchronous parallel computers).The emphasis is on a 
parallel computer with distributed memory with parameters 
according Fig. 6 where 
� L: time for communication initialization (Startup 

time) 
� o: overflow due to communication activities. It is 

defined as the time interval during which 
computing node performs only control of 
performed communication 

� g:gap between two consecutive transmitted data 
messages. It is defined as the inversion of 
bandwidth of the communication control processor 

� p: number of computing nodes of parallel computer. 
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Figure 6. Log P model. 

In this model they are considered the resources with their 
limited capacity. Consequently then only L / g data 
messages can be at a given time in communication network. 
Price for basic communication data block between two 
computing nodes is L + 2 o. If we require 
acknowledgement (ACK) then price is given as 2 L 2 + o. 

3.4. Communication Models with Distributed Memory 

3.4.1. Model MPMD 
Computational model MPMD (Multiple Process 

Multiple Data) is associated with computer networks 
mainly in asynchronous parallel computers. As network 
topologies in computer networks (LAN, WAN) there is 
typically used following topological structure [6] 
� bus  
� star 
� tree 
� ring. 
Suitable decomposition models are those which tend to 

functional parallelism, that mean to create of parallel 
processes, which can then perform allocated part of parallel 
algorithms on corresponding data. Typical decomposition 
models are as following [8] 
� functional decomposition 
� manager / server (Server / client, master / worker) 
� object oriented programming OOP. 

4. Complexity in Communication 
Networks 

Typical communication network using single shared 
communication channel is illustrated at Fig. 7. The main 
disadvantage of such communication network is a serial 
communication among connected computer nodes. To 
analyze communication complexity we can apply analytical 
method of complexity theory. Then upper limit of 
communication complexity at Ethernet is given as O (p) for 
supposed network connection according Fig. 7. 
Communication network with this communication 
complexity limits development of effective parallel 
algorithms using serial communications as in case of 

Ethernet network. 

 

Figure 7. Communication in Ethernet network. 

Typical communication network in NOW is based on 
Ethernet network. The communication principles in this 
network are illustrated at Fig. 7 where P1, P2, ... Pp-1, Pp 
could by common powerful single workstations or SMP 
parallel computers. Generally implementing computational 
model MPMD brings different overhead delays as follows 
� parallelization of complex problem 
� synchronization of decomposed parallel processes 
� inter process communication (IPC) delay. 
All these delays in parallel computers with distributed 

memory are reflected to communication complexity of used 
communication network. 

 

Figure 8. Real communication models. 

Real application models should take into account 
potential lack of limited communication channels at 
implementation of parallel algorithms (technical 
communication limits) respectively other limited required 
technical resources [19]. Illustration of resource technical 
limits illustrates Fig. 8. 

4.1. Modeling of Communication Complexity 

To model communication complexity in actual parallel 
computing is of high importance from these causes [20] 
� it plays important role in achieving high 

performance of all actual parallel computers (SMP, 
Now, Grid) 

� to develop effective PA there is necessary to model 
and optimize inter process communications mainly 
for parallel algorithms with distributed memory 
[10]. 

Fig. 9 illustrates typical relation between parallel 
computation time T(s, p)comp (Processing time) in parallel 
computing and communication latency T(s, p)comm in 
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parallel algorithms with intensive IPC communications.  

 

Figure 9. Relations among parts of parallel execution time. 

We can easily show that limit of processing time T(s, 
p)comp with increasing number of computing nodes p goes 
to null using theory of complexity. Processing time 
complexity T(s, p)comp is given through quotient of running 
time of the greatest parallel process PP  (product of its 
complexity Zpp and a constant tc as an average value of 
performed computation operations) through number of used 
computation nodes of the given parallel computer. Based 
on them we are able to derive for parallel computation time 
T(s, p)comp following relation 

p

tZ
sT cpp

comp

.
)p ,( =  

Supposing ideally parallelized problem (for example 
matrix PA) and theoretical unlimited number of 
computation nodes p mathematical limit of T(s, p)comp is 
given as  

0
.

lim)p ,(  == ∞→ p

tZ
sT cpp

pcomp  

For effective parallel algorithms we are seeking for the 
bottom part of whole execution time according Fig. 9. 

4.2. Communication Latencies  

Inter process communication of parallel processes (IPC) 
T(s, p)comm (communication latency) influences in a 
decisive degree used decomposition model of PA. 
Obviously it is higher in parallel algorithms with 
distributed memory PAdm than in other ones. To model 
communication latency we have applied theory of 
complexity to inter process communication T(s, p)comm of 
parallel processes in a similar way as in modeling 
computation latency T(s, p)comp focusing to a number of 
performed communication steps (communication 
complexity). Then communication complexity Z(s, p)comm 
is given through number of performed communication 
steps (communication complexity) for used  
decomposition model of given PA. Every communication 
step within parallel computer based on NOW module we 

can characterized through two basic communication 
parameters as follows  
� communication parameter ts defined as parameter 

for initialization of communication step (startup 
time) 

� communication parameter tw as parameter for 
transmission latency of considered data unit 
(typically word). 

Illustration of defined communication parameters is at 
Fig. 10. These communication parameters ts, tw are 
constants for defined parallel computer [11]. Then the 
communication latency T(s, p)comm using communication 
complexity Z(s, p)comm and the defined communication 
parameters is given as follows  

)(),(),( wscommcomm ttpsZpsT +=  

The whole communication latency is given through two 
basic following functions 
� function f1(ts) which represents the whole number 

of communication initializations for given parallel 
process 

� function f2(tw) which correspondents to whole 
performed data unit transmission (usually time of 
word transmission for given parallel computer) in 
given parallel process. 

 

Figure 10. Illustration of communication parameters. 

These two defined functions limit performance of used 
parallel computer on defined NOW module of parallel 
computer. Then using a superposition we can write for 
communication latency in NOW module T(s, p)comm. as 
follows 

)()(),( 21 wscommNOW tftfpsT +=  

The most difficult but in practice a common example of 
communication complexity for massive and Grid (network 
of NOW networks) is network communication included 
crossing through several communications networks (hops), 
which are interconnected by routers respectively other 
connecting communication elements (repeaters, switches, 
bridges, gates etc.).In such case, communication is done 
through number of control communications processors, or 
communication switches whereby in such transmission 
chain could occur communication networks with remote 
data transmission. Number of network crossings through 
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various communication networks is defined as number of 
hops [21, 24]. 

To model communication latency we need to extend the 
considered two communication functions f1(ts), f2(tw) in 
NOW module by third function component f3(th), which 
will determine potential multiple crossing used NOW 
modules of integrated parallel computer. This third function 
is characterized through multiplying hops parameter lh 
among NOW modules (generally u NOW networks) and 
average communication latency time of jumped NOW 
modules with the same communication speed or a sum of 
individual communication latencies for jumped NOW 
modules with their different communication speed. Then in 
general to the whole communication latency in Grid is 
valid 

∑
=

++=
u

i
hwswscommGRID lttftftfpsT

1
321 ),,()()(),(  

In general communication latency time f3(ts, tw, lh) is 
time to send data message with m words in one 
communication step among integrated NOW modules with 
lh hops. The communication time for one communication 
step is then given as ts+ m tw lh th, where the new 
parameters are 
� lh is the number of network hops  
� m is the number of transmitted data units (usually 

words) 
� th is average communication time for one hop. 
The new communication parameters th, lh depend from a 

concrete architecture of Grid communication network and 
used routing algorithm. In [9] we have developed unified 
models which could help to establish these parameters for 
dominant parallel computers. For the complex analytical 
modeling there is necessary to derive for given parallel 
algorithm or a group of similar algorithms (matrix parallel 
algorithms) needed communication functions and that 
always individually for any decomposition strategy) for 
known technical parameters (computational, 
communication) of used parallel computer (classic, NOW, 
Grid).  

5. Communication Latencies of PA 
To this time known results in complexity modeling on 

the in the world have used mainly classical parallel 
computers with shared memory (supercomputers) or 
massive multiprocessors with distributed memory which in 
most cases did not consider the influences of overheads in 
parallel computing (communication, synchronization, 
parallelization, waiting etc.) supposing that they would be 
lower in comparison to the latency of performed massive 
parallel computations [22]. 

In this sense analysis and modeling of complexity in 
parallel algorithms (PA) are to be reduced to only 
complexity analysis of own computations T(s, p)comp, that 
mean that the function of all existed control and 

communication overhead latencies h(s, p) were not a part of 
derived relations for whole parallel execution time T(s, p). 
In this sense the dominated function in the relation for used 
isoefficiency function w(s) of the parallel algorithms is 
complexity of performed massive computations T(s, p)comp.  
Such assumption has proved to be really true in using 
classical parallel computers (supercomputers, massive SMP, 
SIMD architectures etc.). Putting put on this assumption to 
the relation for asymptotic isoefficiency w(s) we get w(s) as 
follows 

[ ] compcomp psTpshpsTsw ),(),(,),(max)( <=  

In opposite at parallel algorithms for actually dominant 
parallel computers based on NOW and Grid there is for 
complex modeling necessary to analyze  at least to 
evaluate most important overheads from all existed 
overheads which are [8, 10] 
� architecture of parallel computer T(s, p)arch 
� own computations T(s, p)comp 
� communication latency T(s, p)comm 

� start - up time (ts) 
� data unit transmission (tw) 
� routing 

� parallelization latency T(s, p)par 
� synchronization latency T(s, p)syn 
� waiting caused by limiting shared technical 

resources T(s, p)wait (memory modules, 
communication channels etc.). 

All these named overhead latencies build in defined is 
efficiency function the whole overhead function h(s, p). In 
general the influence of h(s, p) is necessary to take into 
account in complex performance modeling of parallel 
algorithms or at least to evaluate their important individual 
components. The defined overhead function h(s, p) is as 
follows 

( )∑= syncommpararch psTpsTpsTpsTpsh ),(),(,),(,),(),(  

Overhead function T(s, p)arch is projected into used 
technical parameters tc, ts, tw, which are constants for given 
parallel computer.  

The second overhead function T(s, p)par depend from 
chosen decomposition strategy and their consequences are 
projected so to computation part T(s, p)comp as to 
communication part T(s, p)comm.    

The third overhead function T(s, p)syn we can eliminate 
through optimization of load balancing among individual 
computing nodes of used parallel computer. For this 
purpose we would measure performance of individual used 
computing nodes for given developed parallel algorithm 
and then based on done measured results we are able to 
redistribute better given input load. These activities we can 
repeat until we have optimal redistributed input load (Load 
balancing). 

In general possible nonlinear influence of overhead 
function h(s, p) should be taken into account in complex 
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performance modeling of parallel algorithms. Then for 
asymptotic isoefficiency analysis of complex performance 
analysis we should consider w(s) as follows 

[ ]),(,),(max)( pshpsTsw comp=  

, where the most important parts for dominant parallel 
computers (NOW, Grid) in overhead function h(s, p) are in 
relation to done analysis of individual overhead latencies 
the influence of communication latency of T(s, p)comm. 

Then the kernel of asymptotic analyze of h(s, p) is 
analysis of communication latency T(s, p)comm including 
projected consequences of used decomposition methods. In 
general derived isoefficiency function w(s) could have 
nonlinear character at gradually increasing number of 
computing nodes p. Analytical deriving of isoefficiency 
function w(s) including communication latency T(s, p)comm 
allow us to predict PA performance of given parallel 
algorithm so for real as for hypothetical parallel computers.  

6. Applied Modeling of Communication 
Latency 

We will illustrate modeling process of communication 
latency on approximation solution of steady state solution 
Ф (x, y) for points in the interior by the function u (x, y) 
according Fig. 11. Given a two dimensional region and 
values for points of the region boundaries, We can do this 
by covering the region with a grid of points and to obtain 
the values of u (xi, yj) = ui,j of the area. Each inner point is 
initialized to some initial value. Other stationary values of 
inner points will by computed applying iterative methods. 
In each iteration step, the new point value (next) will be 
defined as average of previous (old) or a combination of 
previous and new set of values of neighboring points. 
Iterative computation ends either after performed fixed 
number of iterations or after reaching defined precision 
acceptable difference E > 0 (epsilon value) for each new 
value. Epsilon accuracy is determined as desired difference 
between the previous and the new point value. 

 

Figure 11. Grid approximation of two dimensional region. 

These limits of points that indicate the boundary 
conditions as follows 
� according to Dirichlet [10] giving the values of 

given function analyzed function at both ends of the 
field (at U = 0 for x = 0, 0 ≤ Y ≤ 1, U = 1 for X = 1, 

0 ≤ Y ≤ 1) 
� according to the Neumann [10] giving the values 

with solution derivations (for example uy= 0 for Y = 
0, 0 ≤ X ≤ 1, uy = 0 for Y = 1 0 ≤ X ≤ 1). 

To model communication complexity we will represent 
two dimensional grid of points with matrix in abstract form 
that means for empty matrix. Then we are considering the 
typical following n x m matrix  

A =
�
��
�
a��, a�	, … , a��a	�, a		, … , a	�	.								.											.	.								.											.	.							.											.a��, a�	, … , a���

��
�		

To reduce number of variables in deriving modeling 
process we will consider matrix with m = n (square matrix). 
For this purpose there are also following causes  

• we can transform any matrix n x m to n x n matrix 
through expanding rows (if m < n) or columns (if m > 
n)  

• derivation process will be the same only when 
considering the workload instead of n2 (square matrix) 
we should consider n x m (oblong matrix). 

Communication model structure is involved in the 
communication complexity of the parallel algorithm. We 
would analyze the basic communication requirements 
potential using of iterative method. Analysis via iterative 
methods is based on iterative computation of the new 
iterative value of given internal point from fixed number of 
neighboring points according concrete iterative relationship. 
To compute each new value of one point of approximated 
network points they are setting to used iteration relation set 
of specified number of neighboring point values (iteration 
step). In our case it could be derived to compute the new 
value X I, j on a two dimensional network of points 
iterative relation where each new point value is computed 
as the arithmetic average of the four neighboring points as 
follows 

X i, j
(t +1) = (Xi-1, j

(t) + Xi +1, j
(t) + Xi, j-1

(t) + Xi, j +1
(t)) / 4 

Iterative calculation according to the following iterative 
relationship and are repeated sequentially in each iteration 
step, the new gain values Xi, j

(1), Xi, j
(2)...etc., while the name 

X i, j
(t) determines the value at a given point Xi, j t - step. 

Suppose applying decomposition models create parallel 
processes for each point, respectively group of points as the 
two-dimensional network points.  

For iterative finite difference method a two dimensional 
grid is repeatedly updated by replacing the value at each 
point with some function of the values at a small fixed 
number of neighboring points. The common approximation 
structure uses a four point stencil to update each element 
X i,j (Fig. 12.).  
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Figure 12. Communication for 4 - point approximation. 

The needed communication process is as follows  
for t = 0 to t–1 do 
begin 
send  Xi,j

(t) to each neighbor; 
receive Xi-1,j

(t),Xi+1,j
(t),Xi,j-1

(t),Xi,j+1
(t) from the neighbors; 

compute Xi,j
(t+1) using the specified iteration relation for Xi; 

end; 

6.1. Matrix Decomposition to Strips 

Decomposition method to rows or columns (Strips) are 
algorithmic the same and for their practical using is critical 
the way how are the matrix elements putting down to 
matrix. 

 

Figure 13. Communication consequences for decomposition to strips 
(rows). 

In this way it is possible send very simple through 
specification of the beginning address for a given row and 
through a number of elements in row. Let for every parallel 
process (strips) two messages are send to neighboring 
processors and in the same way two messages are received 
from neighboring processors (Fig. 13) supposing that it is 
possible to transmit for example one row to one message. 
Communication time for a calculation step T(s, p)coms is 
then given as 

( )  4),( wscomms tntpsT +=  

Using these variables for the communication overheads 
in decomposition method to strips is correct  

)t(t 4 ),(),()p ,( ws npshpsTsT commscomm +===  

In this case a communication time for one calculation 
step does not depend on the number of used calculation 
processors. 

6.1.1. Matrix Decomposition to Blocks 
For mapping matrix elements in blocks a inter process 

communication is performed on the four neighboring edges 
of blocks, which it is necessary in computation flow to 
exchange. Every parallel process therefore sends four 
messages and in the same way they receive four messages 
at the end of every calculation step (Fig. 14.) supposing that 
all needed data at every edge are sent as a part of any 
message). 

 

Figure 14. Communication model for decomposition to blocks. 

Then the requested communication time for this 
decomposition method is given as  

)(8),( wscommb t
p

n
tpsT +=  

This equation is correct for p ≥ 9, because only under 
this assumption it is possible to build at least one square 
because only then is possible to build one square block with 
for communication edges. Using these variables for the 
communication overheads in decomposition method to 
blocks is correct  

)(8 ),(),()p ,( wscommbcomm t
p

n
tpshpsTsT +===  

Then the requested communication time for this 
decomposition method is given as 

)(8 wscomb t
p

n
tT +=  

Data exchange at all shared edges points for both 
decomposition strategies (blocks, strips) illustrates Fig. 15.  

 

Figure 15. Data exchange among processors. 



 American Journal of Networks and Communications 2014; 3(5-1): 29-42 39 
 

6.1.2. Optimization of Decomposition Model Selection 
For comparison based on derived relations for 

communication complexity decomposition method to 
blocks demands higher communication time as 
decomposition to strips (more effective decomposition to 
strips) if 

)(4)(8 wsws tntt
p

n
t +>+  

or after adjusting for technical parameter ts. 

.)
2

1( ws t
p

nt −>  

or for second technical parameter tw as follows 

.)
2

1( sw t
p

nt −>  

This relation is valid under assumption that p ≥ 9, which 
is real condition in developed iterative parallel algorithms 
to build real square block. Fig. 16 illustrates choice 
optimization of suitable decomposition method based on 
derived dependences to establishing ts for n = 256 and 
following values of tw 

• tw = 230 ns = 0,23 µs (NOW IBM SP-2)  
• tw = 2,4 µs (NCUBE 2). 
For higher values ts as at given tsi (ts1for tw = 0, 23 µs and 

ts2 for tw = 2, 4 µs) from the appropriate curve line for n = 
256 is more effective decomposition method to strips. 
Limited values in choice optimal decomposition strategy 
are at given n for higher values tw. Therefore in general 
decomposition to strips is more effective for higher values 
of ts. 

 

Figure 16. Optimization of decomposition method. 

Threshold values ts to select the optimal model of matrix 
decomposition strategy are for given n for larger values of 
tw greater. Then in generally decomposed into strips (rows, 
columns) is more effective for higher values of ts (NOW, 
Grid) and decomposition into blocks again for smaller 
values of ts (classic massive SMP, supercomputers etc.). 
Generally the times of ts are significant higher for parallel 
computers as NOW and Grid. For example NOW for FDDI 

based optical cables with ts = 1100 µs, tw = 1.1 µs and for 
architecture with Ethernet ts= 1500 µs, tw= 5 µs) [8]. In 
such systems, the use of matrix decomposition method to 
strips then more effectively. 

7. Measurement of Communication 
Latency 

For experimental measurements of PA delays we can use 
available services of used parallel development 
environment (MPI services, Win API 32, Win API 64, etc.). 
For example to measurement of execution time of parallel 
processes we have been used following functions Win 32 
API and Win API 64 

• Query Performance Counter which returns actual 
value of counter 

• Query Performance Frequency which defines counting 
frequency per second. 

Values of both functions depend on used computer nodes. 
Using of above measuring time functions we can obtain 
execution times with high accuracy. For example for 
common Intel Pentium processors or higher it is 0.0008 ms 
which is sufficient for the time analysis of PA. 

To measure communication latencies we can define 
function to measure time between two points of performed 
parallel algorithm respectively parallel process. An 
example of following pseudo code to measure time 
between two points T1 and T2 is as follows 
T1:  time (&t1);    /*start of time*/ 
T2:  time (&t2);    /*stop time*/ 
measured_ time = difftime (t2,t1);  /*measured time = 
t2-t1*/ 
printf (“Measured time = % 5.2 f ms“, measured_time); 

Illustrated approach is for measurement of monitoring 
times universal that is we can use it so for measurements of 
parallel algorithms as for measuring monitoring overheads 
of parallel processes, or measuring delays which are typical 
to establish technical parameters of parallel computers. 

7.1. Communication Technical Parameters 

7.1.1. Classic Parallel Computers 
We have been derived relations to communication 

comparisons of possible matrix decomposition models. We 
have been derived that decomposition model to strips (rows, 
columns) demands lower inter process communication 
delays than decomposition model to blocks with respecting 
derived condition that for blocks p ≥ 9, for communication 
parameter ts according following inequality 

)
2

1(
p

tnt ws −>  

At this time at general conclusion that decomposition 
model to strips (Rows, columns) is advantageous for higher 
values of technical parameter ts, that using of this 
decomposition model is more effective. For applied matrix 
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parallel algorithms MPA from this is resulting allocation of 
n = p. In case of massive equations in which n > p 
computing nodes will be repeatedly perform needed 
algorithm activities for remaining n > p strips (rows, 
columns). For example if we supposed for simplicity that 
the value of parameter n is divisible through parameter p 
without rest, used computing nodes of parallel computers 
will be repeatedly perform k times needed algorithm 
activities till exhausting quotient value of k = n/p. For both 
complexities (computation, communication) it mean k – 
multiplying factor of both mentioned complexities as 
derived complexities for pre n = p. From this fact it is clear 
that the base outgoing problem is to derive so 
computational as communication complexity for given n = 
p. Setting previous equality to the relation for technical 
parameter ts after needed performed adjustments we get 
finally following relation 

)2( nntt ws −>  

In Tab. 1 we have computed the values ts for known 
values of communication parameter tw [7, 15]. 

Table 1. Optimization of decomposition method for ts. 

tw 
[µs] 

T(s, p)comm. – computed values 

n=256 n=512 n=1024 

ts1 [µs] ts2 [µs] ts3 [µs] 

0,063 14,11 29,40 60,48 

0,070 15,68 32,67 67,20 

0,080 17,92 37,34 76,80 

0,230 50,60 107,35 220,8 

0,440 97,68 205,37 422,4 

0,540 119,88 252,04 518,4 

1,100 244,20 513,4 1056 

2,400 532,80 1 072,2 2 304 

5,000 1 110,00 2 233,7 4 800 

Graphical illustrations of optimal decomposition strategy 
for computed values in Tab. 1 are illustrated are at Fig. 17 
(smaller values of ts) and Fig. 18 (higher values of ts). 

 

Figure 17. Optimization of decomposition methods for smaller values of ts. 

 

Figure 18. Optimization of decomposition methods for higher values ts. 

This inequality for ts we are able modified for other input 
parameter (tw, n) and compute remaining parameter. For 
example after adjustment for value of parameter tw is valid 

nn

t
t s
w

2−
<  

At Tab. 2 we have been computed the values tw for 
known values of communication parameter ts [7, 15]. 

Table 2. Optimization of decomposition method for tw. 

ts 
[µs] 

T(s, p)comm. – computed values 

n=256 (224) n=512 (466,75) n=1024 (960) 

tw1 [µs] tw2 [µs] tw3 [µs] 

3 0,01339 0,0064 0,0031 

35 0,01560 0,0750 0,0365 

64 0,2857 0,1371 0,0666 

77 0,3437 0,1650 0,0802 

82 0,3661 0,1757 0,0854 

87 0,3884 0,1864 0,0906 

154 0,6875 0,3299 0,1604 

1 150 5,1339 2,4638 1,1979 

1 500 6,6964 3,2137 1,5625 

Limiting values for optimal selection of decomposition 
strategy will be at given n for higher values of tw also 
higher. Then decomposition model to strips will be more 
effective for higher values of ts (NOW, Grid) and 
decomposition models to blocks for lower values of ts. 

7.2. NOW Parallel Computer 

For analyzed decomposition models we are going to 
analyze generally their communication complexity. 
Communication function T(s, p)comm for given 
decomposition strategy is principally defined in NOW with 
defined two communications parameters and that namely 

• communication latency due to parameter ts 
• communication latency due to parameter tw. 
Typical architecture of communication network used in 

NOW in our country (Slovakia) is still Ethernet. The 
bottleneck of this communication network is in its serial 
communication performing multiply point to point 
communications and this communication character remains 
unchanged also at collective communication mechanism but 
collective command Broadcast. We will therefore evaluate in 
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an analytical way relations of all MPI collective 
communication commands in Ethernet. There is possible to 
evaluate it also for other concrete communication network 
architectures.  

7.2.1. Evaluation of Collective Communication 
Mechanisms 

For the following typical MPI communication 
mechanisms on the Ethernet network are valid the 
following relationships 

• MPI command of data dispersion 
� MPI command Broadcast 
� MPI command Scatter 

• MPI command of data collection 
� MPI command Gather 
� MPI command All gather 
� MPI command Reduce. 

7.2.2. Collective Communication Mechanism Type 
Broadcast 

Collective communication mechanism Broadcast is the 
only collective communication mechanism that can be 
effective also in Ethernet communications network. In this 
case of transmission of one of the same data unit (Byte, 
word) to all other p computing nodes (Processors) in terms 
of Ethernet network. Communication complexity T(s, 
p)comm of this command is O(1) respectively using of 
established communication parameters ts, tw as 

wscommbr ttpsT +=),(  

To transmit data units various m always only one 
processor (Point to point) computational complexity is 
given as O(m), respectively supporting communication 
parameters established by the following formula 

)(),( wscommbr ttmpsT +=  

For transmission of different data unit’s m-1 remaining 
processor computational complexity is given by O(p), 
respectively with the support of established communication 
parameters as 

∑
−

=

+=
1

1

)(),(
p

i
wscommbr ttmpsT  

The same communication delays are for any other 
collective communication mechanisms of Ethernet 
communication network. Communication complexity T(s, 
p)commEth common relationship will be determined as 

)()1()(),(
1

1
ws

p

i
wscommEth ttmpttmpsT +−=+=∑

−

=
 

In general the value of the parameter ts is highly 
significant for asynchronous parallel computers NOW and 
Grid. For example for parallel computer NOW based on 
fiber optic cable these communication parameters have 

concrete values and that ts = 1100 µs and tw = 1,1 µs and for 
Ethernet communication network are these parameters even 
higher and that ts = 1500 µs a tw = 5 µs. The realized 
measurements in our home conditions (DTI Dubnica and 
University of Zilina, Slovakia) of these communication 
parameters on an unloaded Ethernet network were higher 
than previous specified values. Causes for the substantial 
differences are mainly the following 

• built sophisticated technical support to data block 
transmission based on direct memory access (DMA) 
for collective communication mechanisms 

• multiple transmission channels based on multistage 
structure of communication network  

• high speed communication network switches named 
as HPS (High Performance Switch) 

• used high speed communications network as 
Infiniband, Quadrics and Myrinet [34].  

8. Conclusions 
Modeling of communication latency as a discipline has 

repeatedly proved to be critical for design and successful 
use of parallel computers and parallel algorithms too. At the 
early stage of design, communication models can be used 
to project the system performance, scalability and evaluate 
design alternatives [26, 30]. At the production stage, 
communication evaluation methodologies can be used to 
detect bottlenecks and subsequently suggests ways to 
alleviate them. Analytical methods (order analysis, queuing 
theory systems), simulation, experimental measurements, 
and hybrid modeling methods could be successfully used 
for the evaluation of system and its components too [14, 
23]. Via the extended form of theory of complexity to 
modeling of communication latency we are able to 
predicate communication latency behavior also in other 
applied parallel algorithms than analyzed matrix 
decomposition models.  

This paper continues in applying complex analytical 
modeling of PA including modeling communication 
complexity and latency too [12, 13]. To present used 
modeling concepts of communication complexity we have 
chosen abstract matrix with its possible decomposition 
models (rows or columns, blocks). Based on these 
decomposition models we have described communication 
complexity via deriving analytical relations including their 
comparisons and optimization. The both considered 
analyzed examples we have been evaluated so on classic 
supercomputers (hypercube, mesh, torus) as on actually 
dominant parallel computers NOW and Grid. It is obvious 
that in some cases using  of network of workstations 
(NOW) or its higher integration parallel computers named 
as Grid (integrated network of NOW networks) could be 
less effective than on innovated classic massive parallel 
computers but NOW and Grid belong to more flexible and 
perspective parallel computers also for the future time. 
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