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Abstract: An Octagon-Cell Interconnected Network (OCN) has many attractive features. To represent OCN an undirected 

graph G = (V, E) is used, in which V is the set of nodes in the graph and E is the set of edges in the graph. Already the optimal 

routing algorithm had been presented with its features in our past research work. This research paper presents the optimal 

routing algorithm for horizontal moving signals in OCN with a faulty node/link along the optimal path. OCN is expandable. 

Also the algorithm tells that, even the OCN is expanded; there is no effect to find the optimal path in presence of faulty nodes. 

OCN can be utilized in massively parallel computing. In a massively parallel system a large number of processors are used to 

perform a set of coordinated computation simultaneously. So OCN is assumed a type of integrated circuit with an array of 

hundreds or thousands of central processing units (CPUs) and random-access memory banks. 
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1. Introduction 

In this research paper an optimal routing algorithm is 

introduced for interconnected processors, which 

communicates messages in a faulty octagon-cell. The optimal 

routing algorithm for octagon-cell interconnected network 

along with its attractive features had been described in [2]. 

Also the fault tolerant routing algorithm for horizontal 

moving messages for this network had been described in [1], 

which was not optimal, but approximated towards optimal 

value. In this paper an optimal fault tolerant routing 

algorithm is derived for horizontal moving messages in the 

network and calculated the relative error for each sample test. 

An octagon-cell interconnected network has many attractive 

features such as constant node degree, desirable diameter, 

bisection width [2]. The fundamental formula of desirable 

features of this cell has been presented in [28]. 

In an interconnection network, a fault tolerance scheme 

means the ability to continue operating in presence of faulty 

nodes / link failures [4]-[15]. If the number of interconnected 

processors rises, the probability of having faulty nodes 

increases and for successful transmission it is very much 

essential to find another fault free path [16], [23]-[25]. 

Selecting optimal paths for efficient inter process 

communication is essential in parallel processing systems. In 

this system, if each and every processor has the status of all 

processors then an optimal routing can be possible. In a 

system it may be possible for each component suffers from 

hardware or software problem. If the system can’t handle the 

faulty problem, that is unreliable, inefficient [16]-[22]. 

2. Related Work 

The fault tolerant routing schemes have been developed 

for various interconnected networks by many researchers. A 

fault tolerant scheme has been proposed for hexagonal arrays 

in [26]. It has been described that the routing scheme makes 

the reconstructed array transparent to the various algorithms 

utilizing the hexagonal array. 

A mesh embedded interconnected hypercube network has 



36 Sanjukta Mohanty and Prafulla Kumar Behera:  An Optimal Routing Algorithm for Horizontal Moving Signals in  

OCN for Massively Parallel Systems with Faulty Node/Link 

been analyzed to arrive at fault tolerant communication. An 

efficient routing algorithm has been proposed that can route a 

message from a source node to the destination in presence of 

fault free or single/multiple faulty nodes in mesh embedded 

hypercube interconnection networks in [4]. 

A fault tolerant routing algorithm has been described for 

star interconnection network in the presence of faults in [27]. 

A new fault tolerance algorithm has been described in [16] 

for hex-cell interconnection network and the algorithm 

guarantees the delivery of messages even with the presence 

of component failure. 

An efficient distributed fault-tolerant routing algorithm for 

the hypercube has been described in [17] on the existence of 

a complete set of node-disjoint paths between any two nodes. 

It was presented that when a message is blocked by a node 

failure, the source node is warned and requested to switch to 

a different node-disjoint path.  

3. Octagon-Cell Network Topology 

The optimal routing algorithm has been described for OCN 

in [2]. An octagon-cell has eight nodes. It has d levels 

numbered from 1 to d with depth d. Level 1 represents one 

octagon-cell. Level 2 represents eight octagon-cells 

surrounding the octagon-cell at level 1. Level 3 represents 

sixteen octagon-cells surrounding the eight octagon-cells at 

level 2 and so on [2].  

 

(X, Y represents line no-X with node no-Y) 

Figure 1. Addressing nodes in Octagon-Cell with level-1. 

 

(X, Y represents line no-X with node no-Y) 

Figure 2. Addressing nodes in Octagon-Cell with level- 2. 

Due to the recursive structure of OCN routing can be done 

easily. The level numbering scheme is used in this algorithm. 

Each node in octagon-cell is identified by a pair (X, Y), 

Where X denotes the line number in which the node exists 

and Y denotes serial number of the node in that line. A node 

with the address (1,1) is the first node in first line. A node 

with the address (1,2) is the second node in first line and so 

on. Here again the optimal routing algorithm is presented for 

horizontal and vertical moves [2].  

Case-1(a) Optimal Routing Algorithm for Horizontal 

Move for lines m where m mod 3 = 1 && Xs < [(d*5) + (d-

2)] [If (Xs = Xd && Ys < Yd) and If (Xs = Xd  && Ys > Yd)] 

Move (Xs,Ys,Xd,Yd) 

If (ys < yd) 

If (xs = xd && ys is odd) 

    Move (xs, ys+1, xd, yd) 

       Else If (xs = xd && ys is even) 

          Move (xs+1, ys/2+1, xd, yd) 

       Else If (xs ≠ xd) 

          Move (xs-1, 2ys-1, xd, yd) 

Else  

Destination reached 

Else  

If (ys > yd) 

If (xs = xd && ys is odd) 

     Move (xs+1, ys/2+1, xd, yd) 

        Else If (xs = xd && ys is even) 

          Move (xs, ys -1, xd, yd) 

        Else If (xs ≠ xd) 

          Move (xs-1, 2ys-2, xd, yd) 

Else  

If (ys = yd)  

     Go to Vertical Move 

Else  

      Destination reached 

Case-1(b) Optimal Routing Algorithm for Horizontal 

Move for lines m where m mod 3 = 1 && Xs = [(d*5) + (d-

2)] [If (Xs = Xd && Ys < Yd) and If (Xs = Xd && Ys > Yd)] 

Move (Xs,Ys, Xd,Yd) 

If (ys < yd) 

If (xs = xd && ys is odd) 

     Move (xs, ys+1, xd, yd) 

        Else If (xs = xd && ys is even) 

     Move (xs-1, ys/2+1, xd, yd) 

        Else If (xs ≠ xd) 

     Move (xs+1, 2ys-1, xd, yd) 

Else  

    Destination reached 

Else  

If (ys > yd) 

If (xs = xd && ys is odd) 

    Move (xs-1, ys/2+1, xd, yd)  

       Else If (xs = xd && ys is even) 

     Move (xs, ys-1, xd, yd) 

       Else If (xs ≠ xd) 

     Move (xs+1, 2ys-2, xd, yd) 

Else  

If (ys = yd)  
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     Go to Vertical Move 

Else  

      Destination reached 

Case-2 Optimal Routing Algorithm for Horizontal Move 

for lines m where m mod 3 ≠ 1 [If (Xs = Xd && Ys<Yd) and 

If (Xs = Xd  && Ys> Yd)] 

Move (Xs,Ys, Xd,Yd) 

If (xs = xd && ys < yd && xs mod 3=2) 

If (xs = xd && xs mod 3=2) 

     Move (xs-1, 2ys-1, xd, yd) 

        Else If (xs ≠ xd && ys is odd) 

     Move (xs, ys+1, xd, yd) 

        Else If (xs ≠ xd && ys is even) 

     Move (xs+1, ys/2+1, xd, yd) 

Else  

     Destination reached 

Else 

    If (xs = xd && ys < yd && xs = 3n) 

    If (xs = xd && xs = 3n) 

        Move (xs+1, 2ys-1, xd, yd) 

           Else If (xs ≠ xd && ys is odd) 

        Move (xs, ys+1, xd, yd) 

           Else If (xs ≠ xd && ys is even) 

        Move (xs-1, ys/2+1, xd, yd) 

Else  

       Destination reached 

Else 

If (xs = xd && ys > yd && xs mod 3 = 2) 

 If (xs = xd && xs mod 3 = 2) 

        Move (xs-1, 2ys-2, xd, yd) 

           Else If (xs ≠ xd && ys is even) 

               Move (xs, ys-1, xd, yd) 

           Else If (xs ≠ xd && ys is odd) 

               Move (xs+1, ys/2+1, xd, yd) 

Else  

     Destination reached 

Else 

If (xs = xd && ys > yd && xs = 3n) 

If (xs = xd && xs = 3n) 

        Move (xs+1, 2ys-2, xd, yd) 

           Else If (xs ≠ xd && ys is even) 

             Move (xs, ys-1, xd, yd) 

           Else If (xs ≠ xd && ys is odd) 

              Move (xs-1, ys/2+1, xd, yd) 

Else  

If (ys = yd)  

    Go to Vertical Move 

Else 

     Destination reached 

Case-3 Optimal Routing Algorithm for Vertical Move for 

lines m = Xs where m mod 3 = 1 [If (Xs < Xd && Ys = Yd)] 

Move (Xs,Ys, Xd,Yd) 

If (yd = 1 || 2) // Logical OR 

   For (i = xs to xd-1 in increasing order) 

    Move (xs+1, ys, xd, yd) 

       Else If (xs mod 3 = 1 && xd mod 3 ≠1 && ys is odd) 

          Move (xs, ys+1, xd, yd) 

      Else If ((xs mod 3 = 1 && xd mod 3 ≠ 1 && ys is even 

&& xs < xd) || (xs mod 3 = 1 && xd mod 3 = 1)) 

          Move (xs+1, ys/2+1, xd, yd) 

      Else If (xs mod 3 = 1 && xd mod 3 ≠ 1 && ys is even 

&& xs > xd) 

          Move (xs-1, ys/2+1, xd, yd) 

      Else If ((xs mod 3 = 2 && xd mod 3 ≠ 1 && xs ≠ xd) || 

(xs mod 3 = 2 && xd mod 3 = 1)) 

          Move (xs+1, ys, xd, yd) 

       Else If ((xs = 3n && xd mod 3 ≠ 1) && (ys ≠ yd) || (xs 

= 3n && yd is odd && xd mod 3 = 1)) 

          Move (xs+1, 2ys-1, xd, yd) 

       Else If (xs = 3n && xd mod 3 = 1 && yd is even) || (xs 

= 3n && ys = yd && xd mod 3 ≠ 1) 

          Move (xs+1, 2ys-2, xd, yd) 

Else If (xs = xd) 

      Go to Horizontal Move 

Else 

       Destination reached 

Case-4 Optimal Routing Algorithm for Vertical Move for 

lines m = Xs where Xs mod 3 ≠1 [If (Xs < Xd && Ys = Yd)] 

Move (Xs, Ys, Xd, Yd) 

If (yd = 1 || 2) // Logical OR 

   For (i = xs to xd-1 in increasing order) 

        Move (xs+1, ys, xd, yd) 

   Else If (xs mod 3 = 2) 

        Move (xs+1, ys, xd, yd) 

    Else If (xs = 3n) 

        Move (xs+1, 2ys-2, xd, yd) 

    Else If (xs mod 3 = 1 && xd mod 3 = 1 && ys is even 

&& ys ≠ yd && xs ≠ xd) 

        Move (xs, ys-1, xd, yd) 

    Else If ((xs mod 3 = 1 && xd mod 3 = 1 && ys is odd 

&& ys ≠ yd && xs ≠ xd) || (xs mod 3 = 1 && xd mod 3 ≠ 1)) 

        Move (xs+1, ys/2+1, xd, yd) 

    Else If (xs mod 3 = 1 && xd mod 3 = 1 && xs = xd) 

         Go to Horizontal Move 

    Else If (xs mod 3 = 1 && xd mod 3 = 1 && ys = yd) 

        Go to Vertical Move Top to Bottom for Xs mod 3 = 1 

Else  

         Destination reached 

Note1 In similar way the vertical moves for Xs > Xd can be 

followed. So the algorithm for this case is not presented. This 

can be followed from [2]. 

4. Optimal Fault Tolerant Routing 

Algorithm 

There are six cases for optimal routing for horizontal 

moving messages. In this research paper an optimal fault 

tolerant routing algorithm is presented for the following 

cases. 

Case: 1  
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Fault tolerant routing algorithm for horizontal move for 

lines m mod 3 = 1 [Move from left to right, If (Xs = Xd && 

Ys< Yd)] 

Case: 2  

Fault tolerant routing algorithm for horizontal move for 

lines m mod 3 = 1 [Move from right to left, If (Xs = Xd && 

Ys> Yd)] 

Case: 3  

Fault tolerant routing algorithm for horizontal move for 

lines m mod 3 =2 [Move from left to right, If (Xs = Xd && 

Ys< Yd)] 

Case: 4  

Fault tolerant routing algorithm for horizontal move for 

lines m mod 3 =2 [Move from right to left, If (Xs = Xd && 

Ys> Yd)] 

Case: 5 

Fault tolerant routing algorithm for horizontal move for 

lines m = 3n (n is any natural number) [Move from left to 

right, If (Xs = Xd && Ys< Yd)] 

Case: 6 

Fault tolerant routing algorithm for horizontal move for 

lines m = 3n (n is any natural number) [Move from right to 

left, If (Xs = Xd  && Ys> Yd] 

The fault tolerant algorithm is based on the optimal routing 

scheme in octagon-cell network [2]. Here six main cases are 

presented for fault tolerant scheme. The following notations 

have been used in our algorithm. 

OSN-Original Source Node 

FN-Faulty Node 

FL-Faulty Link 

DN-Destination Node 

NBD- Neighborhood 

Horizontal Right-HOZR 

Horizontal Left-HOZL 

Vertical Top-VERT 

Vertical Bottom-VERB 

4.1. Description of Model 

The fault tolerance routing algorithm for octagon-cell 

interconnected network has been presented for horizontal 

moving messages in [1]. In this research paper the same 

protocol is considered as in [1]. Here the optimized algorithm 

is explained. It is assumed that each node has information 

about its three consecutive nodes on the original optimal path 

in which it could have gone if there won’t be any faulty 

nodes, link failures and dead end state. Each node say ‘A’ 

checks its three consecutive nodes and links simultaneously 

along its original path. If any error occurs in one of three 

consecutive links or nodes, then the algorithm will work with 

respect to the address of source node at ‘A’. 

When a signal passes from a source node to a destination, 

it is very much essential to find a path of non-faulty nodes. 

For this purpose, each node can store the information about 

its three consecutive nodes and links along the original path. 

There are three possible cases for a node in an octagon-cell 

network. That is: 

a) There are fault free nodes / links along the original path. 

This is called normal state.  

b) If any faulty node or link occurs in the original path, 

this situation is called faulty state. This situation can be 

handled by the nodes along the path, because each node in 

the path has the status of its three consecutive nodes and 

links. So the original path will get changed by using the 

algorithm. 

c) If destination node is faulty, then this situation is called 

dead end state. 

Note2 

a. Since it is derived the optimal fault tolerant scheme for 

the presence of faulty node or faulty link along the optimal 

path, so in all cases the link failure conditions are not 

mentioned, because the algorithm for link failure case is 

equivalent to the node failure along the optimal path. That is 

if the link (xs, ys) → (xs
*
, ys

*
) is failed along the optimal path, 

then this situation is equivalent to the left node failure of this 

link. If the right node is failed, then this is equivalent to the 

link failed connecting to (xs
*
, ys

*
) and (xs

**
, ys

**
).

 

b. The symbol “d” represents depth of the network and the 

word is used in our algorithm “w.r.t” represents “with respect 

to”. 

4.2. Description of the Fault Tolerant Scheme 

This scheme has already been presented in [1]. When a 

message is to be sent from a source node to a destination 

node, the algorithm first finds the optimal path [2]. The 

message moves on the optimal path. In that path each and 

every node has the status about three consecutive nodes / 

links. If ‘B’ be the faulty node and ‘A’ be another fault free 

node on that path, then before reaching at ‘B’, the message 

first reaches at ‘A’. ‘A’ has the status about next three 

consecutive nodes / links. ‘B’ is the node amongst the three 

consecutive nodes. So at that situation, the message suddenly 

goes away from that original optimum path and finds another 

fault free optimal path with respect to node ‘A’. Else dead 

end may occur for which the message fails to reach at the 

destination. Let the optimal path be A→B→C→D→E→F, 

where the source node is ‘A’ and the destination node is ‘F’. 

If ‘F’ is faulty then dead end occurs. If ‘B’ or ‘C’ or ‘D’ is 

faulty, then the algorithm will work with respect to the node 

‘A’. If ‘E’ is faulty, then the algorithm will work with respect 

to the node ‘B’. If the optimal path be A→B→C→D, where 

the source and destination nodes are ‘A’ and ‘D’ respectively 

and if faulty node is ‘B’ or ‘C’, then in this case the algorithm 

will work w.r.t the source node ‘A’. 

Note3 

To reduce the complexity of the algorithm, the following 

fundamental groups of pseudocodes are defined. 

G1: Move (xs-1, ys/2+1, xd, yd) 

       Move (xs-1, ys, xd, yd) 

       Move (xs-1, 2ys-1, xd, yd) 

G2: Move (xs-1, ys/2+1, xd, yd) 

       Move (xs-1, ys, xd, yd) 

       Move (xs-1, 2ys-1, xd, yd) 

       Move (xs, ys+1, xd, yd) 

G3: Move (xs+1, ys/2+1, xd, yd) 
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       Move (xs+1, ys, xd, yd) 

       Move (xs+1, 2ys-1, xd, yd) 

G4: Move (xs+1, ys/2+1, xd, yd) 

       Move (xs+1, ys, xd, yd) 

       Move (xs+1, 2ys-1, xd, yd) 

       Move (xs, ys+1, xd, yd) 

G5: Move (xs-1, ys/2+1, xd, yd) 

       Move (xs-1, ys, xd, yd) 

       Move (xs-1, 2ys-2, xd, yd) 

G6: Move (xs-1, ys/2+1, xd, yd) 

       Move (xs-1, ys, xd, yd) 

       Move (xs-1, 2ys-2, xd, yd) 

       Move (xs, ys-1, xd, yd) 

G7: Move (xs+1, ys/2+1, xd, yd) 

       Move (xs+1, ys, xd, yd) 

       Move (xs+1, 2ys-2, xd, yd) 

       Move (xs, ys-1, xd, yd) 

G8: Move (xs+1, ys/2+1, xd, yd) 

       Move (xs+1, ys, xd, yd) 

       Move (xs+1, 2ys-2, xd, yd)  

   Case-I Fault tolerant routing algorithm for horizontal 

move for lines m, Where m mod 3 = 1 [Move from left to 

right, If (Xs = Xd   && Ys< Yd)] 

Find the optimal path from OSN to DN 

If (path is fault free) 

     Return true 

Else If (FN is DN) 

      Return dead end 

Else Go to the Sub-Cases 

   Sub-Case: A If (OSN xs = 1 && OSN ys is odd) 

Case-1: If (FN is 1
st
NBD of OSN) 

Step-1 Move VERB till xs = xs+3 

Step-2 If (yd is odd) 

               Move HOZR till ys = yd-1 

               Go to G1 

        Else If (yd is even) 

               Move HOZR till ys = yd-2 

               Go to G2 

Case-2: Else If (FN is 2
nd

 NBD of OSN) 

Step-1 Move VERB till xs = xs+3 

Step-2 If (yd is odd && NBD of FN) 

                Move HOZR till ys = yd+1 

                Move VERT till xs = xd 

                Move (xs, ys-1, xd, yd) 

        Else If (yd is odd && FN is not NBD of (xd, yd)) 

                Move HOZR till ys = yd-1 

               Go to G1 

        Else If (yd is even && FN is NBD of NBD of (xd, yd)) 

               Move HOZR till ys = yd 

               Move VERT till xs = yd) 

        Else If (yd is even&& FN is not NBD of NBD of (xd, 

yd)) 

                Move HOZR till ys = yd-2 

                Go to G2 

Case-3: Else If (FN is 3
rd

 NBD of OSN) 

Step-1 Move (xs, ys+1, xd, yd) 

          Go to G3 

Step-2 If (FN is NBD of (xd, yd) && yd is even) 

                 Move (xs, ys+1, xd, yd) 

                 Move VERT till xs = xs-3 

        Else If (FN is not NBD of (xd, yd)) 

                  If (yd is odd) 

                      Move HOZR till ys = yd-1 

                      Go to G1 

                  Else If (yd is even) 

                      Move HOZR till ys = yd-2 

                      Go to G2 

Case-4: If (FN is at the line xs+1, where xs is OSN && FN is 

Not w.r.t OSN) 

Step-1 Move (xs+1, ys, xd, yd) 

        Move (xs+1, 2ys-1, xd, yd) 

        Go to Step-2 of Case-2 of Sub-Case: A 

Case-5: Else If (FN is on the line of OSN && Not w.r.t OSN) 

                If (FN ys is odd) 

                      Go to Step-1 and Step-2 of Case-3 of Sub-

Case: A 

                Else If (FN is ys even) 

                      Go to Case-3 of Sub-Case: B  

   Sub-Case: B If (OSN xs = 1 && OSN ys is even) 

Case-1: If (FN 1
st
 NBD of OSN i. e on the line xs+1, where xs 

is OSN) 

Step-1 Move (xs, ys-1, xd, yd)  

        Go to Case-2 of Sub-Case: A 

Case-2: Else If (FN is 2
nd

 NBD of OSN) 

Step-1 Go to Step-1(excluding 1
st
 line) and Step-2 of Case-3 

Sub-Case: A  

Case-3: Else If (FN is 3
rd

 NBD of OSN) 

Step-1Go to G4 

Step-2 If (ys = yd-1) 

               Go to G1 

        Else If (ys ≠ yd-1 && yd is odd) 

                Move HOZR till ys = yd-1 

                Go to G1 

        Else If (yd is even && ys = yd-2) 

                 Go to G2 

        Else If (yd is even && ys ≠ yd-2) 

                 Move HOZR till ys= yd-2 

                 Go to G2 

Case-4: Else If (FN is at the line xs+1, where xs is OSN && 

FN is Not w.r.t OSN) 

Step-1 Move (xs+1, ys, xd, yd) 

       Move (xs+1, 2ys-1, xd, yd) 

       Go to Step-2 of Case-2 of Sub-Case: A 

Case-5: Else If (FN is on the line of OSN && Not w.r.t OSN) 

Step-1 If (FN ys is odd) 

              Go to Step-1 and Step-2 of Case-3 of Sub-Case: A 

           Else If (FN is ys even) 

               Go to Case -3 of Sub-Case: B 

   Sub-Case: C If (OSN (xs > 1 && xs < [(d*5) + (d-2)] && 

ys is odd)) 
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Case-1: If (FN is 1
st
 NBD of OSN) 

Step-1 Go to Case-1 of Sub-Case: A 

Case-2: Else If (FN is 2
nd

 NBD of OSN) 

Step-1 Move (xs, ys+1, xd, yd) 

        Move (xs-1, ys/2+1, xd, yd) 

        Move (xs+1, 2ys-1, xd, yd) 

Step-2 If (ys = yd) 

                  Destination reached 

            Else If (ys ≠ yd) 

                 Move HOZR till ys = yd 

Case-3: If (FN is 3
rd

 NBD of OSN) 

Step-1Go to Case-3 of Sub-Case: A 

Case-4: Else If (FN is at the line xs+1, where xs is OSN && 

Not w.r.t OSN) 

Step-1 Move (xs-1, 2ys-1, xd, yd) 

        Move (xs, ys+1, xd, yd) 

        Move (xs-1, ys/2+1, xd, yd) 

        Move (xs+1, 2ys-1, xd, yd) 

Step-2 If (ys ≠ yd) 

              Move HOZR till ys = yd 

           Else If (ys = yd) 

               Destination reached 

Case-5: Else If (FN is on the OSN line && FN is Not w.r.t 

OSN) 

Step-1 If (FN ys is even) 

               Go to Case-3 of Sub-Case-B 

        Else If (FN ys is odd) 

               Go to Case-3 of Sub-Case-A 

   Sub-Case: D If (OSN (xs > 1 && xs < [(d*5 + (d-2)] && ys 

is even)) 

Case-1: If (FN is 1st NBD of OSN) 

Step-1Go to Step-1(excluding 1st line) and Step-2 of case-2 

of Sub-Case: C 

Case-2: Else If (FN is 2nd NBD of OSN) 

Step-1 Go to Step-1(excluding 1st line) and Step-2 of Case-3 

of Sub-Case: A 

Case-3: Else If (FN is 3rd NBD of OSN) 

Step-1 Go to Step-1 and Step-2 of Case-3 of Sub-Case: B 

Case-4: Else If (FN is at the line xs+1, where xs is OSN && 

Not w.r.t OSN) 

Step-1Move (xs-1, 2ys-1, xd, yd) 

       Move (xs, ys+1, xs, yd) 

       Move (xs-1, ys/2+1, xd, yd) 

         Move (xs+1, 2ys-1, xd, yd) 

Step-2 If (ys ≠ yd) 

             Move HOZR till ys = yd 

        Else If (ys = yd) 

              Destination reached 

Case-5: Else If (FN is on the OSN line && FN is Not w.r.t 

OSN) 

Step-1 If (FN ys is even) 

                Go to Case-3 of Sub-Case-B 

         Else If (FN ys is odd) 

                Go to Case-3 of Sub-Case-A 

   Sub-Case: E If (OSN (xs = [(d*5) + (d-2)] &&ys is odd)) 

Case-1: If (FN is 1
st
 NBD of OSN) 

Step-1 Move VERT till xs = xs-3 

Step-2 If (yd is odd) 

                  Move HOZR till ys = yd-1 

                  Go to G3 

         Else If (yd is even) 

                  Move HOZR till ys = yd-2 

                  Go to G3 

                  Move (xs, ys+1, xd, yd) 

Case-2: Else If (FN is 2
nd

 NBD of OSN) 

Step-1 Move VERT till xs = xs-3 

Step-2 If (FN is NBD of (xd, yd)) 

               Move HOZR till ys = yd+1 

               Move VERB till xs = xs+3 

               Move (xs, ys-1, xd, yd) 

         Else If (FN is NBD of NBD of (xd, yd)) 

                Move HOZR till ys = yd 

                Move VERB till xs = xs+3 

        Else If (FN is neither NBD nor NBD of NBD of (xd, 

yd)) 

                    If (yd is odd) 

                       Move HOZR till ys = yd-1 

                       Go to G3 

                    Else If (yd is even) 

                        Move HOZR till ys = yd-2 

                        Go to G4 

Case-3: Else If (FN is 3
rd

 NBD of OSN) 

Step-1 Move (xs, ys+1, xd, yd) 

           Go to G1 

Step-2 If (FN is NBD of (xd, yd) && yd is even) 

               Move (xs, ys+1, xd, yd) 

               Move VERB till xs = xs+3 

        Else If (yd is odd) 

                Move HOZR till ys = yd-1  

                Go to G3 

          Else If (yd is even) 

               Move HOZR till ys = yd-2  

               Go to G4 

Case-4: If (FN is on the line of xs-1, where xs is OSN && FN 

is Not w.r.t OSN) 

Step-1 Move (xs-1, ys, xd, yd) 

       Move (xs-1, 2ys-1, xd, yd) 

Step-2 Go to Step-2 of Case-2 of Sub-Case: E 

Case-5: If (FN is not w.r.t OSN && FN is on the line of 

OSN) 

Step-1If (FN ys is odd)  

              Go to Case-3 of Sub-Case: E 

       Else If (FN ys is even) 

              Go to Case-3 of Sub-Case: F 

   Sub-Case: F If (OSN (xs = [(d*5) + (d-2)] && ys is even)) 

Case-1: If (FN is 1
st
NBD of OSN i. e on xs-1, where xs is 

OSN) 

Step-1 Move (xs, ys-1, xd, yd) 

           Go to Case-2 of Sub-Case: E 

Case-2: Else If (FN is 2
nd

 NBD of OSN i. e on OSN line) 

Step-1Go to Step-1 (excluding 1st line) and Step-2 of Case-3 
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of Sub-Case: E 

Case-3: Else If (FN is 3
rd

 NBD of OSN) 

Step-1Go to G1 

Step-2 If (yd is odd) 

              Move HOZR till ys = yd-1 

              Go to G3 

        Else If (yd is even) 

              Move HOZR till ys = yd-2 

              Go to G4 

Case-4: If (FN is on the line xs-1, where xs is OSN && FN is 

Not w.r.t OSN) 

Step-1 Move (xs-1, ys, xd, yd) 

        Move (xs-1, 2ys-1, xd, yd) 

Step-2 Go to Step-2 of Case-2 of Sub-Case: E 

Case-5: If (FN is Not w.r.t OSN && FN is on the line of 

OSN) 

Step-1 If (FN ys is odd) 

           Go to Case-3 of Sub-Case: E 

        Else If (FN ys is even) 

           Go to Case-3 of Sub-Case: F 

Test Case 1: Let (Xs, Ys) = (4,2), (Xd, Yd) = (4,6) and FN = 

(5,2). Using the algorithm of Horizontal moves, we have the 

optimal path to reach the destination is:  

(4,2) →(5,2) →(4,3) →(4,4) →(5,3) →(4,5) →(4,6). The 

shortest path length is 6. Now using the above algorithm we 

have the following fault free path: 

(4,2) →(3,2) →(4,3) →(4,4) →(5,3) →(4,5) →(4,6). The 

shortest path length is 6. 

The relative error is 0 

 
Figure 3. [1st 7 lines of the Octagon-Cell network of depth 4 are drawn]. 

   Case-II Fault tolerant routing algorithm for horizontal 

move for lines m, Where m mod 3 = 1 [Move from right to 

left, If (Xs = Xd   && Ys > Yd)] 

This case is similar to Case-I. So the algorithm is not 

presented.  

Test Case 2: Let (Xs, Ys) = (4,8), (Xd, Yd) = (4,3) and FN = 

(4,4). Using the algorithm of Horizontal moves, we have the 

optimal path to reach the destination is:  

(4,8) →(4,7) →(5,4) →(4,6) →(4,5) →(5, 3) →(4,4)→(4,3). 

The shortest path length is 7. Now using the above algorithm, 

the fault free path is: 

(4,8) →(4,7) →(5,4) →(4,6) →(4,5) →(5, 3) →(6,3) →(7,4) 

→(7,3) →(6,2) →(5,2) →(4,3). The shortest path length is 

11.So relative error is 0.57 

 
Figure 4. [1st 7 lines of the Octagon-Cell network of depth 4 are drawn]. 

   Case-III Fault tolerant routing algorithm for horizontal 

move for lines m, Where m mod 3 = 2 [Move from left to 

right, If (Xs = Xd && Ys< Yd)] 

Find the optimal path from OSN to DN 

If (path is fault free) 

      Return true 

Else If (FN is DN) 

      Return dead end 

Else Go to the Sub-Cases 

   Sub-Case: A If (OSN (xs = 2)) 

Case-1: If (FN is 1
st
 NBD of OSN, i.e FN is on the line xs-1, 

where xs is OSN || 2
nd

 || 3
rd

 NBD of OSN) 

Step-1 Move (xs+1, ys, xd, yd) 

        Move HOZR till ys = yd 

        Move (xs-1, ys, xd, yd) 

Case-2: Else If (FN is on the line xs-1, where xs is OSN && 

FN is Not w.r.t OSN) 

Step-1 If (FN ys is odd) 

                Move (xs, ys+1, xd, yd) 

                Move (xs+1, ys/2+1, xd, yd) 

                Move (xs+1, ys, xd, yd) 

                Move HOZR till ys = yd 

                Move (xs-1, ys, xd, yd) 

        Else If (FN ys is even) 

                Go to above If Case (excluding 1
st
 line)  

Case-3: Else If (FN is on the line of OSN &&is Not w.r.t 

OSN) 

Step-1 Move (xs+1, ys, xd, yd) 

        Move HOZR till ys = yd 

        Move (xs-1, ys, xd, yd) 

   Sub-Case: B If (OSN (xs> 2)) 

Case-1: If (FN is 1
st
 || 2

nd
 NBD of OSN along the line xs-1, 

where xs is OSN) 

Step-1 Go to Case-1 of Sub-Case: A 

Case-2: Else If (FN is 3
rd

 NBD of OSN i.e on the line of 

OSN) 

Step-1 Move (xs-1, 2ys-1, xd, yd) 

        Move (xs, ys+1, xd, yd) 

        Move (xs-1, ys/2+1, xd, yd) 

        Move (xs+1, 2ys-1, xd, yd) 

        Move (xs, ys+1, xd, yd) 

        Move (xs+1, ys/2+1, xd, yd) 

Step-2 If (ys = yd) 

             Destination Reached 

        Else Move HOZR till ys = yd 

Case-3: If (FN is on the line xs-1, where xs is OSN && FN is 

Not w.r.t OSN) 
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Step-1 If (FN ys is odd) 

             Go to Case-2 of Sub-Case: A 

        Else If (FN ys is even) 

             Go to Step-1(excluding 1
st
 line) && Step-2 of 

Case-2 of Sub-Case: A 

Case-4: If ((FN is on the line of OSN && FN is Not w.r.t 

OSN) || FN is 3
rd

 NBD of OSN) 

Step-1 Go to Case-2 of Sub-Case: B 

Test Case 3: Let (Xs, Ys) = (2,2), (Xd, Yd) = (2,6) and FN = 

(1,4). Using the algorithm of Horizontal moves, the optimal 

path to reach the destination is:  

(2,2) →(1,3) →(1,4) →(2,3) →(1,5) →(1, 6) →(2,4) →(1,7) 

→(1,8) →(2,5) →(1,9) →(1,10) →(2,6). The shortest path 

length is 12. Now using the above algorithm, the fault free 

path is: 

(2,2) →(3,2) →(4,3) →(4,4) →(3,3) → (4,5) →(4,6) →(3,4) 

→(4,7) →(4,8) →(3,5) →(4,9) →(4,10) →(3,6) →(2,6). The 

shortest path length is 14. 

So relative error is 0.17 

 
Figure 5. [1st 7 lines of the Octagon-Cell network of depth 4 are drawn]. 

   Case-IV Fault tolerant routing algorithm for horizontal 

move for lines m, Where m mod 3 = 2 [Move from right to 

left, If (Xs = Xd && Ys> Yd)] 

This case is similar to Case-III. So the algorithm is not 

presented. 

Test Case 4: Let (Xs, Ys) = (5,6), (Xd, Yd) = (5,1) and FN = 

(4,10). Using the algorithm of Horizontal moves, the optimal 

path to reach the destination is:  

(5,6) →(4,10) →(4,9) →(5,5) →(4,8) → (4,7) →(5,4) 

→(4,6) →(4,5) →(5,3) →(4, 4) →(4,3) →(5,2) →(4,2) 

→(4,1) →(5,1). The shortest path length is 15. Now using the 

above algorithm, the fault free path is: 

(5,6) →(6,6) →(7,10) →(7,9) →(6,5) → (7,8) →(7,7) 

→(6,4) →(7,6) →(7,5) →(6, 3) →(7,4) →(7,3) →(6,2) 

→(7,2) →(7,1) →(6,1) →(5,1). The shortest path length is 

17. The relative error is 0.13 

 
Figure 6. [1st 7 lines of the Octagon-Cell network of depth 4 are drawn]. 

   Case-V Fault tolerant routing algorithm for horizontal 

move for lines m, Where m = 3n [Move from left to right, If 

(Xs = Xd && Ys< Yd)] 

Find the optimal path from OSN to DN 

If (path is fault free) 

     Return true 

Else If (FN is DN) 

      Return dead end 

Else Go to the Sub-Cases 

   Sub-Case: A If (OSN (xs < [[(d*5) + (d-2)] -1]) 

Case-1: If (FN is 1
st
 || 2

nd
 NBD of OSN) 

Step-1 Move (xs-1, ys, xd, yd) 

        Move HOZR till ys = yd 

        Move (xs+1, ys, xd, yd) 

Case-2: Else If (FN is 3
rd

 NBD of OSN || FN is on the line of 

OSN) 

Step-1 Move (xs+1, 2ys-1, xd, yd) 

        Move (xs, ys+1, xd, yd) 

        Move (xs+1, ys/2+1, xd, yd) 

        Move (xs-1, 2ys-1, xd, yd) 

          Move (xs, ys+1, xd, yd) 

        Move (xs-1, ys/2+1, xd, yd) 

Step-2 If (ys = yd) 

                Destination Reached 

        Else Move HOZR till ys = yd 

Case-3: If (FN is on the line xs+1, where xs is OSN && Not 

w.r.t OSN) 

Step-1 If (FN ys is even) 

            Move (xs-1, ys/2+1, xd, yd) 

            Move (xs-1, ys, xd, yd) 

            Move HOZR till ys = yd 

            Move (xs+1, ys, xd, yd) 

         Else If (FN ys is odd) 

            Move (xs, ys+1, xd, yd)  

            Move (xs-1, ys/2+1, xd, yd) 

            Move (xs-1, ys, xd, yd) 

            Move HOZR till ys = yd 

            Move (xs+1, ys, xd, yd) 

   Sub-Case: B If (OSN (xs = [[(d*5) + (d-2)] -1]) 

Case-1: If (FN is 1
st
 || 2

nd
 || 3

rd
 NBD of OSN) 

Step-1 Go to Case-1 of Sub-Case: A 

Case-2: Else If FN is on the line xs+1, where xs is OSN && 

FN is Not w.r.t OSN) 

Step-1 If (FN ys is odd) 

               Move (xs, ys+1, xd, yd)  

               Move (xs-1, ys/2+1, xd, yd) 

               Move (xs-1, ys, xd, yd) 

               Move HOZR till ys = yd 

               Move (xs+1, ys, xd, yd) 

        Else If (FN ys is even) 

               Move (xs-1, ys/2+1, xd, yd)  

               Move (xs-1, ys, xd, yd) 

               Move HOZR till ys = yd 

               Move (xs+1, ys, xd, yd) 

Test Case 5: Let (Xs, Ys) = (3,1), (Xd, Yd) = (3,3) and FN = 

(4,3). Using the algorithm of Horizontal moves, the optimal 

path to reach the destination is:  

(3,1) →(4,1) →(4,2) →(3,2) →(4,3) →(4, 4) →(3,3). The 

shortest path length is 6. Now using the above algorithm the 
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fault free path is: 

(3,1) →(4,1) →(4,2) →(3,2) →(2,2) → (1, 3) →(1,4) →(2,3) 

→(3,3). The shortest path length is 8. The relative error is 

0.33 

 
Figure 7. [1st 7 lines of the Octagon-Cell network of depth 4 are drawn]. 

   Case-VI Fault tolerant routing algorithm for horizontal 

move for lines m, Where m = 3n [Move from right to left, If 

(Xs = Xd && Ys> Yd)] 

This case is similar to Case-V. So the algorithm is not 

presented. 

Test Case 6: Let (Xs, Ys) = (6,5), (Xd, Yd) = (6,1) and FN = 

(7,1). Using the algorithm of Horizontal moves, the optimal 

path to reach the destination is:  

(6,5) →(7,8) →(7,7) →(6,4) →(7,6) →(7, 5) →(6,3) →(7,4) 

→(7,3) →(6,2) →(7,2) →(7,1) →(6,1). The shortest path 

length is 12. Now using the above algorithm the fault free 

path is: 

(6,5) →(7,8) →(7,7) →(6,4) →(7,6) →(7, 5) →(6,3) →(7,4) 

→(7,3) →(6,2) →(5,2) →(4,2 )→(4,1) →(5,1) →(6,1). The 

shortest path length is 14.The relative error is 0.17. 

 
Figure 8. [1st 7 lines of the Octagon-Cell network of depth 4 has been 

drawn]. 

5. Result and Discussion 

The algorithm developed in this paper has been tested for 

octagon-cell of depth 3 with 80 test cases and also this works 

on depth greater than 3. There are 40 test cases for the node 

addresses at the border of octagon-cell and other 40 for inside 

the network. It is seen that average delay for the nodes lying 

inside is 1.9 and for the nodes lying at the border is 3.2. The 

algorithm has already been described in [2] to find optimal 

path in any direction from source node to destination node in 

octagon-cell network. If any faulty node or faulty link 

appears in the optimal path then this algorithm will find the 

alternative best possible (optimal) path in presence of faulty 

node. If the destination node is faulty then dead end occurs 

and the algorithm stops working. From the table it can easily 

be verified that the optimal path length having faulty node 

present inside the network is less than the optimal path length 

of nodes present at the border of the network. 

Table 1. (80 cases with faulty nodes). 

Test  Cases with Faulty Node Along the Optimal Path 

Cases 
Source 

Node 

Destination 

Node 

Optimal 

Length 

Faulty Node Along the 

Optimal Path 

Optimal Path Length with 

Faulty Node 

Maximum 

Delay 

Relative 

Error 

1 (4,2) (4,6) 6 (5,2) 6 0 0 

2 (4,2) (4,6) 6 (4,3) 8 2 0.33 

3 (4,2) (4,6) 6 (4,4) 8 2 0.33 

4 (4,2) (4,6) 6 (5,3) 6 0 0 

5 (4,2) (4,6) 6 (4,5) 10 4 0.67 

6 (13,7) (13,10) 4 (13,8) 8 4 1 

7 (13,7) (13,10) 4 (14,5) 4 0 0 

8 (13,7) (13,10) 4 (13,9) 8 4 1 

9 (2,2) (2,6) 12 (1,3) 14 2 0.17 

10 (2,2) (2,6) 12 (1,4) 14 2 0.17 

11 (2,2) (2,6) 12 (2,3) 14 2 0.17 

12 (2,2) (2,6) 12 (1,5) 14 2 0.17 

13 (2,2) (2,6) 12 (1,6) 14 2 0.17 

14 (2,2) (2,6) 12 (2,4) 14 2 0.17 

15 (2,2) (2,6) 12 (1,7) 14 2 0.17 

16 (2,2) (2,6) 12 (1,8) 14 2 0.17 

17 (2,2) (2,6) 12 (2,5) 14 2 0.17 

18 (2,2) (2,6) 12 (1,9) 14 2 0.17 

19 (2,2) (2,6) 12 (1,10) 14 2 0.17 

20 (2,2) (2,6) 12 (2,6) -------- Dead End  

21 (5,6) (5,1) 15 (4,10) 17 2 0.13 

22 (5,6) (5,1) 15 (4,9) 17 2 0.13 

23 (5,6) (5,1) 15 (5,5) 17 2 0.13 

24 (5,6) (5,1) 15 (4,8) 17 2 0.13 

25 (5,6) (5,1) 15 (4,7) 17 2 0.13 

26 (5,6) (5,1) 15 (5,4) 17 2 0.13 



44 Sanjukta Mohanty and Prafulla Kumar Behera:  An Optimal Routing Algorithm for Horizontal Moving Signals in  

OCN for Massively Parallel Systems with Faulty Node/Link 

Test  Cases with Faulty Node Along the Optimal Path 

Cases 
Source 

Node 

Destination 

Node 

Optimal 

Length 

Faulty Node Along the 

Optimal Path 

Optimal Path Length with 

Faulty Node 

Maximum 

Delay 

Relative 

Error 

27 (5,6) (5,1) 15 (4,6) 17 2 0.13 

28 (5,6) (5,1) 15 (4,5) 17 2 0.13 

29 (5,6) (5,1) 15 (5,3) 17 2 0.13 

30 (5,6) (5,1) 15 (4,4) 17 2 0.13 

31 (5,6) (5,1) 15 (4,3) 17 2 0.13 

32 (5,6) (5,1) 15 (5,2) 17 2 0.13 

33 (5,6) (5,1) 15 (4,2) 17 2 0.13 

34 (5,6) (5,1) 15 (4,1) 17 2 0.13 

35 (5,6) (5,1) 15 (5,1) --------- Dead End  

36 (3,1) (3,3) 6 (4,1) 8 2 0.33 

37 (3,1) (3,3) 6 (4,2) 8 2 0.33 

38 (3,1) (3,3) 6 (3,2) 8 2 0.33 

39 (3,1) (3,3) 6 (4,3) 8 2 0.33 

40 (3,1) (3,3) 6 (4,4) 8 2 0.33 

 Average 1.9 0.22 

 Optimal Routing of  Nodes at the Border of the Octagon-Cell  

1 (1,3) (1,8) 7 (1,4) 11 4 0.57 

2 (1,3) (1,8) 7 (2,3) 11 4 0.57 

3 (1,3) (1,8) 7 (1,7) 11 4 0.57 

4 (1,3) (1,8) 7 (1,5) 9 2 0.29 

5 (1,3) (1,8) 7 (2,4) 11 4 0.57 

6 (16,1) (16,5) 6 (16,2) 10 4 0.67 

7 (16,1) (16,5) 6 (15,2) 10 4 0.67 

8 (16,1) (16,5) 6 (16,3) 8 2 0.33 

9 (16,1) (16,5) 6 (16,4) 8 2 0.33 

10 (16,1) (16,5) 6 (15,3) 12 6 1 

11 (16,10) (16,1) 13 (16,9) 17 4 0.31 

12 (16,10) (16,1) 13 (15,5) 17 4 0.31 

13 (16,10) (16,1) 13 (16,8) 15 2 0.15 

14 (16,10) (16,1) 13 (16,7) 15 2 0.15 

15 (16,10) (16,1) 13 (15,4) 15 2 0.15 

16 (16,10) (16,1) 13 (16,6) 15 2 0.15 

17 (16,9) (16,4) 8 (15,5) 14 6 0.75 

18 (16,9) (16,4) 8 (16,8) 10 2 0.25 

19 (16,9) (16,4) 8 (16,7) 10 2 0.25 

20 (16,9) (16,4) 8 (15,4) 10 2 0.25 

21 (16,9) (16,4) 8 (16,6) 10 2 0.25 

22 (16,9) (16,4) 8 (15,3) 14 6 0.75 

23 (16,7) (16,3) 6 (15,4) 12 6 1 

24 (16,7) (16,3) 6 (16,6) 8 2 0.33 

25 (16,7) (16,3) 6 (16,5) 8 2 0.33 

26 (16,7) (16,3) 6 (15,3) 10 4 0.67 

27 (16,7) (16,3) 6 (16,4) 10 4 0.67 

28 (16,6) (16,2) 6 (16,5) 10 4 0.67 

29 (16,6) (16,2) 6 (15,3) 10 4 0.67 

30 (16,6) (16,2) 6 (16,4) 8 2 0.33 

31 (16,6) (16,2) 6 (16,3) 8 2 0.33 

32 (16,6) (16,2) 6 (15,2) 12 6 1 

33 (1,9) (1,1) 12 (2,5) 18 6 0.50 

34 (1,9) (1,1) 12 (1,8) 14 2 0.17 

35 (1,9) (1,1) 12 (1,7) 14 2 0.17 

36 (1,9) (1,1) 12 (2,4) 14 2 0.17 

37 (1,9) (1,1) 12 (1,6) 14 2 0.17 

38 (1,9) (1,1) 12 (1,5) 14 2 0.17 

39 (1,9) (1,1) 12 (2,3) 14 2 0.17 

40 (1,9) (1,1) 12 (1,4) 14 2 0.17 

 Average= 3.2 0.42 

 Average Delay for 80 Samples of Data = 2.55  
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In the above table all possible faulty nodes have been 

taken along the optimal path between the source and 

destination nodes. For each case the relative error has been 

calculated. The average delays for the nodes inside the 

network and at the border are 1.9 and 3.2 respectively. 

Relative Error = (Fault tolerant optimal path length – 

Optimal path length) / Optimal path length. The average 

relative errors for the nodes inside the network and at the 

border are 0.22 and 0.42 respectively. 

6. Conclusion 

This research paper describes a simpler and an efficient 

fault tolerant optimal routing algorithm for horizontal 

moving signals in octagon-cell interconnected networks. 

Here the cases of depth 3 have been taken. The delay is 

unchanged if the depth is increased. 

OCN is assumed a type of integrated circuit with an array 

of hundreds or thousands of central processing units (CPUs) 

and random-access memory banks. So this fault tolerant 

scheme can be useful in massively parallel system. In future 

we will develop the optimal fault tolerant scheme for the 

signals moving in all directions in the network. 
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