

American Journal of Networks and Communications
2017; 6(1): 1-19

http://www.sciencepublishinggroup.com/j/ajnc

doi: 10.11648/j.ajnc.20170601.11

ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

A Multi-interface Multi-channel Algorithm to Count Nodes
Using Wireless Technology

Manuel Contreras
1
, Eric Gamess

1, 2

1School of Computer Science, Central University of Venezuela, Los Chaguaramos, Caracas, Venezuela
2Department of Computer Science, University of Puerto Rico, Rio Piedras, Puerto Rico

Email address:
mcontre@ula.ve (M. Contreras), eric.gamess@upr.edu (E. Gamess)

To cite this article:
Manuel Contreras, Eric Gamess. A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology. American Journal

of Networks and Communications. Vol. 6, No. 1, 2017, pp. 1-19. doi: 10.11648/j.ajnc.20170601.11

Received: September 28, 2016; Accepted: October 10, 2016; Published: February 23, 2017

Abstract: In wireless networks, devices can be equipped with multiple interfaces to utilize multiple channels and increase

the aggregated network throughput. In fact, as the current price of network interface cards has fallen dramatically, applications

have started to use multiple non-overlapping channels to get an enhanced bandwidth, with traditional standards such as IEEE

802.11 a/b/g. In this regard, a wireless network node equipped with more than one interface can concurrently communicate

with other nodes on different channels. This operation results in less interference and collisions in the network, and therefore a

better use of the network capabilities in terms of bandwidth. In this paper we propose an algorithm that uses multiple channels

to improve performance in the counting of objects (people, animals, devices, vehicles, etc) based on wireless communications

where devices are equipped with multiple interfaces, which works either for stationary nodes or in scenarios where nodes are

moving even at high speeds. In particular, the technique of interface switching is used to take advantage of all the channels,

even when the number of available interfaces is smaller than the number of channels. To validate and evaluate the performance

and accuracy of the proposal, the algorithm is simulated using a famous network simulation tool called OMNeT++/INET. The

results of the simulations show that the proposed algorithm efficiently exploits the advantages of multi-channel, by computing

a number of nodes very close to the real one (even in the case of scenarios with nodes moving at high speeds) with an

acceptable response time and total number of control messages sent by the nodes to accomplish the counting task.

Keywords: Wireless Networks, Multi-channel Networks, Multi-radio Networks, Network Interface Cards, Node Counting,

OMNeT++, INET, Network Simulator

1. Introduction

As an emerging and promising technology, wireless

networks have a wide range of potential applications. These

networks typically make use of a single radio interface on a

fixed channel to communicate with neighboring nodes.

However, previous research has advocated the usage of

multiple wireless channels to increase the aggregated

network throughput and provide reliable and timely

communication services. Wireless spectrum is divided into

multiple channels by industry standards for two main

reasons: (1) to allow parallel utilization of the spectrum by

multiple wireless technologies at the same time, and (2) the

design of wideband wireless transceivers is very complex

because of the frequency dependent components involved in

the design [1]. IEEE 802.11 is a widely used technology for

wireless local area networks and current Network Interface

Cards (NICs) are capable of communicating over multiple

non-overlapping channels. In existing system architectures,

the use of multiple channels can be supported by providing

every channel with a dedicated interface. Multiple non-

overlapping channels (also known as orthogonal channels)

exist in the 2.4 GHz and 5 GHz spectrum. For example, IEEE

802.11b has 11 channels in the 2.4 GHz spectrum, 3 of which

are orthogonal, while IEEE 802.11a has 12 orthogonal

channels in the 5 GHz spectrum, and IEEE 802.11g standard

defines 3 orthogonal channels in the 2.4 GHz spectrum.

Traditionally, these channels are used by different networks

operating in the same vicinity. However, it is possible to

concurrently take advantage of these channels by using

multiple transceivers or radios per device [1]. Effective

2 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

utilization of these multiple channels would increase the

bandwidth substantially. Such wireless networks with Multi-

Interface Multi-Channel (MIMC) devices are known as

MIMC wireless networks. They are used to build mesh

networks [2], vehicular ad hoc networks [3], among others,

so that a new possibility has been opened to develop

algorithms for counting nodes based on these emerging

technologies. However, most IEEE 802.11-based multi-hop

ad hoc networks today use only a single channel. As a result,

these networks can rarely fully exploit the aggregate

bandwidth available in the radio spectrum provisioned by the

standards [4]. Hence, wireless networks that use multiple

radios in a collaborative manner dramatically improve

system performance and functionality over the traditional

single radio wireless systems that are popular today [5].

In this research work, we introduce an algorithm to count

nodes using wireless communications where nodes are

equipped with multiple interfaces working on multiple

channels. For this primary version of the algorithm, it is

assumed that 2 NICs are available at each node. One

interface has a fixed channel to receive control messages

from neighbors and the other interface will switch among the

channels to transmit control messages to neighbors. This

algorithm can be used as a basic and integral tool for the

development of applications in many fields. For example, in

the field of ATCSs (Adaptive Traffic Control Systems), if the

number of vehicles present in each lane at the intersections of

roads is known in real time, the cycles of their traffic lights

can be continuously optimized or adjusted, and thus

achieving a greater vehicular flow with balanced and fair

waiting times. Another application of the algorithm could be

the counting of people attending an event (musical, political,

or social), in public spaces, stadiums, etc., for security and

billing purposes, that would be based on the counting of the

number of cell phones with a certain network technology

such as WiFi. Another relevant use of the algorithm lies in

the context of parking management systems with the

intention to count the total number of vehicles currently

parked so the number of available slots can be computed,

allowing a better control for admission of vehicles at the

entrance of the parking.

With the aim of validating the algorithm, a discrete event

simulator called OMNeT++/INET is used to test and analyze

our proposal in different scenarios, where we varied different

parameters such as the speed of nodes, the density of nodes,

the signal propagation range, etc. The results of the

simulations show that the algorithm performs an effective

counting of nodes with a quite acceptable response time and

number of control messages sent by the nodes, in both

stationary scenarios and in scenarios where nodes are moving

at high speeds.

The rest of this paper is organized as follows. Section 2

reviews the related work. In Section 3, we introduce our

multi-interface multi-channel algorithm to count nodes based

on wireless technologies. Section 4 briefly describes the

simulation tools and scenarios that we use to study and

validate the proposed algorithm. Section 5 presents an

analysis of the performance results of our simulations.

Finally, Section 6 concludes the paper and presents future

work.

2. Background and Related Work

A lot of recent research and commercial efforts in the

wireless networking industry have focused on a new class of

ad hoc networks: multi-interface multi-channel ad hoc

networks [5]. These networks are characterized by a set of

nodes with multiple wireless interfaces utilizing multiple

orthogonal channels at the same time over a given swath of

spectrum such as IEEE 802.11 a/b/g.

At present, in the specialized literature there are many

related efforts that study the benefit of using multiple

channels. Even though multiple non-overlapping channels

exist in the 2.4 GHz and 5 GHz spectrum, most IEEE 802.11-

based multi-hop networks nowadays use only a single

channel, and therefore only require a single interface. A well-

known fact that is affecting the performance of such

networks is the significant throughput degradation along the

multi-hop path [5]. When a single channel is used for both

incoming and outgoing traffic, throughput is halved as they

use the same radio channel. This means that when one node

is transmitting, its neighbor nodes must all be in listening

mode otherwise a collision will occur. This problem is

amplified across the network, and after a few hops the

bandwidth is reduced significantly. To overcome the

throughput degradation problem, a natural approach is to use

multiple channels simultaneously in order to reduce

collisions [5].

Multiple channels can be exploited by using a single radio

(or interface) per device or by having multiple radios per

device. In the former scenario, two devices wishing to

communicate tune their radios to the same channel and

exchange information while other devices, in the vicinity,

would be tuned to other channels. In the latter scenario, two

devices can potentially tune to multiple channels at the same

time, using multiple radios, and communicate on multiple

channels simultaneously. The decision to use a single radio or

multiple radios per device depends on the implementation

requirements, dictated by various factors including ease of

deployment, bandwidth requirement, and cost [1].

Moreover, the multi-hopping technique increases the

network range and scalability but it is associated with a high

level of interferences. In fact, capacity reduction is a well-

known issue derived from the interference problem in multi-

hop wireless networks. This problem can be mitigated by

using the multi-interface multi-channel technique [6]. As the

current price of NICs has quickly dropped, the existing

standards, such as IEEE 802.11 a/b/g, opt for multiple non-

overlapping channels. In this regard, a node equipped with

more than one interface can concurrently communicate with

other nodes on different channels. This operation results in

less interference in the network [7].

Raniwala and Tzi-cker [4] have experimentally shown that

when separation between interfaces is increased, the

 American Journal of Networks and Communications 2017; 6(1): 1-19 3

interference between interfaces is reduced, allowing more

channels to be used simultaneously. So and Vaidya [8]

proposed a scheme that allows wireless devices to

communicate on multiple channels using a single interface

card. The scheme requires frequent channel switching, which

implies considerable overhead on the current hardware. The

authors in [9] [10] [11] presented a multi-channel carrier

sense multiple access MAC protocol where all nodes have an

interface on each channel. The proposed protocol uses

different metrics to choose the channel for communication

between nodes. Wu et al. [12] developed a protocol that

assigns channels dynamically, in an on-demand style that

requires two interfaces. One interface is assigned to a

common channel for control purposes, and the second

interface is switched between the remaining available

channels for transmitting data. Lee, Midkiff, and Park [13]

introduced a proactive routing protocol on multiple channels,

which uses one control channel and n data channels. The

nodes exchange control packages on the control channel to

negotiate the best channel for receiving in real time. In [14]

[15], a hybrid channel assignment scheme is proposed where

some radios are statically assigned a channel while the

remaining radios can dynamically change their frequency.

The authors also presented a new routing strategy based on

channel switching and route diversity cost. As an example,

HMCP (Hybrid Multi-Channel Protocol) is a hybrid method

which exploits both static and dynamic channels [16]. Recent

studies [17] [18] show that hybrid approaches exploit the

advantages of both static and dynamic methods.

On the other hand, the detection and counting of nodes has

been of great interest in various fields and can be used as a

basic tool in the development of many applications such as:

(1) the counting of people in public spaces, stadiums,

musical, political, or social events for security and billing

purposes, (2) the estimation of the population of animal

species that are in danger of becoming extinct for their

protection, and (3) the determination of the number of free

parking slots in a parking lot to allow or not the entrance of

additional vehicles. At the present time, most of the

alternatives or solutions to detect and count nodes, with

lesser or greater accuracy, are based on methods and

techniques supported by conventional “in-situ” technologies

(turnstiles, barrier arms, digital cameras, video cameras,

thermal cameras, pneumatic road tubes, magnetic sensors,

infrared beams, etc) [19], as reported in the specialized

literature. Chao-Ho et al. [20] proposed a method for

counting people entering or leaving a bus based on video

processing, where a zenithal camera is set in the bus for

capturing the bi-directionally passenger flow. In [21] the

author presented a system for counting people in movement

passing through a given area (a concourse, a tunnel, or a

gate) with an infrared sensor network. The system does not

only report the number of people passing through, but also

provides the corresponding moving direction of every person.

Kim et al. [22] introduced a people counting system with a

single fixed camera which detects and tracks moving people.

This system counts the number of moving objects (people)

entering a security door. Marques et al. [23] provided a

framework for passive acoustic-based density estimation,

illustrated with examples from real-world case studies. They

focused on methods involving sensors at fixed locations,

particularly hydrophones, to estimate population density or

abundance, based on detecting sounds naturally produced by

animals. The authors of [24] presented two algorithms that

count birds with wireless sensors equipped with microphones

that listen for bird songs in the intersection of their detection

areas, and compute an approximation of the number of

singing birds for the monitored period. Similarly, in the field

of vehicular transportation, Knaian [25] developed a wireless

sensor package to monitor roadways in the Intelligent

Transportation Systems (ITSs) to count passing vehicles,

measure the average roadway speed, and detect ice and water

on the road.

To the best of our knowledge, in the field of counting

objects based on wireless communications, just a few works

has been developed. For example, Gamess and Contreras

[26] introduced an algorithm to count nodes or devices

equipped of a wireless network interface, using wireless

technologies. In [27], the authors presented an improved

version of their algorithm proposed in [26], where they

enhanced the accuracy of the counting by taking into account

late counting messages. The authors in [28] proposed a novel

VANET-based approach to obtain: (1) the position of the last

vehicle and (2) the number of vehicles, in a line of vehicles

stopped at a traffic light. To compute the number of nodes,

the authors first obtain the length of the queue of vehicles

stopped at the traffic light and then divide this distance by a

constant value (7 meters).

According to our study, we can see that most of the

research done in the field for counting objects is primarily

based on the usage of “in-situ” technologies. In this work, we

propose a new algorithm to count nodes equipped of 2

wireless NICs, that substantially differ from [26][27] by

taking advantage of the multi-interface multi-channel

wireless technologies, with the aim of reducing the number

of collisions in the network.

3. Algorithm to Count Nodes Using

Multi-interface Multi-channel

Wireless Communications

In this section, we describe a multi-interface multi-channel

algorithm to count nodes using wireless networks. We

suppose that each node is equipped with two communication

interfaces. The first interface is utilized to receive incoming

control messages. Each node uses its own fixed channel in

this interface (called fixedChannelNode), that can be different

from the one of another node. The goal of the second

interface is the sending of outgoing control messages to other

nodes. The channel of this second interface will vary

according to the fixed channel of the first interface of the

intending receiver node. Also, in this version of the

algorithm, it is assumed that the mobile nodes never turn off

4 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

their NICs for energy saving. It is not unrealistic, since some

networks always maintain on the NICs, such as the vehicular

networks, with the aim to guarantee the physical security of

the drivers and passengers.

3.1. Basic Considerations for Counting Nodes in a

Multi-interface Multi-channel Wireless Network

The algorithm described in this work is loosely based on

the ideas presented in the work developed in [26][27]. As we

explain later, we have introduced a neighbor discovery

protocol and significantly improved the propagation of

COUNT_REPLY messages back to the originator.

3.1.1. Neighbors Discovery Protocol

The protocol proposed in this paper is designed for a

multi-hop wireless network. Nodes in the network can be

mobile. To track 1-hop neighbors, a neighbor discovery

protocol was added to the nodes. Each node periodically

broadcasts a BEACON message (see Fig. 1) that contains the

sending timestamp, its actual position and speed (obtained

from its GPS receiver so that 1-hop neighbors are aware of

its presence and location), its nodeToGoBack, and

fixedChannelNode (fixed channel being used by this

neighbor). The synchronization of time between the different

nodes is solved with the time received from the GPS

satellites. nodeToGoBack stores a reference of the node to go

back toward the originator for the sender of the BEACON

message. fixedChannelNode is a reference of the fixed

channel used by the first interface of the sending node. Based

on the received BEACON messages, a node establishes a list

of 1-hop neighbors (NeighborTable). For each 1-hop

neighbor, the node stores its ID (IPv4 address), timestamp,

position, speed, nodeToGoBack, and fixedChannelNode in

table NeighborTable. With this information, the node can

interpolate the actual position of its 1-hop neighbors at any

time. When a node receives a new BEACON message from a

1-hop neighbor, the node updates the associated entry in its

NeighborTable, so that the last updated information is always

present in this table, which is used to update the

ChannelUsageList list. ChannelUsageList is a list of n

counters, where n is the total number of orthogonal channels

supported by the wireless technology used (e.g., 3 in IEEE

802.11g for channels 1, 6, and 11). The first counter will

count the number of 1-hop neighbors that have chosen the

first orthogonal channel for their first interface (fixed

channel). The second counter will count the number of 1-hop

neighbors that have chosen the second orthogonal channel for

their first interface, and so on. If a node does not receive

three consecutive BEACON messages from a specific 1-hop

neighbor (maybe because it has moved out of range), it

removes this 1-hop neighbor from its list of 1-hop neighbors

(NeighborTable) and also updates ChannelUsageList

accordingly.

Figure 1. BEACON message.

3.1.2. Timing Diagram for the Algorithm

In this paper, we call “originator” the node that starts the

counting process, i.e., the node that requires the number of

nodes around it, up to a specified hop count (called HopLimit

in the algorithm). Beside of the neighbor discovery protocol

described before, the basic approach of the algorithm is:

a. Propagate a broadcast message (called

COUNT_REQUEST) from the originator to nodes that

are far away from the originator with the number of

HopAway the receiver of the message is from the

originator of the COUNT_REQUEST. To improve or

optimize the number of COUNT_REQUEST messages

sent by a node, the node will decide to send 1, 2, or 3

COUNT_REQUEST messages depending on the

number of COUNT_REQUEST messages that it has

received from its neighboring nodes, i.e., if the node

determines that it has received a considerable number of

COUNT_REQUEST messages, then the node will send

a low number of COUNT_REQUEST messages with

the aim of saving bandwidth in its neighborhood.

b. Propagate unicast messages (COUNT_REPLY) from

the nodes that are far away from the originator toward

the originator with the total number of nodes counted up

to now (called Total in the algorithm).

Figure 2. Timing diagram.

Timestamp PosXPosY SpeedX SpeedY nodeToGoBack fixedChannelNode

4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 2 bytes

 American Journal of Networks and Communications 2017; 6(1): 1-19 5

Fig. 2 depicts a timing diagram related to the propagation of the broadcast messages (COUNT_REQUEST) and the unicast

messages (COUNT_REPLY). A description of the times involved (t1, t2, t3, t4, t5, t6, and t7) can be found in Table 1.

Table 1. Description of times used for the propagation of COUNT_REQUEST and COUNT_REPLY messages.

t1 = Time when a node receives the first COUNT_REQUEST

t2 = t1 + RBCT_TIME

t3 = t1 + RBCT_TIME + 1*INT_BTW_REQ

t4 = t1 + RBCT_TIME +2*INT_BTW_REQ

t5 = t1 + REQ_TO

t6 = Time when the actual node receives a possible delayed COUNT_REPLY message from another node.

t7 = Time when the actual node sends a possible asynchronous COUNT_REPLY message.

Fig. 2 also shows that the nodes will rebroadcast up to

three COUNT_REQUEST messages in row and also send a

synchronous COUNT_REPLY message after a specific time.

That is, in the worst case it will be necessary to send several

times (3 times in the algorithm) the COUNT_REQUEST

message, since it is a broadcast message that can collide with

other messages without this being detected. In this new

algorithm, each node X sends its COUNT_REPLY message

to the originator directly or to another node (closer to the

originator), using the following considerations:

� If the originator is in the list of 1-hop neighbors and if it

is still in the propagation range of node X (according to

the computation of the distance between node X and the

originator), then node X must send its COUNT_REPLY

message directly to the originator.

� Otherwise, if there is a node (let call it as node A) in the

list of 1-hop neighbors of node X, and if node A is still

in its propagation range (according to the computation

of the distance between nodes X and A), and node A has

a nodeToGoBack equal to the originator, then node X

must send its COUNT_REPLY message to node A.

� Otherwise, if node A is the nodeToGoBack of node X, and

node B is the nodeToGoBack of node A, and node B is in

the list of 1-hop neighbors of node X, and node B is still

in the propagation range of node X (according to the

computation of the distance between nodes X and B),

then node X must send its COUNT_REPLY message

directly to node B, in order to prevent 1 unnecessary hop

(node X to node A and then, node A to node B). It is also

possible to go beyond and avoid 2 unnecessary hops,

when node C is the nodeToGoBack of node B, and node

C is in the list of the 1-hop neighbors of node X, and node

C is still in the propagation range of node X (according to

the computation of the distance between nodes X and C),

then node X must send its COUNT_REPLY message

directly to node C. This can be generalized to avoid 3, 4,

5, or more unnecessary hops.

� Otherwise, if nodeToGoBack is in the list of 1-hop

neighbors of node X and if it is still in the propagation

range of node X (according to the computation of the

distance between node X and nodeToGoBack), then

node X must send its COUNT_REPLY message to

nodeToGoBack.

� Otherwise, when node X cannot send its

COUNT_REPLY message to its nodeToGoBack

because it is out of its propagation range, node X has to

select a new destination node in the path toward the

originator. From its list of 1-hop neighbors, node X

chooses its new destination as the node that is currently

closest in distance to the originator, i.e. by calculating

the distance between the actual position of the 1-hop

neighbors and the actual position of the originator, using

the information (Timestamp, PosX, PosY, SpeedX,

SpeedY) gotten in the BEACON messages (see Fig. 1),

and the information of the originator (OrgTS, OrgX,

OrgY, OrgSX, OrgSY) received in the

COUNT_REQUEST messages (see Fig. 4). This

distance is computed applying the following formula:

��������	
���� =
����	
��	 − 	��������� 	+ 	����	
��	 − 	��������� (1)

Where:

newPosX= PosX+(SpeedX*(ActualTime-Timestamp))

newPosY= PosY+(SpeedY*(ActualTime-Timestamp))

newOrgX= OrgX+(OrgSX*(ActualTime-OrgTS))

newOrgY= OrgY+(OrgSY*(ActualTime-OrgTS))

� Now, if node X does not have any 1-hop neighbor

currently (i.e., its list of 1-hop neighbors is empty), it

will plan a new attempt to send its COUNT_REPLY

message in the near future.

� An asynchronous COUNT_REPLY message is sent by a

node with a slight delay called DELAY_ASYNC, after

receiving a delayed COUNT_REPLY message. This

approach forces the cooperating nodes to update the

actual counting of nodes, reaching a more accurate

result [27].

� The other parameters that are also used in the algorithm

are described here (see Fig. 2):

� RBCT_TIME (Rebroadcast Time): Time between the

reception of the first COUNT_REQUEST, and the first

rebroadcast of the COUNT_REQUEST by the actual

node.

� INT_BTW_REQ (Interval Between Request): Time

interval between the sending of COUNT_REQUEST

messages. In other words, it also represents the time

between two consecutive COUNT_REQUEST

messages sent by the actual node.

� REQ_TO (Request Timeout): It is the time between the

reception of the first COUNT_REQUEST and the

6 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

moment when the actual node has to send the

synchronous COUNT_REPLY message to a node,

toward the originator.

� TIME_TO_WAIT: It is the time a node waits after the

rebroadcast of the third COUNT_REQUEST message

and the sending of the synchronous COUNT_REPLY

message to a node, toward the originator. This time

must be big enough to allow the propagation of

COUNT_REQUEST messages from the actual node

toward nodes that are far away from the originator, and

the propagation of the COUNT_REPLY messages from

the nodes that are far away from the originator toward

the actual node. By the way, TIME_TO_WAIT is not a

constant value and will be computed by every node

according to HopLimit and how far away it is from the

originator (called HopAway in the algorithm).

� DELAY_ASYNC: A small random time that a node

waits after the reception of a delayed COUNT_REPLY

message, and before the sending of the asynchronous

COUNT_REPLY message.

3.1.3. First Interface

A static channel is assigned to the first interface. This

channel is also called fixed channel or reception channel.

There are two steps involved in the static channel

assignment: (1) choosing the channel to be assigned to the

first interface, and (2) informing neighbors about the fixed

channel being used by the actual node through the

transmission of BEACON messages. It ensures that a node

intending to communicate with its 1-hop neighbors can

switch its second interface to their fixed channel before the

transmission. To balance the usage of channels, it is

beneficial if other nodes in the neighborhood use different

channels for their first interface. For this, each node

maintains a table named NeighborTable containing the fixed

channels being used by its 1-hop neighbors. Nodes also

maintain a list named ChannelUsageList containing the

number of 1-hop neighbors that are listening control

messages in each orthogonal channel.

3.1.4. Second Interface

The second interface can be switched dynamically among

multiple channels, also called as varying channels or

transmission channels. This interface is mainly used for

transmission, and the sender must switch the interface to the

fixed channel of the receiver before transmission [29].

3.1.5. Fixed Channel Assignment Procedure

The purpose of fixed channel assignment is to specify the

receive channel of the current node for control messages,

with the goal of minimizing interference with other nodes. In

this regard, we apply the hybrid scheme [30] that divides the

NICs on a node in two: one fixed NIC and one switchable

NIC. While the fixed NIC is assigned to a particular channel,

the switchable NIC switches over different orthogonal

channels as required. In Fig. 3, we described the channel

assignment procedure used by each node in the network to

determine the channel used by its fixed interface.

Figure 3. Fixed channel assignment procedure.

The assignment of the fixed channel to the first interface of

a particular node takes place with the following steps:

a. Initially, each node is assigned with a random channel

in its fixed interface and then the fixed channel

allocation procedure (see Fig. 3) is used to decide the

permanent channel on which fixed interface has to

operate. The node tries to select the “best” channel

based on information included in tables NeighborTable

and ChannelUsageList. By the best channel, we mean

the channel that is being less used by the 1-hop

neighbors.

b. Periodically, every node broadcasts a BEACON

message on each channel to notify neighbors about its

currently fixed channel. All nodes that receive a

BEACON message will add/update an entry in their

NeighborTable (1-hop neighbor table) for the sending

neighbor, with the objective of maintaining fresh

information about all neighbors.

c. Eventually, a node is allowed to change its fixed

channel, when the channel becomes too crowed. For

that, the node will have to monitor its

ChannelUsageList. If the node decides to change its

fixed channel (to the channel with the least load), it will

have to broadcast the information through a BEACON

1. /* Channel Assignment Procedure for Fixed Interface

 input: NeighborTable of the node */

2. for each Neighbor in NeighborTable do

3. if Neighbor in NeighborTable uses Channel[j] then

4. ChannelUsageList[j] = ChannelUsageList[j] + 1;

5. end if

6. end for

7. Find the channel with minimum counter in ChannelUsageList and

 assign it to fixedChannelNode (fixed interface) of the node

 American Journal of Networks and Communications 2017; 6(1): 1-19 7

message on all orthogonal channels, so that the other

nodes can update their data structures (NeighborTable

and ChannelUsageList).

3.2. COUNT_REQUEST and COUNT_REPLY Messages

Each node in the network transmits COUNT_REQUEST

and COUNT_REPLY messages to its neighbors. The

COUNT_REQUEST and COUNT_REPLY messages are a

modified version of the one used in the implementation of the

algorithms proposed in [26]. COUNT_REQUEST and

COUNT_REPLY messages have the same Protocol Data

Unit (PDU) and are composed of 10 fields (see Fig. 4).

Figure 4. COUNT_REQUEST and COUNT_REPLY messages.

The field Message Type can be either 0 or 1. It is used to

identify the type of message. A value of 0 is for a

COUNT_REQUEST, while 1 is for a COUNT_REPLY.

Sequence Number is used to match requests with replies and

to distinguish between different requests

(COUNT_REQUEST). OrgTS (Originator Timestamp) is

set by the originator when it sends a COUNT_REQUEST

message. It is a timestamp taken by the originator at the

moment of sending the COUNT_REQUEST message and is

aimed to control out-of-date messages and replay attacks.

(OrgX, OrgY) is the position of the originator at the moment

of sending the COUNT_REQUEST message. (OrgSX,

OrgSY) is the speed of the originator at the moment of

sending the COUNT_REQUEST message. The originator

and the nodes broadcast COUNT_REQUEST messages

along with the argument HopAway which represents the

number of hops-away the receiver of the

COUNT_REQUEST message is from the originator. The

originator, which starts the process, must specify a value of

HopAway equal to 1. Each node that rebroadcasts the

message will select the smallest HopAway received up to

now and will increment this field by 1. HopLimit is a way

to control how far away COUNT_REQUEST messages are

propagated from the originator toward the other nodes. It

delimits the counting range. The field Total is filled with

the number of nodes counted up to now. In

COUNT_REQUEST messages, it is always equal to 0.

Before sending a COUNT_REPLY message, a node must

update this field according to the COUNT_REPLY

messages received so far, and add 1 to the sum that

represents itself.

3.3. Additional Information About the Algorithm

The originator first sends three messages of type

COUNT_REQUEST as broadcast with a HopAway equal to 1

(separated by INT_BTW_REQ). When a node receives the

first COUNT_REQUEST message, it will do the following

after (see Fig. 1):

� RBCT_TIME: the node rebroadcasts the

COUNT_REQUEST with a HopAway equal to the

minimum HopAway received by this time +1. The node

also registers the ID of the node that sent the

COUNT_REQUEST with the minimum HopAway, in

variable nodeToGoBack.

� RBCT_TIME + 1 * INT_BTW_REQ: the node

rebroadcasts the previous COUNT_REQUEST message

(because of possible collision with the first

COUNT_REQUEST sent). If required, the fields of the

COUNT_REQUEST message are updated. Also note

that as specified in Section 5.1, the second rebroadcast

of the COUNT_REQUEST is optional.

� RBCT_TIME + 2 * INT_BTW_REQ: the node

rebroadcasts the previous COUNT_REQUEST message

(because of possible collision with the first and second

COUNT_REQUEST sent). If required, the fields of the

COUNT_REQUEST message are updated. Also note

that as specified in Section 5.1, the third rebroadcast of

the COUNT_REQUEST is optional.

� REQ_TO: If the node did receive COUNT_REPLY

messages, then the node computes the total of nodes

based on variable Total received in COUNT_REPLY

messages (+1 to represent itself in the total count) and

sends the result to the closest node in the path to the

originator, as a unicast message. If after REQ_TO the

node did not receive any COUNT_REPLY message,

then it generates a COUNT_REPLY with Total equal to

1 (this 1 represents itself) and sends it to the closest

node in the path to the originator, as a unicast message.

� DELAY_ASYNC: If the node receives a delayed

COUNT_REPLY message, then it recalculates the total

number of nodes based on variable Total received in the

COUNT_REPLY messages (+1 to add itself to the total

count) and then sends the result to the closest node in

the path to the originator, as an asynchronous

COUNT_REPLY message.

4. Environments and Scenarios of

Simulation

The algorithm that we propose in this paper was simulated

with OMNeT++/INET. OMNeT++
1
is an open source, C++

based, multiplatform (Windows, MacOS, and Unix), discrete

event simulator for modeling any system composed of

devices interacting with each other. Its Graphical User

Interface (GUI) is one of its main strengths, because through

its GUI, users can create NED files (a description language to

1
 http://www.omnetpp.org

Type
O rgTS O rgY Total

2 b yte s 4 b yte s

O rgX

4 b yte s

M essage Sequence

N um ber
O rgSYO rgSX H opAw ay

2 b yte s

H opLim it

2 b yte s4 b yte s 4 b yte s 4 b yte s 4 b yte s 4 b yte s

8 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

define the structure of the model) and inspect the state of

each component during simulations. It has been used to

model and simulate communication networks, operating

systems, hardware architectures, distributed systems, and so

on.

The fundamental ingredients of OMNeT++, that

distinguish it from other simulators, are its object-oriented

component architecture and message passing mechanism.

Components (modules) are programmed in C++, and then are

assembled into larger components using a high-level

language (NED), which allow users to describe and define

the structure of the model. For simulations of data networks,

OMNeT++ relies on external extensions, such as INET. The

INET Framework is an open-source communication network

simulation package for the OMNeT++ simulation

environment. It contains models for several wired and

wireless networking protocols, including UDP, TCP, SCTP,

IP, IPv6, Ethernet, PPP, 802.11, MPLS, OSPF, and many

others.

We chose OMNeT++/INET because of its powerful GUI

that facilitates the traceability and debugging of simulation

models, by displaying the network graphics, animating the

message flow and letting users peek into objects and

variables within the model. Also, it is a very active project

with many models that are constantly updated, making

OMNeT++ a good candidate for both research and

educational purposes [31].

For all the experiments, we selected WiFi (IEEE 802.11g)

for the wireless communication standard, with a bitrate of 54

Mbps. The free space propagation model was chosen for path

loss. Different scenarios were simulated where nodes are

randomly distributed over a rectangular area. The random

waypoint mobility model was selected to reflect the most

general scenario of node movements.

5. Performance Study of the Simulations

In this section, we study the performance of the multi-

interface multi-channel algorithm for counting nodes

using wireless communications. We present details of the

simulations that were executed in four types of scenarios:

(1) in scenarios where both nodes and originator are

stationary, (2) in scenarios with stationary nodes and

mobile originator, (3) in scenarios with mobile nodes and

stationary originator, and (4) in scenarios where both

nodes and originator are mobile. Additionally, we

executed simulations in scenarios where we varied the size

of the rectangular area where the nodes and the originator

are placed and can move. We compare the results of our

new experiments with the ones obtained with the

algorithm described in [26], reporting metrics such as: (1)

counting accuracy, (2) response time to complete the

counting, and (3) number of control messages required

(COUNT_REQUEST and COUNT_REPLY messages sent

by the nodes during the counting process).

5.1. Scenarios with Stationary Nodes and Stationary

Originator

As with the proposed algorithm in [26], we performed

various simulations for stationary scenarios, that is where the

speed of the nodes and the originator are equal to 0 mps

(meters per second). The nodes were randomly positioned in

a squared scenario of 800m x 800m and the originator

located in the middle of the squared scenario, starting the

counting with a value of HopLimit=3.

The aim of our first experiment is to show the importance

of improving the number of COUNT_REQUEST messages

that a node should send to its neighbor nodes (which is not

always equal to 3). Depending on the number of

COUNT_REQUEST messages actually received from its

neighborhood, a node can decide not to rebroadcast more

COUNT_REQUEST messages depending on condition (2),

since the node has determined that a considerable number of

COUNT_REQUEST messages have already been sent in its

neighborhood.

ThrCountReq*(3*TotalNeighborNode)>=NumRecvMsgNode (2)

In condition (2), the parameters are:

ThrCountReq: Threshold that control the number of

COUNT_REQUEST messages sent by the actual node.

TotalNeighborNode: Total number of 1-hop neighbors of

the actual node.

NumRecvMsgNode: Number of COUNT_REQUEST

messages received up-to-now by the actual node.

Table 2 shows the results that we obtained when varying

the total number of stationary nodes (10, 30, 50, 100, 150,

200, and 250) and the value of ThrCountReq. The results in

Table 2 are represented as values a/b/c/d, where a denotes the

number of nodes that are within the scope of the originator

using multihop routing (i.e., nodes that should be counted), b

the number of nodes actually counted by the algorithm

proposed in this paper, c the associated response time for

counting, and d the total number of control messages

(COUNT_REQUEST and COUNT_REPLY) sent by the

nodes during the counting. We can observe that for low

values of ThrCountReq, the algorithm performs a counting of

nodes quite acceptable with a low response time and a small

number of control messages. On the other hand, for high

values of ThrCountReq, the algorithm performs a more

accurate counting with an acceptable response time, but with

a greater number of control messages sent by the nodes.

Choosing the correct value for this parameter is a trade-off

between an acceptable response time, a low number of

control messages sent to by nodes, and a high accuracy of

counting, so that application developers will have to select

this parameter according to their needs.

 American Journal of Networks and Communications 2017; 6(1): 1-19 9

Table 2. Importance of the number of COUNT_REQUEST messages sent by nodes.

ThrCountReq
Total Number of Stationary Nodes

10 30 50 100 150 200 250

0.1 7/7/2.67s/19 30/25/2.81s/39 50/20/2.55s/20 100/84/3.62s/109 150/132/2.82s/225 200/158/3.57s/329 250/188/3.64s/391

0.2 7/7/2.38s/19 30/25/2.81s/37 50/39/2.42s/55 100/98/3.43s/165 150/140/3.51s/265 200/156/3.55s/376 250/189/3.66s/500

0.3 7/7/2.38s/19 30/25/2.60s/37 50/49/3.10s/88 100/98/3.45s/182 150/145/3.51s/324 200/172/3.55s/431 250/198/3.53s/552

0.4 7/7/2.38s/19 30/25/2.26s/43 50/43/2.55s/73 100/99/3.69s/233 150/134/3.58s/380 200/160/3.55s/501 250/180/3.53s/637

0.5 7/7/2.67s/20 30/26/2.60s/48 50/46/2.53s/82 100/97/3.50s/266 150/133/3.20s/420 200/177/3.47s/615 250/194/3.98s/701

0.6 7/7/2.67s/20 30/25/3.45s/44 50/47/2.55s/101 100/98/3.32s/297 150/138/3.58s/441 200/177/3.47s/615 250/185/3.93s/772

0.7 7/7/2.67s/21 30/26/3.41s/51 50/50/2.55s/123 100/97/3.39s/305 150/138/3.29s/483 200/179/3.46s/663 250/177/3.48s/820

0.8 7/7/2.67s/20 30/28/2.67s/56 50/47/2.58s/127 100/94/3.33s/334 150/133/3.58s/497 200/172/3.51s/703 250/210/3.61s/877

0.9 7/7/2.67s/20 30/30/2.70s/73 50/47/2.39s/131 100/96/3.34s/347 150/135/3.52s/509 200/169/3.46s/712 250/175/3.61s/901

1.0 7/7/2.67s/20 30/27/2.61s/76 50/48/2.42s/147 100/97/3.48s/349 150/130/3.51s/528 200/165/3.46s/730 250/177/3.53s/929

To make it easier, let call Algorithm I the algorithm

presented in [26], and Algorithm II the algorithm proposed in

this paper. In Fig. 5, 6, and 7 we compare the performance of

Algorithms I and II in different stationary scenarios, in terms

of the number of nodes counted, the associated response time

to count the nodes, and the number of control messages sent,

where we varied the total number of static nodes (20, 30, 40,

50, 100, 125, 150, 200, and 250) randomly placed in a

squared scenario of 800m x 800m, and the propagation range

of the nodes and the originator (100 m, 200 m, and 300 m).

Based on the results of [26], we chose the following values

for the parameters RBCT_TIME=0.2s, INT_BTW_REQ

=0.2s, and ThrCountReq =0.3 (according to Table 2), with

the purpose of getting a more accurate counting. The

originator started the counting process with hopLimit=3. For

each number of static nodes in Fig. 5, the results are divided

into groups of three bars depending on the propagation range

value, i.e., the three blue bars correspond to 100 m, the three

purple bars to 200 m, and the three green bars to 300 m.

Moreover, in these groups of three bars, the first bar indicates

the number of nodes that are within the scope of the

originator using multihop routing (i.e., nodes that should be

counted), the second bar represents the number of nodes

actually counted by Algorithm I, and the third bar shows the

number of nodes actually counted by Algorithm II. For each

number of static nodes in Fig. 6, the results are divided into

groups of two bars depending on the propagation range

value, i.e., the two blue bars correspond to 100 m, the two

purple bars to 200 m, and the two green bars to 300 m. In

each group of two bars, the first bar indicates the response

time for Algorithm I and the second bar represents the

response time for Algorithm II. Finally, for each number of

static nodes in Fig. 7, the results are divided into groups of

two bars depending on the propagation range value, i.e., the

two blue bars correspond to 100 m, the two purple bars to

200 m, and the two green bars to 300 m. For each group of

two bars, the first bar indicates the total number of control

messages sent by Algorithm I and the second bar represents

the total number of control messages sent by Algorithm II.

Figure 3. Nodes counted in different scenarios with stationary nodes and stationary originator.

0

50

100

150

200

250

300

20 30 40 50 100 125 150 200 250

N
u

m
b

e
r

o
f

N
o

d
e

s
C

o
u

n
te

d

Total Number of Stationary Nodes in a Squared Scenario

10 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

Figure 4. Response time in different scenarios with stationary nodes and stationary originator.

Figure 5. Total number of control messages in different scenarios with stationary nodes and stationary originator.

We can see that Algorithm II exceeds substantially

Algorithm I, by performing a more effective counting, with a

smaller number of control messages, and a very acceptable

response time, especially in scenarios where there is a high

density of nodes (100, 125, 150, 200, and 250). For example,

Fig. 5 shows that for a scenario of 200 nodes and propagation

range equal to 300 m (the three green bars), the origin should

count 200 nodes. Now when we run the simulations,

Algorithm I counted 118 nodes (see Fig. 5), instead of 200,

with a response time of 2.97 s (see Fig. 6) and a total number

of control messages equal to 785 (see Fig. 7), which is a good

approximation. However, Algorithm II counted 186 nodes

(see Fig. 5), being more effective, with a response time of

3.66 s (see Fig. 6), and a total number of control messages

equal to 439 (see Fig. 7), which represents a minor counting

error of 7.0% compared to 41% in Algorithm I. Regarding the

simulations when the number of nodes is less than 100,

Algorithm II is also very much more successful than

Algorithm I.

5.2. Scenarios with Stationary Nodes and Mobile

Originator

In this section, we analyze the performance of the two

algorithms, in scenarios of stationary nodes and a mobile

originator, in terms of the number of nodes counted, the

associated response time to count the nodes, and the number

of control messages sent. At the beginning of the simulations,

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

20 30 40 50 100 125 150 200 250

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Total Number of Stationary Nodes in a Squared Scenario

0

100

200

300

400

500

600

700

800

900

1000

20 30 40 50 100 125 150 200 250

T
o

ta
l

N
u

m
b

e
r

o
f

C
o

n
tr

o
l
M

e
ss

a
g

e
s

S
e

n
t

Total Number of Stationary Nodes in a Squared Scenario

 American Journal of Networks and Communications 2017; 6(1): 1-19 11

the static nodes were randomly positioned in the 800m x

800m squared scenario. The originator was initially placed at

the center of the scenario, and was moving according to the

random waypoint mobility model (RandomWPMobility),

without making stops at the visited positions, i.e., with a wait

time of 0s. Also, for these experiments, we chose values for

the parameters RBCT_TIME=0.2s, INT_BTW_REQ=0.2s,

and ThrCoutReq =0.3. The originator started the counting

process with a hopLimit=3.

Fig. 8, 9, and 10 show the results of the simulations with

100 nodes, where we varied the speed of the originator (3, 5,

10, 20, 30, 40, 50, 60, and 70 mps) as well as the propagation

range of the originator and the nodes (100 m, 200 m, and 300

m). For each speed in Fig. 8, the results are divided into

groups of three bars depending on the propagation range

value, i.e., the three blue bars correspond to 100 m, the three

purple bars to 200 m, and the three green bars to 300 m.

Besides, in these groups of three bars, the first bar indicates

the number of nodes that should be counted by the originator,

the second bar represents the number of nodes actually

counted by Algorithm I, and the third bar shows the number

of nodes actually counted by Algorithm II. For each speed in

Fig. 9, the results are divided into groups of two bars

depending on the propagation range value, i.e., the two blue

bars correspond to 100 m, the two purple bars to 200 m, and

the two green bars to 300 m. In each group of two bars, the

first bar indicates the response time for Algorithm I and the

second bar represents the response time for Algorithm II.

Finally, for each speed in Fig. 10, the results are divided into

groups of two bars depending on the propagation range

value, i.e., the two blue bars correspond to 100 m, the two

purple bars to 200 m, and the two green bars to 300 m. In

each group of two bars, the first bar indicates the total

number of control messages sent by Algorithm I and the

second bar represents the total number of control messages

sent by Algorithm II.

Figure 6. Nodes counted in different scenarios with stationary nodes and mobile originator.

Figure 7. Response time in different scenarios with stationary nodes and mobile originator.

0

10

20

30

40

50

60

70

80

90

100

110

3 5 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

N
o

d
e

s
C

o
u

n
te

d

Originator Speed (mps)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

3 5 10 20 30 40 50 60 70

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Originator Speed (mps)

12 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

Figure 8. Total number of control messages in different scenarios with stationary nodes and mobile originator.

We can note that Algorithm II has a higher accuracy than

Algorithm I in the counting of nodes, specifically when the

originator moves at speeds greater than 30 mps, since at these

speeds the accuracy of counting of Algorithm I degrades

dramatically. For example, Fig. 8 shows that for a scenario

where the originator moves at a speed of 40 mps (144 km/h)

and with a propagation range equal to 300 m (the three green

bars), the originator should count 100 nodes. Now when we

run the simulations, Algorithm I counted 58 nodes (see Fig.

8), instead of 100, with a response time of 2.84 s (see Fig. 9)

and a total number of control messages equal to 385 (see Fig.

10). However, Algorithm II counted 97 nodes (see Fig. 8),

being more effective, with a response time of 2.65 s (see Fig.

9) and a total number of control messages equal to 195 (see

Fig. 10), which represents a minor counting error of 3% in

contrast to 42% of Algorithm I.

5.3. Scenarios with Mobile Nodes and Stationary

Originator

In this section, we look at the performance of the

algorithm when nodes are mobile, but the originator is static

and placed in the center of an 800m x 800m squared area,

based on the number of nodes counted, the associated

response time to count the nodes, and the number of control

messages sent by the nodes. For the movement of nodes, we

used the random waypoint mobility model

(RandomWPMobility) varying the speed of the nodes from 3

mps to 70 mps, with a wait time of 0s (time interval between

reaching a target and moving toward a new one).

In Fig. 11, 12, and 13, we varied the propagation range of

the nodes and the originator (100 m, 200 m, and 300 m). For

all these scenarios, we chose 100 mobile nodes that were

initially randomly placed in the 800m x 800m squared

scenario with values for the parameters RBCT_TIME=0.2s,

INT_BTW_REQ=0.2s, and ThrCountReq=0.3. The

originator started the counting process with hopLimit=3. For

each speed in Fig. 11, the results are divided into groups of

three bars depending on the propagation range value, i.e., the

three blue bars correspond to 100 m, the three purple bars to

200 m, and the three green bars to 300 m. Besides, in these

groups of three bars, the first bar indicates the number of

nodes that should be counted by the originator, the second

bar represents the number of nodes actually counted by

Algorithm I, and the third bar shows the number of nodes

actually counted by Algorithm II. For each speed in Fig. 12,

the results are divided into groups of two bars depending on

the propagation range value, i.e., the two blue bars

correspond to 100 m, the two purple bars to 200 m, and the

two green bars to 300 m. In each group of two bars, the first

bar indicates the response time for Algorithm I and the

second bar represents the response time for Algorithm II. For

each speed in Fig. 13, the results are divided into groups of

two bars depending on the propagation range value, i.e., the

two blue bars correspond to 100 m, the two purple bars to

200 m, and the two green bars to 300 m. For each group of

two bars, the first bar indicates the total number of control

messages sent by Algorithm I and the second bar represents

the total number of control messages sent by Algorithm II.

According to the results shown in Fig. 11, 12, and 13, we

can observe that we have high accuracy in the counting of

nodes with Algorithm II. We can see that the best results are

obtained with values of the propagation range equal to 200 m

and 300 m. For example, Fig. 11 shows that for a scenario with

a propagation range equal to 300 m (the three green bars) and a

speed of nodes equal to 50 mps (180 km/h), the originator

should count 100 nodes. Now, when we run the simulations,

Algorithm I counted 62 nodes (see Fig. 11), instead of 100

nodes in 3.18 s (see Fig. 12), and a total number of control

messages equal to 401 (see Fig. 13). However, Algorithm II

counted 96 nodes (see Fig. 11), being much more effective,

0

50

100

150

200

250

300

350

400

3 5 10 20 30 40 50 60 70

T
o

ta
l

N
u

m
b

e
r

o
f

C
o

n
tr

o
l
M

e
ss

a
g

e
s

S
e

n
t

Originator Speed (mps)

 American Journal of Networks and Communications 2017; 6(1): 1-19 13

with a response time of 3.75s (see Fig. 12) and a total number

of control messages equal to 204 (see Fig. 13).

In Table 3, we chose a fixed propagation range of 250 m,

but we varied the speed of the nodes (from 1 mps to 70 mps)

and the number of nodes (10, 30, 50, 100, 150, 200, and 250)

randomly placed in a squared scenario of 800m x 800m. The

results for each speed of mobile nodes are divided in two

rows (results for Algorithm I are in the upper rows and results

for Algorithm II are in the lower rows). Cells of Table 3 are

represented as values a/b/c/d, where a denotes the number of

nodes that are within the scope of the originator using

multihop routing (i.e., nodes that should be counted), b the

number of nodes actually counted by the algorithm, c the

associated response time to count the nodes, and d the total

number of control messages sent during the counting.

Table 3. Nodes counted when varying the speed of the nodes and the number of nodes (speed originator = 0 mps).

Nodes Speed

(mps)

Total Number of Nodes

10 30 50 100 150 200 250

1
7/7/2.89s/28 29/25/2.63s/86 50/46/2.84s/191 100/76/2.85s/370 150/116/2.98s/573 200/116/2.97s/779 250/115/3.76s/949

7/7/1.63s/13 29/29/2.25s/57 50/50/2.44s/96 100/99/2.64s/178 150/141/3.38s/329 200/173/3.18s/432 250/224/3.79s/576

3
7/7/2.89s/32 30/27/2.61s/93 50/47/2.84s/194 100/83/2.87s/388 150/110/2.88s/591 200/143/2.96s/791 250/125/3.25s/961

7/7/1.63s/13 30/30/2.54s/56 50/50/2.51s/91 100/98/2.95s/201 150/142/3.52s/338 200/174/3.60s/447 250/225/4.04s/664

5
10/10/2.02s/40 30/26/2.07s/96 50/49/2.84s/195 100/87/2.80s/394 150/97/3.69s/600 200/142/3.01s/788 250/135/3.71s/991

10/10/1.63s/17 30/27/2.20s/36 50/50/3.09s/90 100/98/3.01s/195 150/146/3.55s/327 200/168/3.66s/437 250/200/3.97s/663

10
10/9/2.89s/37 30/23/2.78s/117 50/37/2.84s/200 100/89/2.81s/398 150/96/3.86s/597 200/150/3.83s/791 250/152/3.68s/997

10/10/2.58s/16 30/30/2.52s/51 50/50/3.21s/89 100/98/3.51s/197 150/146/3.57s/300 200/170/3.54s/400 250/205/3.81s/695

20
10/10/2.89s/38 30/27/2.51s/120 50/44/2.84s/201 100/63/2.86s/397 150/80/3.34s/601 200/147/3.51s/794 250/138/3.88s/976

10/10/2.72s/17 30/30/2.60s/54 50/50/2.72s/96 100/97/3.36s/201 150/143/3.69s/323 200/172/3.79s/443 250/203/3.98s/654

30
7/5/2.89s/29 30/20/2.08s/121 50/36/2.85s/195 100/64/2.93s/400 150/78/3.39s/588 200/109/3.89s/776 250/129/2.95s/982

7/7/1.69s/14 30/29/1.69s/49 50/49/3.11s/112 100/92/3.32s/192 150/139/3.46s/317 200/169/3.99s/441 250/201/3.85s/635

40
8/7/2.89s/33 30/14/2.65s/108 50/37/2.89s/197 100/56/2.72s/391 150/90/3.59s/582 200/106/3.03s/794 250/133/3.96s/940

8/8/1.66s/16 30/30/2.31s/54 50/50/2.96s/105 100/97/2.85s/210 150/136/3.88s/315 200/178/4.11s/485 250/211/4.05s/657

50
10/5/2.76s/37 30/18/2.73s/117 50/41/2.89s/199 100/53/2.95s/382 150/82/3.78s/585 200/107/3.89s/776 250/120/3.84s/979

10/10/2.73s/18 30/29/2.51s/50 50/50/2.88s/86 100/94/4.47s/208 150/134/3.86s/319 200/174/3.79s/462 250/203/3.95s/623

60
10/6/2.76s/37 30/20/2.09s/111 50/34/2.84s/203 100/64/2.68s/391 150/64/2.89s/591 200/147/3.18s/767 250/115/3.95s/982

10/10/1.65s/17 29/29/2.55s/62 50/49/2.95s/92 100/94/3.83s/195 150/137/3.91s/322 200/181/4.03s/492 250/197/4.15s/646

70
9/5/2.75s/36 30/23/2.69s/121 50/26/2.84s/194 100/39/3.83s/397 150/57/3.98s/576 200/94/3.71s/782 250/91/3.96s/982

9/9/1.65s/14 30/30/3.79s/67 50/49/2.87s/98 100/89/3.01s/196 150/135/3.87s/327 200/169/3.64s/440 250/195/3.99s/647

Figure 9. Nodes counted in different scenarios with mobile nodes and stationary originator.

0

10

20

30

40

50

60

70

80

90

100

110

3 5 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

N
o

d
e

s
C

o
u

n
te

d

Nodes Speed (mps)

14 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

Figure 10. Response time in different scenarios with mobile nodes and stationary originator.

Figure 11. Total number of control messages in different scenario with mobile nodes and stationary originator.

Based on the results obtained in the Table 3, we can see

that for a number of nodes up to 150, Algorithm II performs

an effective counting even for very high speeds compared to

Algorithm I. Now, for both algorithms when there is a high

density of nodes (when the total number of nodes is equal to

200 and 250), the accuracy of the counting degrades,

however it is still significantly more precise in Algorithm II.

Additionally, the results obtained in question of response

time and total numbers of control messages are substantially

better for Algorithm II. For example, as reported in Table 3,

for a scenario of 250 nodes and a speed of nodes equal to 50

mps (180 km/h), the originator should count 250 nodes.

When we run the simulations, Algorithm I counted 120

nodes, with a response time of 3.84 s and a total number of

control messages equal to 979, which are far below the

results obtained in Algorithm II, with 203 counted nodes, a

response time of 3.95 s, and a total number of control

messages equal to 623.

5.4. Scenarios with Mobile Nodes and Mobile Originator

In this section, we report results for experiments of the

proposed algorithm when both the nodes and the originator

are mobile. At the beginning of the simulations, the nodes

were randomly positioned in an 800m x 800m squared area,

while the originator was initially placed at its center. Both,

the nodes and the originator were moving according to the

random waypoint mobility model (RandomWPMobility),

without making stops at the visited positions, i.e., with a wait

time of 0 s. For both, nodes and the originator, we chose

RBCT_TIME=0.2s, INT_BTW_REQ=0.2s, and

ThrCountReq=0.3. The originator started the counting

process with a hopLimit=3.

In Table 4, we selected a fixed propagation range of 250

m, but we varied the speed of the nodes and the originator

(from 1 mps to 70 mps), as well as the total number of nodes

(10, 30, 50, 100, 150, 200, and 250). The results for each

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

3 5 10 20 30 40 50 60 70

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Nodes Speed (mps)

0

50

100

150

200

250

300

350

400

3 5 10 20 30 40 50 60 70

T
o

ta
l

N
u

m
b

e
r

o
f

C
o

n
tr

o
l

M
e

ss
a

g
e

s
S

e
n

t

Nodes Speed (mps)

 American Journal of Networks and Communications 2017; 6(1): 1-19 15

speed of mobile nodes are divided in two rows (results for

Algorithm I are in the upper rows and results for Algorithm II

are in the lower rows). Cells of Table 4 are represented as

values a/b/c/d, where a denotes the number of nodes that are

within the scope of the originator using multihop routing

(i.e., nodes that should be counted), b the number of nodes

actually counted by the algorithm, c the associated response

time to count the nodes, and d the total number of control

messages sent during the counting.

Similarly to the simulations of Table 3, for a number of

nodes up to 150, Algorithm II performs an effective counting

even for very high speeds compared to Algorithm I. Now, for

a number of nodes equal to 200 or 250, in both algorithms

the accuracy of the counting degrades, however being

substantially better in Algorithm II. For example, we can see

in Table 4 that for a scenario of 250 nodes, and a speed of

nodes and the originator equal to 40 mps (144 km/h), the

originator should count 250 nodes. When we run the

simulations, Algorithm I counted 129 nodes, with a response

time of 3.26 s, and a total number of control messages equal

to 943. However, Algorithm II counted 198 nodes with an

associated response time of 3.98 s and a total number of

control messages equal to 707. The results obtained in

Algorithm I are by far outperformed by those obtained in

Algorithm II.

Table 4. Nodes counted when varying the speed of the nodes and the originator as well as the number of nodes.

Speed

(mps)

Total Number of Nodes

10 30 50 100 150 200 250

1
7/5/2.05s/22 29/29/2.55s/83 50/45/2.84s/191 100/78/2.72s/376 150/104/2.98s/555 200/140/2.85s/767 250/115/3.22s/934

7/7/1.70s/14 29/29/2.88s/60 50/50/2.72s/83 100/98/3.45s/204 150/140/3.72s/306 200/193/4.23s/525 250/218/3.79s/588

3
7/7/2.03s/28 30/24/2.63s/93 50/48/2.91s/192 100/86/2.85s/382 150/88/3.0s/579 200/127/3.85s/770 250/132/3.52s/979

7/7/1.70s/14 30/30/2.23s/57 50/50/2.52s/88 100/100/3.64s/206 150/144/3.84s/304 200/190/4.01s/549 250/217/3.64s/586

5
9/9/2.55s/30 30/28/2.56s/114 50/48/2.84s/194 100/78/2.90s/379 150/92/3.33s/585 200/149/2.49s/767 250/156/3.87s/976

9/9/1.71s/14 30/30/1.75s/55 50/47/3.26s/79 100/99/3.57s/206 150/144/3.77s/308 200/190/3.96s/553 250/208/3.57s/530

10
10/9/2.81s/40 30/25/2.49s/117 50/46/2.94s/200 100/67/2.95s/376 150/80/2.90s/549 200/148/2.99s/698 250/159/3.69s/940

10/10/1.64s/22 30/30/2.00s/58 50/50/2.46s/88 100/100/3.06s/202 150/138/3.57s/320 200/187/3.81s/538 250/203/3.47s/689

20
7/6/2.48s/33 29/27/2.11s/83 50/32/2.90s/182 100/54/2.80s/370 150/93/3.01s/567 200/144/3.02s/794 250/130/2.90s/829

7/7/2.96s/17 29/29/3.90s/55 50/50/2.62s/86 100/97/3.09s/210 150/143/3.84s/311 200/184/3.95s/544 250/194/3.42s/654

30
9/9/2.72s/38 27/22/2.72s/101 50/40/2.67s/191 100/84/2.84s/330 150/77/3.00s/576 200/142/3.80s/773 250/153/3.51s/946

9/9/2.47s/15 27/27/2.20s/51 50/49/2.15s/86 100/100/3.15s/196 150/139/4.01s/355 200/182/4.39s/552 250/193/3.60s/575

40
9/8/2.87s/30 30/17/2.78s/102 50/17/2.94s/161 100/68/3.0s/379 150/59/2.90s/540 200/108/3.01s/779 250/129/3.26s/943

9/9/4.06s/18 30/30/4.80s/61 50/47/2.60s/75 100/94/3.64s/216 150/144/3.78s/352 200/175/3.95s/678 250/198/3.98s/707

50
10/5/2.77s/37 30/13/2.78s/110 50/39/2.84s/194 100/43/2.87s/364 150/96/2.92s/486 200/43/3.50s/679 250/92/2.96s/796

10/10/2.42s/19 30/30/2.75s/62 50/49/2.88s/92 100/96/3.92s/192 150/141/3.95s/381 200/176/3.68s/653 250/195/4.12s/695

60
10/5/2.48s/34 30/16/2.56s/96 50/24/2.91s/185 100/64/2.83s/373 150/51/3.13s/558 200/78/3.04s/767 250/66/2.94s/892

10/10/1.90s/21 30/30/2.47s/52 50/49/4.03s/78 100/94/4.37s/242 150/139/3.64s/365 200/168/3.89/625 250/192/4.60s/689

70
10/3/2.51s/40 30/17/2.65s/102 50/29/2.74s/182 100/41/3.22s/379 150/56/2.74s/561 200/36/3.51s/665 250/102/3.91s/964

10/9/1.69s/21 30/30/2.69s/54 50/49/3.12s/95 100/92/3.83s/267 150/142/3.86s/377 200/173/3.91s/637 250/189/3.92s/672

Fig. 14, 15, and 16 show the results of the simulations for scenarios with 100 nodes, where we varied the speed of the nodes

and the originator (from 3 mps to 70 mps), as well as their propagation range (100 m, 200 m, and 300 m). From there results,

we can see that Algorithm II has a higher precision in the counting of nodes than Algorithm I, particularly in scenarios when

the propagation range values are equal to 200 m and 300 m.

Figure 12. Nodes counted in different scenarios with mobile nodes and mobile originator.

0

10

20

30

40

50

60

70

80

90

100

110

3 5 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

N
o

d
e

s
C

o
u

n
te

d

Nodes Speed (mps)

16 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

Figure 13. Response time in different scenarios with mobile nodes and mobile originator.

Figure 14. Total number of control messages in different scenario with mobile nodes and mobile originator.

5.5. Additional Experiments

In this section, we study the behavior of the proposed

algorithm when we vary the size of the area where the nodes

and the originator are placed, and therefore, check if it

presents scalability issues. To do this, we performed some

experiments by changing the size of the rectangular area with

a density of 100 nodes/km
2
 (see Table 5). At the beginning of

the simulations, the nodes were randomly positioned in a

rectangular area, while the originator was placed in its center.

Both, the nodes and the originator were moving according to

the random waypoint mobility model (RandomWPMobility),

without making stops at the visited positions, i.e., with a wait

time of 0s and a speed of 50 mps (180 km/h). For both, nodes

and the originator, we chose RBCT_TIME=0.2s,

INT_BTW_REQ=0.2s, and ThrCountReq=0.3, with a fixed

propagation range of 300 m. The originator started the

counting process with a hopLimit=3. In Table 5, from the first

to the seventh column, we have: (1) the rectangular size of

the simulation area, (2) the total number of nodes, (3) the

number of nodes that are within the scope of the originator

using multihop routing, (4) the number of nodes that the

algorithms could count, (5) the associated response time, (6)

the counting error in percent, and (7) the total number of

control messages sent. Note that the last four columns have

values represented as a/b, where a is for Algorithm I and b is

for Algorithm II. In general terms, simulation results show

that Algorithm II also performed well, in different rectangular

areas, at high speeds, with a small number of control

messages and an acceptable response time, being much more

efficient than Algorithm I.

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

3 5 10 20 30 40 50 60 70

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Nodes Speed (mps)

0

50

100

150

200

250

300

350

400

3 5 10 20 30 40 50 60 70

T
o

ta
l

N
u

m
b

e
r

o
f

C
o

n
tr

o
l

M
e

ss
a

g
e

s
S

e
n

t

Nodes Speed (mps)

 American Journal of Networks and Communications 2017; 6(1): 1-19 17

Table 5. Nodes counted when varying the size of the rectangular area (mobil nodes and originator).

Size of the

Area

Total Number

Nodes

Reachable

Nodes

Nodes Count

Algorithm

Response

Time

Counting

Error

Total Messages

Sent

500m x 500m 25 25 21/25 2.11s/1.70s 16.00%/0.00% 100/41

500m x 750m 38 38 19/38 2.95s/2.72s 50.00%/0.00% 149/67

500m x 1000m 50 50 28/49 2.56s/2.46s 44.00%/2.00% 151/89

500m x 1250m 63 63 31/62 2.84s/2.59s 50.79%/1.58% 234/112

500m x 1500m 75 63 29/55 2.88s/3.08s 53.97%/12.70% 214/133

750m x 800m 60 59 22/59 2.81s/2.69s 62.71%/ 0.00% 198/130

750m x 1000m 75 72 28/70 3.62s/2.67s 61.11%/2.78% 203/139

750m x 1250m 94 91 56/85 2.79s/2.93s 38.46%/6.59% 298/162

800m x 800m 64 64 28/64 3.07s/2.97s 56.25%/0.00% 235/127

800m x 1000m 80 79 35/73 2.87s/2.78s 55.70%/7.60% 280/162

800m x 1250m 100 85 24/82 3.59s/3.51s 71.76%/3.53% 276/182

1000m x 1000m 100 98 55/86 2.84s/3.51s 43.88%/12.24% 296/187

1000m x 1250m 125 95 26/91 3.82s/4.73s 72.63%/4.21% 249/184

1250m x 1250m 156 122 44/101 3.06s/4.52s 63.93%/17.21% 338/228

1500m x 1500m 225 120 45/104 2.76s/4.45s 62.50%/ 13.33% 327/326

2000m x 2000m 400 241 53/198 2.82s/4.65s 78.00%/17.84% 665/672

6. Conclusions and Future Work

Multi-interface multi-channel wireless networks offer an

aggregate bandwidth to users in the form of orthogonal

channels. To take advantage of this possibility, new routing

protocols, new channel assignment mechanisms, and in

general new algorithms are required. In this research, we

presented a novel multi-interface multi-channel algorithm to

count nodes using wireless networks, based on ideas initially

presented in [26]. The major enhancement in the new

algorithm is the usage of two NICs in each nodes (only one

NIC is required in [26]), with the intention to reduce

interferences and collisions that occur between the counting

PDUs (COUNT_REQUEST and COUNT_REPLY) and

users’ traffic. For that, one fixed channel is used to receive

incoming control messages in the first interface. On the other

hand, the objective of the second interface is the sending of

outgoing control messages, and its current channel is

switched accordingly to the fixed channel of the receiver

node. Additionally, we implemented a discovery protocol

where BEACON messages are broadcasted periodically,

allowing nodes to discover their 1-hop neighbors and infer

their actual position and speed at any time.

To validate and study the performance of our new

algorithm, we performed simulations where we varied

several parameters such as nodes’ speed, total number of

nodes, signal propagation range, size of simulation area, etc.

The results that we obtained with the algorithm proposed in

this paper outperformed the ones of our previous algorithm

[26]. The analysis indicates that our new algorithm efficiently

computes a total number of nodes very close to the real one,

even in scenarios where the nodes are moving at very high

speed with a small number of control messages and an

acceptable response time.

As future work, we are interested in studying the

application of our algorithm in the vehicular context

(motorways, urban roads, rural roads, parkings, etc) using

Wireless Access in Vehicular Environment (WAVE) [32],

which could be used in applications to improve the safety and

comfort of drivers and passengers. Also, many security issues

will arise at the time of implementing the algorithm for a

specific application, such as what nodes will have the

authorization to start the counting process and how to enforce

this policy to avoid flooding of the network or DoS (Denial-

of-Service) attacks. This is another direction that we are

interested to explore as an extension of our work.

Acknowledgment

We thank the CDCH-UCV (Consejo de Desarrollo

Científico y Humanístico) which partially supported this

research under grant number: PG 03-8066-2011/1.

References

[1] S. Kakumanu. “Algorithms and Protocols for Multi-Channel
Wireless Networks”. In Partial Fulfillment of the
Requirements for the Degree Doctor of Philosophy in the
School of Electrical and Computer Engineering. Georgia
Institute of Technology. December 2011.

[2] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. “Architecture
and Evaluation of an Unplanned 802.11b Mesh Network”. In
Proceedings of the 11th Annual International Conference on
Mobile Computing and Networking (MobiCom 2005),
Cologne, Germany, September 2005, pp. 31–42.

[3] C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M.
Mauve. “Data Aggregation and Roadside Unit Placement for a
VANET Traffic Information System”. In Proceedings of the
fifth ACM International Workshop on VehiculAr Inter-
Networking, New York, NY, USA 2008, pp. 58–65.

[4] A. Raniwala and C. Tzi-cker. “Architecture and Algorithms
for IEEE 802.11 based Multi-Channel Wireless Mesh
Network”. In Proceedings of the 24th Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM 2005). Vol. 3, Miami, FL, USA, March
2005, pp. 2223-2234.

18 Manuel Contreras and Eric Gamess: A Multi-interface Multi-channel Algorithm to Count Nodes Using Wireless Technology

[5] P. Bahl, A. Adya, J. Padhye, and A. Walman. “Reconsidering
Wireless Systems with Multiple Radios”. ACM SIGCOMM
Computer Communication Review. Vol. 34, No. 5, October
2004, pp. 39–46.

[6] S. Pollak and V. Wieser. “Interference Reduction Channel
Assignment Algorithm for Multi-Interface Wireless Mesh
Networks”. In Proceedings of the 22nd International
Conference Radioelektronika 2012, Brno, Czech Republic,
April 2012.

[7] B. Barekatain, M. Aizaini, A. Ariza, A. Triviño, and H.
Ghaeini. “An Enhanced Multi-interface Multi-channel
Algorithm for High Quality Live Video Streaming over
Hybrid WMNs”. Turkish Journal of Electrical Engineering &
Computer Sciences, 2014, In press.

[8] J. So and N. Vaidya. “Multi-Channel MAC for Ad Hoc
Networks: Handling Multichannel Hidden Terminals using a
Single Transceiver”. In Proceedings of the 5th ACM
International Symposium on Mobile Ad Hoc Networking and
Computing. New York, NY, USA, May 2004, pp. 222–233.

[9] A. Nasipuri, J. Zhuang, and S. Das. “A Multichannel CSMA
MAC Protocol for Multihop Wireless Networks”. In
Proceedings of IEEE Wireless Communications and
Networking Conference (WCNC 1999). New Orleans, LA,
USA, September 1999, Vol. 3, pp. 1042-1406.

[10] A. Nasipuri and S. Das. “Multichannel CSMA with Signal
Power-based Channel Selection for Multihop Wireless
Networks”. In Proceedings of the 52nd IEEE Vehicular
Technology Conference (VTC), Boston, MA, USA,
September 2000, Vol. 1, pp. 211–218.

[11] N. Jain, S. Das, and A. Nasipuri. “A Multichannel CSMA
MAC Protocol with Receiver-based Channel Selection for
Multihop Wireless Networks”. In Proceediongs of the 9th
International Conference on Computer Communications and
Networks (ICSN), Scottsdale, AZ, USA, October 2001.

[12] S.-L. Wu, C.-Y. Lin, Y. C. Tseng, and J. P. Sheu. “A New
Multi-Channel MAC Protocol with On-Demand Channel
Assignment for Multi-Hop Mobile Ad Hoc Networks”. In
Proceedings of the 2000 International Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN’00),
Dallas/Richardson, TX, USA, December 2000.

[13] U. Lee, S. Midkiff, and J. Park. “A Proactive Routing Protocol
for Multi-Channel Wireless Ad-Hoc Networks”. In
Proceedings of the 2005 International Conference on
Information Technology: Coding and Computing (ITCC’05).
Las Vegas, NV, USA, April 2005, Vol. 2, pp. 710–715.

[14] P. Kyasanur and N. Vaidya. “Routing and Interface
Assignment in Multi-Channel Multi-Interface Wireless
Networks”. In Proceedings of IEEE Wireless Communications
and Networking Conference (WCNC 2005), New Orleans,
LA, USA, March 2005, Vol. 4, pp. 2051–2056.

[15] D. Yong K. Pongaliur, and X. Li. “Channel Allocation and
Routing in Hybrid Multichannel Multiradio Wireless Mesh
Networks”. IEEE Transactions on Mobile Computing. Vol. 12,
No. 2, February 2013, pp. 206-218.

[16] P. Kyasanur and N. Vaidya. “Routing and Link-Layer
Protocols for Multi-Channel Multi-Interface Ad Hoc Wireless
Networks”. ACM SIGMOBILE Mobile Computing and
Communication Review. Vol. 10, No. 1, January 2006, pp. 31-
43.

[17] H. Mogaibel, M. Othman, S. Subramaniam, and N. Hamid.
“Impact of the Hybrid Multi-channel Multi-interface Wireless
Mesh Network on ETX-Based Metrics Performance”.
Electrical Power Systems and Computers. Vol. 99, 2011, pp.
147-160.

[18] L. Minglu and F. Yunxia. “Design and Implementation of a
Hybrid Channel-Assignment Protocol for a Multi-Interface
Wireless Mesh Network”. IEEE Transactions on Vehicular
Technology. Vol. 59, No. 6. July 2010, pp. 2986-2997.

[19] G. Leduc. “Road Traffic Data: Collection Methods and
Applications”. European Commission, Joint Research Center,
Institute for Prospective Technological Studies, Seville, Spain,
2008.

[20] C. Chao-Ho, C. Yin-Chan, C. Tsong-Yi, and W. Da-Jinn.
“People Counting System for Getting In/Out of a Bus based
on Video Processing”. In Proceedings of the 8th International
Conference on Intelligent Systems Design and Applications
(ISDA 2008). Kaohsiung, Taiwan, November 2008, Vol. 3, pp.
565-569.

[21] K. Chi. “Moving Object Counting with an Infrared Sensor
Network”. A Thesis Submitted to The Hong Kong University
of Science and Technology in Partial Fulfillment of the
Requirements for The Degree of Master of Philosophy in
Computer Science and Engineering. Hong Kong, August
2007.

[22] J. W. Kim, K. S. Choi, B. D. Choi, and S. J. Ko. “Real-time
Vision-based People Counting System for the Security Door”.
In Proceedings International Technical Conference on
Circuits/Systems Computers and Communications, Phuket,
Thailand, July 2002, pp. 1416-1419.

[23] T. Marques, L. Thomas, S. Martin, D. Mellinger, I. Ward, D.
Moretti, D. Harris, and P. Tyack. “Estimating Animal
Population Density using Passive Acoustics”. Biological
Reviews. Vol. 88, 2013, pp. 287-309.

[24] H. Gross, P. Hunel, N. Vidot, and E. Stattner. “Acoustic
Counting Algorithms for Wireless Sensor Networks”. In
Proceedings of the 6th ACM Symposium on Performance
Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous
Networks (PE-WASUN ’09), New York, NY, USA, 2009, pp.
79-84.

[25] A. Knaian. “A Wireless Sensor Network for Smart Roadbeds
and Intelligent Transportation Systems”. Master Thesis,
Department of Electrical Engineering and Computer Science.
Massachusetts Institute of Technology, Cambridge, MA, USA,
June 2000.

[26] E. Gamess and M. Contreras. “A Proposal for an Algorithm to
Count Nodes using Wireless Technologies”. International
Journal of High Performance Computing and Networking.
International Journal of High Performance Computing and
Networking, Vol. 8, No. 4, pp. 345-357, 2015.

[27] M. Contreras and E. Gamess. “Algoritmo para Contar Nodos
en Redes Inalámbricas con Mensajes Retrasados”. Revista
Venezolana de Computación. Vol. 1, No. 2, December 2014,
pp. 63-71.

[28] E. Gamess and I. Mahgoub. “A Novel VANET-Based
Approach to Determine the Position of the Last Vehicle
Waiting at a Traffic Light”. In Proceedings of the 2011
International Conference on Wireless Networks (ICWN’11),
Las Vegas, NV, USA, July 2011, 327–333.

 American Journal of Networks and Communications 2017; 6(1): 1-19 19

[29] C.-Y. Li, A.-K. Jeng, and R.-H. Jan. “A MAC Protocol for
Multi-Channel Multi-Interface Wireless Mesh Network using
Hybrid Channel Assignment Scheme”. Journal of Information
Sciencie and Engineering. Vol. 23, No. 4, July 2007, pp. 1041-
1055.

[30] C. Chereddi, K. Pradeep, S. Jungmin, and N. Vaidya. “Multi-
Channel Mesh Networks: Challenges and Protocols”. IEEE
Wireless Communications. Vol. 13, No. 2. April 2006, pp. 30-
36.

[31] A. Varga. “The OMNeT++ Discrete Event Simulation
System”. In Proceedings of the 15th European Simulation
Multiconference (ESM’2001). Prague, Czech Republic, June
2001.

[32] IEEE Trial-Use Standard for Wireless Access in Vehicular
Environments (WAVE) - Multi-Channel Operation. IEEE
1609.4. November 2006.

