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Abstract: In wireless networks, devices can be equipped with multiple interfaces to utilize multiple channels and increase 

the aggregated network throughput. In fact, as the current price of network interface cards has fallen dramatically, applications 

have started to use multiple non-overlapping channels to get an enhanced bandwidth, with traditional standards such as IEEE 

802.11 a/b/g. In this regard, a wireless network node equipped with more than one interface can concurrently communicate 

with other nodes on different channels. This operation results in less interference and collisions in the network, and therefore a 

better use of the network capabilities in terms of bandwidth. In this paper we propose an algorithm that uses multiple channels 

to improve performance in the counting of objects (people, animals, devices, vehicles, etc) based on wireless communications 

where devices are equipped with multiple interfaces, which works either for stationary nodes or in scenarios where nodes are 

moving even at high speeds. In particular, the technique of interface switching is used to take advantage of all the channels, 

even when the number of available interfaces is smaller than the number of channels. To validate and evaluate the performance 

and accuracy of the proposal, the algorithm is simulated using a famous network simulation tool called OMNeT++/INET. The 

results of the simulations show that the proposed algorithm efficiently exploits the advantages of multi-channel, by computing 

a number of nodes very close to the real one (even in the case of scenarios with nodes moving at high speeds) with an 

acceptable response time and total number of control messages sent by the nodes to accomplish the counting task. 

Keywords: Wireless Networks, Multi-channel Networks, Multi-radio Networks, Network Interface Cards, Node Counting, 

OMNeT++, INET, Network Simulator 

 

1. Introduction 

As an emerging and promising technology, wireless 

networks have a wide range of potential applications. These 

networks typically make use of a single radio interface on a 

fixed channel to communicate with neighboring nodes. 

However, previous research has advocated the usage of 

multiple wireless channels to increase the aggregated 

network throughput and provide reliable and timely 

communication services. Wireless spectrum is divided into 

multiple channels by industry standards for two main 

reasons: (1) to allow parallel utilization of the spectrum by 

multiple wireless technologies at the same time, and (2) the 

design of wideband wireless transceivers is very complex 

because of the frequency dependent components involved in 

the design [1]. IEEE 802.11 is a widely used technology for 

wireless local area networks and current Network Interface 

Cards (NICs) are capable of communicating over multiple 

non-overlapping channels. In existing system architectures, 

the use of multiple channels can be supported by providing 

every channel with a dedicated interface. Multiple non-

overlapping channels (also known as orthogonal channels) 

exist in the 2.4 GHz and 5 GHz spectrum. For example, IEEE 

802.11b has 11 channels in the 2.4 GHz spectrum, 3 of which 

are orthogonal, while IEEE 802.11a has 12 orthogonal 

channels in the 5 GHz spectrum, and IEEE 802.11g standard 

defines 3 orthogonal channels in the 2.4 GHz spectrum. 

Traditionally, these channels are used by different networks 

operating in the same vicinity. However, it is possible to 

concurrently take advantage of these channels by using 

multiple transceivers or radios per device [1]. Effective 
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utilization of these multiple channels would increase the 

bandwidth substantially. Such wireless networks with Multi-

Interface Multi-Channel (MIMC) devices are known as 

MIMC wireless networks. They are used to build mesh 

networks [2], vehicular ad hoc networks [3], among others, 

so that a new possibility has been opened to develop 

algorithms for counting nodes based on these emerging 

technologies. However, most IEEE 802.11-based multi-hop 

ad hoc networks today use only a single channel. As a result, 

these networks can rarely fully exploit the aggregate 

bandwidth available in the radio spectrum provisioned by the 

standards [4]. Hence, wireless networks that use multiple 

radios in a collaborative manner dramatically improve 

system performance and functionality over the traditional 

single radio wireless systems that are popular today [5]. 

In this research work, we introduce an algorithm to count 

nodes using wireless communications where nodes are 

equipped with multiple interfaces working on multiple 

channels. For this primary version of the algorithm, it is 

assumed that 2 NICs are available at each node. One 

interface has a fixed channel to receive control messages 

from neighbors and the other interface will switch among the 

channels to transmit control messages to neighbors. This 

algorithm can be used as a basic and integral tool for the 

development of applications in many fields. For example, in 

the field of ATCSs (Adaptive Traffic Control Systems), if the 

number of vehicles present in each lane at the intersections of 

roads is known in real time, the cycles of their traffic lights 

can be continuously optimized or adjusted, and thus 

achieving a greater vehicular flow with balanced and fair 

waiting times. Another application of the algorithm could be 

the counting of people attending an event (musical, political, 

or social), in public spaces, stadiums, etc., for security and 

billing purposes, that would be based on the counting of the 

number of cell phones with a certain network technology 

such as WiFi. Another relevant use of the algorithm lies in 

the context of parking management systems with the 

intention to count the total number of vehicles currently 

parked so the number of available slots can be computed, 

allowing a better control for admission of vehicles at the 

entrance of the parking. 

With the aim of validating the algorithm, a discrete event 

simulator called OMNeT++/INET is used to test and analyze 

our proposal in different scenarios, where we varied different 

parameters such as the speed of nodes, the density of nodes, 

the signal propagation range, etc. The results of the 

simulations show that the algorithm performs an effective 

counting of nodes with a quite acceptable response time and 

number of control messages sent by the nodes, in both 

stationary scenarios and in scenarios where nodes are moving 

at high speeds. 

The rest of this paper is organized as follows. Section 2 

reviews the related work. In Section 3, we introduce our 

multi-interface multi-channel algorithm to count nodes based 

on wireless technologies. Section 4 briefly describes the 

simulation tools and scenarios that we use to study and 

validate the proposed algorithm. Section 5 presents an 

analysis of the performance results of our simulations. 

Finally, Section 6 concludes the paper and presents future 

work. 

2. Background and Related Work 

A lot of recent research and commercial efforts in the 

wireless networking industry have focused on a new class of 

ad hoc networks: multi-interface multi-channel ad hoc 

networks [5]. These networks are characterized by a set of 

nodes with multiple wireless interfaces utilizing multiple 

orthogonal channels at the same time over a given swath of 

spectrum such as IEEE 802.11 a/b/g. 

At present, in the specialized literature there are many 

related efforts that study the benefit of using multiple 

channels. Even though multiple non-overlapping channels 

exist in the 2.4 GHz and 5 GHz spectrum, most IEEE 802.11-

based multi-hop networks nowadays use only a single 

channel, and therefore only require a single interface. A well-

known fact that is affecting the performance of such 

networks is the significant throughput degradation along the 

multi-hop path [5]. When a single channel is used for both 

incoming and outgoing traffic, throughput is halved as they 

use the same radio channel. This means that when one node 

is transmitting, its neighbor nodes must all be in listening 

mode otherwise a collision will occur. This problem is 

amplified across the network, and after a few hops the 

bandwidth is reduced significantly. To overcome the 

throughput degradation problem, a natural approach is to use 

multiple channels simultaneously in order to reduce 

collisions [5]. 

Multiple channels can be exploited by using a single radio 

(or interface) per device or by having multiple radios per 

device. In the former scenario, two devices wishing to 

communicate tune their radios to the same channel and 

exchange information while other devices, in the vicinity, 

would be tuned to other channels. In the latter scenario, two 

devices can potentially tune to multiple channels at the same 

time, using multiple radios, and communicate on multiple 

channels simultaneously. The decision to use a single radio or 

multiple radios per device depends on the implementation 

requirements, dictated by various factors including ease of 

deployment, bandwidth requirement, and cost [1]. 

Moreover, the multi-hopping technique increases the 

network range and scalability but it is associated with a high 

level of interferences. In fact, capacity reduction is a well-

known issue derived from the interference problem in multi-

hop wireless networks. This problem can be mitigated by 

using the multi-interface multi-channel technique [6]. As the 

current price of NICs has quickly dropped, the existing 

standards, such as IEEE 802.11 a/b/g, opt for multiple non-

overlapping channels. In this regard, a node equipped with 

more than one interface can concurrently communicate with 

other nodes on different channels. This operation results in 

less interference in the network [7]. 

Raniwala and Tzi-cker [4] have experimentally shown that 

when separation between interfaces is increased, the 
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interference between interfaces is reduced, allowing more 

channels to be used simultaneously. So and Vaidya [8] 

proposed a scheme that allows wireless devices to 

communicate on multiple channels using a single interface 

card. The scheme requires frequent channel switching, which 

implies considerable overhead on the current hardware. The 

authors in [9] [10] [11] presented a multi-channel carrier 

sense multiple access MAC protocol where all nodes have an 

interface on each channel. The proposed protocol uses 

different metrics to choose the channel for communication 

between nodes. Wu et al. [12] developed a protocol that 

assigns channels dynamically, in an on-demand style that 

requires two interfaces. One interface is assigned to a 

common channel for control purposes, and the second 

interface is switched between the remaining available 

channels for transmitting data. Lee, Midkiff, and Park [13] 

introduced a proactive routing protocol on multiple channels, 

which uses one control channel and n data channels. The 

nodes exchange control packages on the control channel to 

negotiate the best channel for receiving in real time. In [14] 

[15], a hybrid channel assignment scheme is proposed where 

some radios are statically assigned a channel while the 

remaining radios can dynamically change their frequency. 

The authors also presented a new routing strategy based on 

channel switching and route diversity cost. As an example, 

HMCP (Hybrid Multi-Channel Protocol) is a hybrid method 

which exploits both static and dynamic channels [16]. Recent 

studies [17] [18] show that hybrid approaches exploit the 

advantages of both static and dynamic methods. 

On the other hand, the detection and counting of nodes has 

been of great interest in various fields and can be used as a 

basic tool in the development of many applications such as: 

(1) the counting of people in public spaces, stadiums, 

musical, political, or social events for security and billing 

purposes, (2) the estimation of the population of animal 

species that are in danger of becoming extinct for their 

protection, and (3) the determination of the number of free 

parking slots in a parking lot to allow or not the entrance of 

additional vehicles. At the present time, most of the 

alternatives or solutions to detect and count nodes, with 

lesser or greater accuracy, are based on methods and 

techniques supported by conventional “in-situ” technologies 

(turnstiles, barrier arms, digital cameras, video cameras, 

thermal cameras, pneumatic road tubes, magnetic sensors, 

infrared beams, etc) [19], as reported in the specialized 

literature. Chao-Ho et al. [20] proposed a method for 

counting people entering or leaving a bus based on video 

processing, where a zenithal camera is set in the bus for 

capturing the bi-directionally passenger flow. In [21] the 

author presented a system for counting people in movement 

passing through a given area (a concourse, a tunnel, or a 

gate) with an infrared sensor network. The system does not 

only report the number of people passing through, but also 

provides the corresponding moving direction of every person. 

Kim et al. [22] introduced a people counting system with a 

single fixed camera which detects and tracks moving people. 

This system counts the number of moving objects (people) 

entering a security door. Marques et al. [23] provided a 

framework for passive acoustic-based density estimation, 

illustrated with examples from real-world case studies. They 

focused on methods involving sensors at fixed locations, 

particularly hydrophones, to estimate population density or 

abundance, based on detecting sounds naturally produced by 

animals. The authors of [24] presented two algorithms that 

count birds with wireless sensors equipped with microphones 

that listen for bird songs in the intersection of their detection 

areas, and compute an approximation of the number of 

singing birds for the monitored period. Similarly, in the field 

of vehicular transportation, Knaian [25] developed a wireless 

sensor package to monitor roadways in the Intelligent 

Transportation Systems (ITSs) to count passing vehicles, 

measure the average roadway speed, and detect ice and water 

on the road. 

To the best of our knowledge, in the field of counting 

objects based on wireless communications, just a few works 

has been developed. For example, Gamess and Contreras 

[26] introduced an algorithm to count nodes or devices 

equipped of a wireless network interface, using wireless 

technologies. In [27], the authors presented an improved 

version of their algorithm proposed in [26], where they 

enhanced the accuracy of the counting by taking into account 

late counting messages. The authors in [28] proposed a novel 

VANET-based approach to obtain: (1) the position of the last 

vehicle and (2) the number of vehicles, in a line of vehicles 

stopped at a traffic light. To compute the number of nodes, 

the authors first obtain the length of the queue of vehicles 

stopped at the traffic light and then divide this distance by a 

constant value (7 meters). 

According to our study, we can see that most of the 

research done in the field for counting objects is primarily 

based on the usage of “in-situ” technologies. In this work, we 

propose a new algorithm to count nodes equipped of 2 

wireless NICs, that substantially differ from [26][27] by 

taking advantage of the multi-interface multi-channel 

wireless technologies, with the aim of reducing the number 

of collisions in the network. 

3. Algorithm to Count Nodes Using 

Multi-interface Multi-channel 

Wireless Communications 

In this section, we describe a multi-interface multi-channel 

algorithm to count nodes using wireless networks. We 

suppose that each node is equipped with two communication 

interfaces. The first interface is utilized to receive incoming 

control messages. Each node uses its own fixed channel in 

this interface (called fixedChannelNode), that can be different 

from the one of another node. The goal of the second 

interface is the sending of outgoing control messages to other 

nodes. The channel of this second interface will vary 

according to the fixed channel of the first interface of the 

intending receiver node. Also, in this version of the 

algorithm, it is assumed that the mobile nodes never turn off 
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their NICs for energy saving. It is not unrealistic, since some 

networks always maintain on the NICs, such as the vehicular 

networks, with the aim to guarantee the physical security of 

the drivers and passengers. 

3.1. Basic Considerations for Counting Nodes in a  

Multi-interface Multi-channel Wireless Network 

The algorithm described in this work is loosely based on 

the ideas presented in the work developed in [26][27]. As we 

explain later, we have introduced a neighbor discovery 

protocol and significantly improved the propagation of 

COUNT_REPLY messages back to the originator. 

3.1.1. Neighbors Discovery Protocol 

The protocol proposed in this paper is designed for a 

multi-hop wireless network. Nodes in the network can be 

mobile. To track 1-hop neighbors, a neighbor discovery 

protocol was added to the nodes. Each node periodically 

broadcasts a BEACON message (see Fig. 1) that contains the 

sending timestamp, its actual position and speed (obtained 

from its GPS receiver so that 1-hop neighbors are aware of 

its presence and location), its nodeToGoBack, and 

fixedChannelNode (fixed channel being used by this 

neighbor). The synchronization of time between the different 

nodes is solved with the time received from the GPS 

satellites. nodeToGoBack stores a reference of the node to go 

back toward the originator for the sender of the BEACON 

message. fixedChannelNode is a reference of the fixed 

channel used by the first interface of the sending node. Based 

on the received BEACON messages, a node establishes a list 

of 1-hop neighbors (NeighborTable). For each 1-hop 

neighbor, the node stores its ID (IPv4 address), timestamp, 

position, speed, nodeToGoBack, and fixedChannelNode in 

table NeighborTable. With this information, the node can 

interpolate the actual position of its 1-hop neighbors at any 

time. When a node receives a new BEACON message from a 

1-hop neighbor, the node updates the associated entry in its 

NeighborTable, so that the last updated information is always 

present in this table, which is used to update the 

ChannelUsageList list. ChannelUsageList is a list of n 

counters, where n is the total number of orthogonal channels 

supported by the wireless technology used (e.g., 3 in IEEE 

802.11g for channels 1, 6, and 11). The first counter will 

count the number of 1-hop neighbors that have chosen the 

first orthogonal channel for their first interface (fixed 

channel). The second counter will count the number of 1-hop 

neighbors that have chosen the second orthogonal channel for 

their first interface, and so on. If a node does not receive 

three consecutive BEACON messages from a specific 1-hop 

neighbor (maybe because it has moved out of range), it 

removes this 1-hop neighbor from its list of 1-hop neighbors 

(NeighborTable) and also updates ChannelUsageList 

accordingly. 

 

Figure 1. BEACON message. 

3.1.2. Timing Diagram for the Algorithm 

In this paper, we call “originator” the node that starts the 

counting process, i.e., the node that requires the number of 

nodes around it, up to a specified hop count (called HopLimit 

in the algorithm). Beside of the neighbor discovery protocol 

described before, the basic approach of the algorithm is: 

a. Propagate a broadcast message (called 

COUNT_REQUEST) from the originator to nodes that 

are far away from the originator with the number of 

HopAway the receiver of the message is from the 

originator of the COUNT_REQUEST. To improve or 

optimize the number of COUNT_REQUEST messages 

sent by a node, the node will decide to send 1, 2, or 3 

COUNT_REQUEST messages depending on the 

number of COUNT_REQUEST messages that it has 

received from its neighboring nodes, i.e., if the node 

determines that it has received a considerable number of 

COUNT_REQUEST messages, then the node will send 

a low number of COUNT_REQUEST messages with 

the aim of saving bandwidth in its neighborhood. 

b. Propagate unicast messages (COUNT_REPLY) from 

the nodes that are far away from the originator toward 

the originator with the total number of nodes counted up 

to now (called Total in the algorithm). 

 

Figure 2. Timing diagram. 

Timestamp PosXPosY SpeedX SpeedY nodeToGoBack fixedChannelNode

4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes 2 bytes



 American Journal of Networks and Communications 2017; 6(1): 1-19 5 

 

Fig. 2 depicts a timing diagram related to the propagation of the broadcast messages (COUNT_REQUEST) and the unicast 

messages (COUNT_REPLY). A description of the times involved (t1, t2, t3, t4, t5, t6, and t7) can be found in Table 1. 

Table 1. Description of times used for the propagation of COUNT_REQUEST and COUNT_REPLY messages. 

t1 = Time when a node receives the first COUNT_REQUEST 

t2 = t1 + RBCT_TIME 

t3 = t1 + RBCT_TIME + 1*INT_BTW_REQ 

t4 = t1 + RBCT_TIME +2*INT_BTW_REQ 

t5 = t1 + REQ_TO 

t6 = Time when the actual node receives a possible delayed COUNT_REPLY message from another node. 

t7 = Time when the actual node sends a possible asynchronous COUNT_REPLY message. 

 

Fig. 2 also shows that the nodes will rebroadcast up to 

three COUNT_REQUEST messages in row and also send a 

synchronous COUNT_REPLY message after a specific time. 

That is, in the worst case it will be necessary to send several 

times (3 times in the algorithm) the COUNT_REQUEST 

message, since it is a broadcast message that can collide with 

other messages without this being detected. In this new 

algorithm, each node X sends its COUNT_REPLY message 

to the originator directly or to another node (closer to the 

originator), using the following considerations: 

� If the originator is in the list of 1-hop neighbors and if it 

is still in the propagation range of node X (according to 

the computation of the distance between node X and the 

originator), then node X must send its COUNT_REPLY 

message directly to the originator. 

� Otherwise, if there is a node (let call it as node A) in the 

list of 1-hop neighbors of node X, and if node A is still 

in its propagation range (according to the computation 

of the distance between nodes X and A), and node A has 

a nodeToGoBack equal to the originator, then node X 

must send its COUNT_REPLY message to node A. 

� Otherwise, if node A is the nodeToGoBack of node X, and 

node B is the nodeToGoBack of node A, and node B is in 

the list of 1-hop neighbors of node X, and node B is still 

in the propagation range of node X (according to the 

computation of the distance between nodes X and B), 

then node X must send its COUNT_REPLY message 

directly to node B, in order to prevent 1 unnecessary hop 

(node X to node A and then, node A to node B). It is also 

possible to go beyond and avoid 2 unnecessary hops, 

when node C is the nodeToGoBack of node B, and node 

C is in the list of the 1-hop neighbors of node X, and node 

C is still in the propagation range of node X (according to 

the computation of the distance between nodes X and C), 

then node X must send its COUNT_REPLY message 

directly to node C. This can be generalized to avoid 3, 4, 

5, or more unnecessary hops. 

� Otherwise, if nodeToGoBack is in the list of 1-hop 

neighbors of node X and if it is still in the propagation 

range of node X (according to the computation of the 

distance between node X and nodeToGoBack), then 

node X must send its COUNT_REPLY message to 

nodeToGoBack. 

� Otherwise, when node X cannot send its 

COUNT_REPLY message to its nodeToGoBack 

because it is out of its propagation range, node X has to 

select a new destination node in the path toward the 

originator. From its list of 1-hop neighbors, node X 

chooses its new destination as the node that is currently 

closest in distance to the originator, i.e. by calculating 

the distance between the actual position of the 1-hop 

neighbors and the actual position of the originator, using 

the information (Timestamp, PosX, PosY, SpeedX, 

SpeedY) gotten in the BEACON messages (see Fig. 1), 

and the information of the originator (OrgTS, OrgX, 

OrgY, OrgSX, OrgSY) received in the 

COUNT_REQUEST messages (see Fig. 4). This 

distance is computed applying the following formula: 

��������	
���� = 
����	
��	 − 	��������� 	+ 	����	
��	 − 	���������                               (1) 

Where: 

newPosX= PosX+(SpeedX*(ActualTime-Timestamp)) 

newPosY= PosY+(SpeedY*(ActualTime-Timestamp)) 

newOrgX= OrgX+(OrgSX*(ActualTime-OrgTS)) 

newOrgY= OrgY+(OrgSY*(ActualTime-OrgTS)) 

� Now, if node X does not have any 1-hop neighbor 

currently (i.e., its list of 1-hop neighbors is empty), it 

will plan a new attempt to send its COUNT_REPLY 

message in the near future. 

� An asynchronous COUNT_REPLY message is sent by a 

node with a slight delay called DELAY_ASYNC, after 

receiving a delayed COUNT_REPLY message. This 

approach forces the cooperating nodes to update the 

actual counting of nodes, reaching a more accurate 

result [27]. 

� The other parameters that are also used in the algorithm 

are described here (see Fig. 2): 

� RBCT_TIME (Rebroadcast Time): Time between the 

reception of the first COUNT_REQUEST, and the first 

rebroadcast of the COUNT_REQUEST by the actual 

node. 

� INT_BTW_REQ (Interval Between Request): Time 

interval between the sending of COUNT_REQUEST 

messages. In other words, it also represents the time 

between two consecutive COUNT_REQUEST 

messages sent by the actual node. 

� REQ_TO (Request Timeout): It is the time between the 

reception of the first COUNT_REQUEST and the 
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moment when the actual node has to send the 

synchronous COUNT_REPLY message to a node, 

toward the originator. 

� TIME_TO_WAIT: It is the time a node waits after the 

rebroadcast of the third COUNT_REQUEST message 

and the sending of the synchronous COUNT_REPLY 

message to a node, toward the originator. This time 

must be big enough to allow the propagation of 

COUNT_REQUEST messages from the actual node 

toward nodes that are far away from the originator, and 

the propagation of the COUNT_REPLY messages from 

the nodes that are far away from the originator toward 

the actual node. By the way, TIME_TO_WAIT is not a 

constant value and will be computed by every node 

according to HopLimit and how far away it is from the 

originator (called HopAway in the algorithm). 

� DELAY_ASYNC: A small random time that a node 

waits after the reception of a delayed COUNT_REPLY 

message, and before the sending of the asynchronous 

COUNT_REPLY message. 

3.1.3. First Interface 

A static channel is assigned to the first interface. This 

channel is also called fixed channel or reception channel. 

There are two steps involved in the static channel 

assignment: (1) choosing the channel to be assigned to the 

first interface, and (2) informing neighbors about the fixed 

channel being used by the actual node through the 

transmission of BEACON messages. It ensures that a node 

intending to communicate with its 1-hop neighbors can 

switch its second interface to their fixed channel before the 

transmission. To balance the usage of channels, it is 

beneficial if other nodes in the neighborhood use different 

channels for their first interface. For this, each node 

maintains a table named NeighborTable containing the fixed 

channels being used by its 1-hop neighbors. Nodes also 

maintain a list named ChannelUsageList containing the 

number of 1-hop neighbors that are listening control 

messages in each orthogonal channel. 

3.1.4. Second Interface 

The second interface can be switched dynamically among 

multiple channels, also called as varying channels or 

transmission channels. This interface is mainly used for 

transmission, and the sender must switch the interface to the 

fixed channel of the receiver before transmission [29]. 

3.1.5. Fixed Channel Assignment Procedure 

The purpose of fixed channel assignment is to specify the 

receive channel of the current node for control messages, 

with the goal of minimizing interference with other nodes. In 

this regard, we apply the hybrid scheme [30] that divides the 

NICs on a node in two: one fixed NIC and one switchable 

NIC. While the fixed NIC is assigned to a particular channel, 

the switchable NIC switches over different orthogonal 

channels as required. In Fig. 3, we described the channel 

assignment procedure used by each node in the network to 

determine the channel used by its fixed interface. 

 

Figure 3. Fixed channel assignment procedure. 

The assignment of the fixed channel to the first interface of 

a particular node takes place with the following steps: 

a. Initially, each node is assigned with a random channel 

in its fixed interface and then the fixed channel 

allocation procedure (see Fig. 3) is used to decide the 

permanent channel on which fixed interface has to 

operate. The node tries to select the “best” channel 

based on information included in tables NeighborTable 

and ChannelUsageList. By the best channel, we mean 

the channel that is being less used by the 1-hop 

neighbors. 

b. Periodically, every node broadcasts a BEACON 

message on each channel to notify neighbors about its 

currently fixed channel. All nodes that receive a 

BEACON message will add/update an entry in their 

NeighborTable (1-hop neighbor table) for the sending 

neighbor, with the objective of maintaining fresh 

information about all neighbors. 

c. Eventually, a node is allowed to change its fixed 

channel, when the channel becomes too crowed. For 

that, the node will have to monitor its 

ChannelUsageList. If the node decides to change its 

fixed channel (to the channel with the least load), it will 

have to broadcast the information through a BEACON 

1. /* Channel Assignment Procedure  for Fixed Interface

        input: NeighborTable of the node                                    */

2. for each Neighbor in NeighborTable do

3. if Neighbor in NeighborTable uses Channel[j] then

4. ChannelUsageList[j] = ChannelUsageList[j]  + 1;

5. end if

6. end for

7. Find the channel with minimum counter in ChannelUsageList  and

    assign it to fixedChannelNode  (fixed interface) of the node
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message on all orthogonal channels, so that the other 

nodes can update their data structures (NeighborTable 

and ChannelUsageList). 

3.2. COUNT_REQUEST and COUNT_REPLY Messages 

Each node in the network transmits COUNT_REQUEST 

and COUNT_REPLY messages to its neighbors. The 

COUNT_REQUEST and COUNT_REPLY messages are a 

modified version of the one used in the implementation of the 

algorithms proposed in [26]. COUNT_REQUEST and 

COUNT_REPLY messages have the same Protocol Data 

Unit (PDU) and are composed of 10 fields (see Fig. 4). 

 

Figure 4. COUNT_REQUEST and COUNT_REPLY messages. 

The field Message Type can be either 0 or 1. It is used to 

identify the type of message. A value of 0 is for a 

COUNT_REQUEST, while 1 is for a COUNT_REPLY. 

Sequence Number is used to match requests with replies and 

to distinguish between different requests 

(COUNT_REQUEST). OrgTS (Originator Timestamp) is 

set by the originator when it sends a COUNT_REQUEST 

message. It is a timestamp taken by the originator at the 

moment of sending the COUNT_REQUEST message and is 

aimed to control out-of-date messages and replay attacks. 

(OrgX, OrgY) is the position of the originator at the moment 

of sending the COUNT_REQUEST message. (OrgSX, 

OrgSY) is the speed of the originator at the moment of 

sending the COUNT_REQUEST message. The originator 

and the nodes broadcast COUNT_REQUEST messages 

along with the argument HopAway which represents the 

number of hops-away the receiver of the 

COUNT_REQUEST message is from the originator. The 

originator, which starts the process, must specify a value of 

HopAway equal to 1. Each node that rebroadcasts the 

message will select the smallest HopAway received up to 

now and will increment this field by 1. HopLimit is a way 

to control how far away COUNT_REQUEST messages are 

propagated from the originator toward the other nodes. It 

delimits the counting range. The field Total is filled with 

the number of nodes counted up to now. In 

COUNT_REQUEST messages, it is always equal to 0. 

Before sending a COUNT_REPLY message, a node must 

update this field according to the COUNT_REPLY 

messages received so far, and add 1 to the sum that 

represents itself. 

3.3. Additional Information About the Algorithm 

The originator first sends three messages of type 

COUNT_REQUEST as broadcast with a HopAway equal to 1 

(separated by INT_BTW_REQ). When a node receives the 

first COUNT_REQUEST message, it will do the following 

after (see Fig. 1): 

� RBCT_TIME: the node rebroadcasts the 

COUNT_REQUEST with a HopAway equal to the 

minimum HopAway received by this time +1. The node 

also registers the ID of the node that sent the 

COUNT_REQUEST with the minimum HopAway, in 

variable nodeToGoBack. 

� RBCT_TIME + 1 * INT_BTW_REQ: the node 

rebroadcasts the previous COUNT_REQUEST message 

(because of possible collision with the first 

COUNT_REQUEST sent). If required, the fields of the 

COUNT_REQUEST message are updated. Also note 

that as specified in Section 5.1, the second rebroadcast 

of the COUNT_REQUEST is optional. 

� RBCT_TIME + 2 * INT_BTW_REQ: the node 

rebroadcasts the previous COUNT_REQUEST message 

(because of possible collision with the first and second 

COUNT_REQUEST sent). If required, the fields of the 

COUNT_REQUEST message are updated. Also note 

that as specified in Section 5.1, the third rebroadcast of 

the COUNT_REQUEST is optional. 

� REQ_TO: If the node did receive COUNT_REPLY 

messages, then the node computes the total of nodes 

based on variable Total received in COUNT_REPLY 

messages (+1 to represent itself in the total count) and 

sends the result to the closest node in the path to the 

originator, as a unicast message. If after REQ_TO the 

node did not receive any COUNT_REPLY message, 

then it generates a COUNT_REPLY with Total equal to 

1 (this 1 represents itself) and sends it to the closest 

node in the path to the originator, as a unicast message. 

� DELAY_ASYNC: If the node receives a delayed 

COUNT_REPLY message, then it recalculates the total 

number of nodes based on variable Total received in the 

COUNT_REPLY messages (+1 to add itself to the total 

count) and then sends the result to the closest node in 

the path to the originator, as an asynchronous 

COUNT_REPLY message. 

4. Environments and Scenarios of 

Simulation 

The algorithm that we propose in this paper was simulated 

with OMNeT++/INET. OMNeT++
1
is an open source, C++ 

based, multiplatform (Windows, MacOS, and Unix), discrete 

event simulator for modeling any system composed of 

devices interacting with each other. Its Graphical User 

Interface (GUI) is one of its main strengths, because through 

its GUI, users can create NED files (a description language to 

                                                             
1
 http://www.omnetpp.org 
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define the structure of the model) and inspect the state of 

each component during simulations. It has been used to 

model and simulate communication networks, operating 

systems, hardware architectures, distributed systems, and so 

on. 

The fundamental ingredients of OMNeT++, that 

distinguish it from other simulators, are its object-oriented 

component architecture and message passing mechanism. 

Components (modules) are programmed in C++, and then are 

assembled into larger components using a high-level 

language (NED), which allow users to describe and define 

the structure of the model. For simulations of data networks, 

OMNeT++ relies on external extensions, such as INET. The 

INET Framework is an open-source communication network 

simulation package for the OMNeT++ simulation 

environment. It contains models for several wired and 

wireless networking protocols, including UDP, TCP, SCTP, 

IP, IPv6, Ethernet, PPP, 802.11, MPLS, OSPF, and many 

others. 

We chose OMNeT++/INET because of its powerful GUI 

that facilitates the traceability and debugging of simulation 

models, by displaying the network graphics, animating the 

message flow and letting users peek into objects and 

variables within the model. Also, it is a very active project 

with many models that are constantly updated, making 

OMNeT++ a good candidate for both research and 

educational purposes [31]. 

For all the experiments, we selected WiFi (IEEE 802.11g) 

for the wireless communication standard, with a bitrate of 54 

Mbps. The free space propagation model was chosen for path 

loss. Different scenarios were simulated where nodes are 

randomly distributed over a rectangular area. The random 

waypoint mobility model was selected to reflect the most 

general scenario of node movements. 

5. Performance Study of the Simulations 

In this section, we study the performance of the multi-

interface multi-channel algorithm for counting nodes 

using wireless communications. We present details of the 

simulations that were executed in four types of scenarios: 

(1) in scenarios where both nodes and originator are 

stationary, (2) in scenarios with stationary nodes and 

mobile originator, (3) in scenarios with mobile nodes and 

stationary originator, and (4) in scenarios where both 

nodes and originator are mobile. Additionally, we 

executed simulations in scenarios where we varied the size 

of the rectangular area where the nodes and the originator 

are placed and can move. We compare the results of our 

new experiments with the ones obtained with the 

algorithm described in [26], reporting metrics such as: (1) 

counting accuracy, (2) response time to complete the 

counting, and (3) number of control messages required 

(COUNT_REQUEST and COUNT_REPLY messages sent 

by the nodes during the counting process). 

5.1. Scenarios with Stationary Nodes and Stationary 

Originator 

As with the proposed algorithm in [26], we performed 

various simulations for stationary scenarios, that is where the 

speed of the nodes and the originator are equal to 0 mps 

(meters per second). The nodes were randomly positioned in 

a squared scenario of 800m x 800m and the originator 

located in the middle of the squared scenario, starting the 

counting with a value of HopLimit=3. 

The aim of our first experiment is to show the importance 

of improving the number of COUNT_REQUEST messages 

that a node should send to its neighbor nodes (which is not 

always equal to 3). Depending on the number of 

COUNT_REQUEST messages actually received from its 

neighborhood, a node can decide not to rebroadcast more 

COUNT_REQUEST messages depending on condition (2), 

since the node has determined that a considerable number of 

COUNT_REQUEST messages have already been sent in its 

neighborhood. 

ThrCountReq*(3*TotalNeighborNode)>=NumRecvMsgNode                                               (2) 

In condition (2), the parameters are: 

ThrCountReq: Threshold that control the number of 

COUNT_REQUEST messages sent by the actual node. 

TotalNeighborNode: Total number of 1-hop neighbors of 

the actual node. 

NumRecvMsgNode: Number of COUNT_REQUEST 

messages received up-to-now by the actual node. 

Table 2 shows the results that we obtained when varying 

the total number of stationary nodes (10, 30, 50, 100, 150, 

200, and 250) and the value of ThrCountReq. The results in 

Table 2 are represented as values a/b/c/d, where a denotes the 

number of nodes that are within the scope of the originator 

using multihop routing (i.e., nodes that should be counted), b 

the number of nodes actually counted by the algorithm 

proposed in this paper, c the associated response time for 

counting, and d the total number of control messages 

(COUNT_REQUEST and COUNT_REPLY) sent by the 

nodes during the counting. We can observe that for low 

values of ThrCountReq, the algorithm performs a counting of 

nodes quite acceptable with a low response time and a small 

number of control messages. On the other hand, for high 

values of ThrCountReq, the algorithm performs a more 

accurate counting with an acceptable response time, but with 

a greater number of control messages sent by the nodes. 

Choosing the correct value for this parameter is a trade-off 

between an acceptable response time, a low number of 

control messages sent to by nodes, and a high accuracy of 

counting, so that application developers will have to select 

this parameter according to their needs. 
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Table 2. Importance of the number of COUNT_REQUEST messages sent by nodes. 

ThrCountReq 
Total Number of Stationary Nodes 

10 30 50 100 150 200 250 

0.1 7/7/2.67s/19 30/25/2.81s/39 50/20/2.55s/20 100/84/3.62s/109 150/132/2.82s/225 200/158/3.57s/329 250/188/3.64s/391 

0.2 7/7/2.38s/19 30/25/2.81s/37 50/39/2.42s/55 100/98/3.43s/165 150/140/3.51s/265 200/156/3.55s/376 250/189/3.66s/500 

0.3 7/7/2.38s/19 30/25/2.60s/37 50/49/3.10s/88 100/98/3.45s/182 150/145/3.51s/324 200/172/3.55s/431 250/198/3.53s/552 

0.4 7/7/2.38s/19 30/25/2.26s/43 50/43/2.55s/73 100/99/3.69s/233 150/134/3.58s/380 200/160/3.55s/501 250/180/3.53s/637 

0.5 7/7/2.67s/20 30/26/2.60s/48 50/46/2.53s/82 100/97/3.50s/266 150/133/3.20s/420 200/177/3.47s/615 250/194/3.98s/701 

0.6 7/7/2.67s/20 30/25/3.45s/44 50/47/2.55s/101 100/98/3.32s/297 150/138/3.58s/441 200/177/3.47s/615 250/185/3.93s/772 

0.7 7/7/2.67s/21 30/26/3.41s/51 50/50/2.55s/123 100/97/3.39s/305 150/138/3.29s/483 200/179/3.46s/663 250/177/3.48s/820 

0.8 7/7/2.67s/20 30/28/2.67s/56 50/47/2.58s/127 100/94/3.33s/334 150/133/3.58s/497 200/172/3.51s/703 250/210/3.61s/877 

0.9 7/7/2.67s/20 30/30/2.70s/73 50/47/2.39s/131 100/96/3.34s/347 150/135/3.52s/509 200/169/3.46s/712 250/175/3.61s/901 

1.0 7/7/2.67s/20 30/27/2.61s/76 50/48/2.42s/147 100/97/3.48s/349 150/130/3.51s/528 200/165/3.46s/730 250/177/3.53s/929 

 

To make it easier, let call Algorithm I the algorithm 

presented in [26], and Algorithm II the algorithm proposed in 

this paper. In Fig. 5, 6, and 7 we compare the performance of 

Algorithms I and II in different stationary scenarios, in terms 

of the number of nodes counted, the associated response time 

to count the nodes, and the number of control messages sent, 

where we varied the total number of static nodes (20, 30, 40, 

50, 100, 125, 150, 200, and 250) randomly placed in a 

squared scenario of 800m x 800m, and the propagation range 

of the nodes and the originator (100 m, 200 m, and 300 m). 

Based on the results of [26], we chose the following values 

for the parameters RBCT_TIME=0.2s, INT_BTW_REQ 

=0.2s, and ThrCountReq =0.3 (according to Table 2), with 

the purpose of getting a more accurate counting. The 

originator started the counting process with hopLimit=3. For 

each number of static nodes in Fig. 5, the results are divided 

into groups of three bars depending on the propagation range 

value, i.e., the three blue bars correspond to 100 m, the three 

purple bars to 200 m, and the three green bars to 300 m. 

Moreover, in these groups of three bars, the first bar indicates 

the number of nodes that are within the scope of the 

originator using multihop routing (i.e., nodes that should be 

counted), the second bar represents the number of nodes 

actually counted by Algorithm I, and the third bar shows the 

number of nodes actually counted by Algorithm II. For each 

number of static nodes in Fig. 6, the results are divided into 

groups of two bars depending on the propagation range 

value, i.e., the two blue bars correspond to 100 m, the two 

purple bars to 200 m, and the two green bars to 300 m. In 

each group of two bars, the first bar indicates the response 

time for Algorithm I and the second bar represents the 

response time for Algorithm II. Finally, for each number of 

static nodes in Fig. 7, the results are divided into groups of 

two bars depending on the propagation range value, i.e., the 

two blue bars correspond to 100 m, the two purple bars to 

200 m, and the two green bars to 300 m. For each group of 

two bars, the first bar indicates the total number of control 

messages sent by Algorithm I and the second bar represents 

the total number of control messages sent by Algorithm II. 

 

Figure 3. Nodes counted in different scenarios with stationary nodes and stationary originator. 
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Figure 4. Response time in different scenarios with stationary nodes and stationary originator. 

 

Figure 5. Total number of control messages in different scenarios with stationary nodes and stationary originator. 

We can see that Algorithm II exceeds substantially 

Algorithm I, by performing a more effective counting, with a 

smaller number of control messages, and a very acceptable 

response time, especially in scenarios where there is a high 

density of nodes (100, 125, 150, 200, and 250). For example, 

Fig. 5 shows that for a scenario of 200 nodes and propagation 

range equal to 300 m (the three green bars), the origin should 

count 200 nodes. Now when we run the simulations, 

Algorithm I counted 118 nodes (see Fig. 5), instead of 200, 

with a response time of 2.97 s (see Fig. 6) and a total number 

of control messages equal to 785 (see Fig. 7), which is a good 

approximation. However, Algorithm II counted 186 nodes 

(see Fig. 5), being more effective, with a response time of 

3.66 s (see Fig. 6), and a total number of control messages 

equal to 439 (see Fig. 7), which represents a minor counting 

error of 7.0% compared to 41% in Algorithm I. Regarding the 

simulations when the number of nodes is less than 100, 

Algorithm II is also very much more successful than 

Algorithm I. 

5.2. Scenarios with Stationary Nodes and Mobile 

Originator 

In this section, we analyze the performance of the two 

algorithms, in scenarios of stationary nodes and a mobile 

originator, in terms of the number of nodes counted, the 

associated response time to count the nodes, and the number 

of control messages sent. At the beginning of the simulations, 
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the static nodes were randomly positioned in the 800m x 

800m squared scenario. The originator was initially placed at 

the center of the scenario, and was moving according to the 

random waypoint mobility model (RandomWPMobility), 

without making stops at the visited positions, i.e., with a wait 

time of 0s. Also, for these experiments, we chose values for 

the parameters RBCT_TIME=0.2s, INT_BTW_REQ=0.2s, 

and ThrCoutReq =0.3. The originator started the counting 

process with a hopLimit=3. 

Fig. 8, 9, and 10 show the results of the simulations with 

100 nodes, where we varied the speed of the originator (3, 5, 

10, 20, 30, 40, 50, 60, and 70 mps) as well as the propagation 

range of the originator and the nodes (100 m, 200 m, and 300 

m). For each speed in Fig. 8, the results are divided into 

groups of three bars depending on the propagation range 

value, i.e., the three blue bars correspond to 100 m, the three 

purple bars to 200 m, and the three green bars to 300 m. 

Besides, in these groups of three bars, the first bar indicates 

the number of nodes that should be counted by the originator, 

the second bar represents the number of nodes actually 

counted by Algorithm I, and the third bar shows the number 

of nodes actually counted by Algorithm II. For each speed in 

Fig. 9, the results are divided into groups of two bars 

depending on the propagation range value, i.e., the two blue 

bars correspond to 100 m, the two purple bars to 200 m, and 

the two green bars to 300 m. In each group of two bars, the 

first bar indicates the response time for Algorithm I and the 

second bar represents the response time for Algorithm II. 

Finally, for each speed in Fig. 10, the results are divided into 

groups of two bars depending on the propagation range 

value, i.e., the two blue bars correspond to 100 m, the two 

purple bars to 200 m, and the two green bars to 300 m. In 

each group of two bars, the first bar indicates the total 

number of control messages sent by Algorithm I and the 

second bar represents the total number of control messages 

sent by Algorithm II. 

 

Figure 6. Nodes counted in different scenarios with stationary nodes and mobile originator. 

 

Figure 7. Response time in different scenarios with stationary nodes and mobile originator. 
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Figure 8. Total number of control messages in different scenarios with stationary nodes and mobile originator. 

We can note that Algorithm II has a higher accuracy than 

Algorithm I in the counting of nodes, specifically when the 

originator moves at speeds greater than 30 mps, since at these 

speeds the accuracy of counting of Algorithm I degrades 

dramatically. For example, Fig. 8 shows that for a scenario 

where the originator moves at a speed of 40 mps (144 km/h) 

and with a propagation range equal to 300 m (the three green 

bars), the originator should count 100 nodes. Now when we 

run the simulations, Algorithm I counted 58 nodes (see Fig. 

8), instead of 100, with a response time of 2.84 s (see Fig. 9) 

and a total number of control messages equal to 385 (see Fig. 

10). However, Algorithm II counted 97 nodes (see Fig. 8), 

being more effective, with a response time of 2.65 s (see Fig. 

9) and a total number of control messages equal to 195 (see 

Fig. 10), which represents a minor counting error of 3% in 

contrast to 42% of Algorithm I. 

5.3. Scenarios with Mobile Nodes and Stationary 

Originator 

In this section, we look at the performance of the 

algorithm when nodes are mobile, but the originator is static 

and placed in the center of an 800m x 800m squared area, 

based on the number of nodes counted, the associated 

response time to count the nodes, and the number of control 

messages sent by the nodes. For the movement of nodes, we 

used the random waypoint mobility model 

(RandomWPMobility) varying the speed of the nodes from 3 

mps to 70 mps, with a wait time of 0s (time interval between 

reaching a target and moving toward a new one). 

In Fig. 11, 12, and 13, we varied the propagation range of 

the nodes and the originator (100 m, 200 m, and 300 m). For 

all these scenarios, we chose 100 mobile nodes that were 

initially randomly placed in the 800m x 800m squared 

scenario with values for the parameters RBCT_TIME=0.2s, 

INT_BTW_REQ=0.2s, and ThrCountReq=0.3. The 

originator started the counting process with hopLimit=3. For 

each speed in Fig. 11, the results are divided into groups of 

three bars depending on the propagation range value, i.e., the 

three blue bars correspond to 100 m, the three purple bars to 

200 m, and the three green bars to 300 m. Besides, in these 

groups of three bars, the first bar indicates the number of 

nodes that should be counted by the originator, the second 

bar represents the number of nodes actually counted by 

Algorithm I, and the third bar shows the number of nodes 

actually counted by Algorithm II. For each speed in Fig. 12, 

the results are divided into groups of two bars depending on 

the propagation range value, i.e., the two blue bars 

correspond to 100 m, the two purple bars to 200 m, and the 

two green bars to 300 m. In each group of two bars, the first 

bar indicates the response time for Algorithm I and the 

second bar represents the response time for Algorithm II. For 

each speed in Fig. 13, the results are divided into groups of 

two bars depending on the propagation range value, i.e., the 

two blue bars correspond to 100 m, the two purple bars to 

200 m, and the two green bars to 300 m. For each group of 

two bars, the first bar indicates the total number of control 

messages sent by Algorithm I and the second bar represents 

the total number of control messages sent by Algorithm II. 

According to the results shown in Fig. 11, 12, and 13, we 

can observe that we have high accuracy in the counting of 

nodes with Algorithm II. We can see that the best results are 

obtained with values of the propagation range equal to 200 m 

and 300 m. For example, Fig. 11 shows that for a scenario with 

a propagation range equal to 300 m (the three green bars) and a 

speed of nodes equal to 50 mps (180 km/h), the originator 

should count 100 nodes. Now, when we run the simulations, 

Algorithm I counted 62 nodes (see Fig. 11), instead of 100 

nodes in 3.18 s (see Fig. 12), and a total number of control 

messages equal to 401 (see Fig. 13). However, Algorithm II 

counted 96 nodes (see Fig. 11), being much more effective, 

0

50

100

150

200

250

300

350

400

3 5 10 20 30 40 50 60 70

T
o

ta
l 

N
u

m
b

e
r 

o
f 

C
o

n
tr

o
l 
M

e
ss

a
g

e
s 

S
e

n
t 

Originator Speed (mps)



 American Journal of Networks and Communications 2017; 6(1): 1-19 13 

 

with a response time of 3.75s (see Fig. 12) and a total number 

of control messages equal to 204 (see Fig. 13). 

In Table 3, we chose a fixed propagation range of 250 m, 

but we varied the speed of the nodes (from 1 mps to 70 mps) 

and the number of nodes (10, 30, 50, 100, 150, 200, and 250) 

randomly placed in a squared scenario of 800m x 800m. The 

results for each speed of mobile nodes are divided in two 

rows (results for Algorithm I are in the upper rows and results 

for Algorithm II are in the lower rows). Cells of Table 3 are 

represented as values a/b/c/d, where a denotes the number of 

nodes that are within the scope of the originator using 

multihop routing (i.e., nodes that should be counted), b the 

number of nodes actually counted by the algorithm, c the 

associated response time to count the nodes, and d the total 

number of control messages sent during the counting. 

Table 3. Nodes counted when varying the speed of the nodes and the number of nodes (speed originator = 0 mps). 

Nodes Speed 

(mps) 

Total Number of Nodes 

10 30 50 100 150 200 250 

1 
7/7/2.89s/28 29/25/2.63s/86 50/46/2.84s/191 100/76/2.85s/370 150/116/2.98s/573 200/116/2.97s/779 250/115/3.76s/949 

7/7/1.63s/13 29/29/2.25s/57 50/50/2.44s/96 100/99/2.64s/178 150/141/3.38s/329 200/173/3.18s/432 250/224/3.79s/576 

3 
7/7/2.89s/32 30/27/2.61s/93 50/47/2.84s/194 100/83/2.87s/388 150/110/2.88s/591 200/143/2.96s/791 250/125/3.25s/961 

7/7/1.63s/13 30/30/2.54s/56 50/50/2.51s/91 100/98/2.95s/201 150/142/3.52s/338 200/174/3.60s/447 250/225/4.04s/664 

5 
10/10/2.02s/40 30/26/2.07s/96 50/49/2.84s/195 100/87/2.80s/394 150/97/3.69s/600 200/142/3.01s/788 250/135/3.71s/991 

10/10/1.63s/17 30/27/2.20s/36 50/50/3.09s/90 100/98/3.01s/195 150/146/3.55s/327 200/168/3.66s/437 250/200/3.97s/663 

10 
10/9/2.89s/37 30/23/2.78s/117 50/37/2.84s/200 100/89/2.81s/398 150/96/3.86s/597 200/150/3.83s/791 250/152/3.68s/997 

10/10/2.58s/16 30/30/2.52s/51 50/50/3.21s/89 100/98/3.51s/197 150/146/3.57s/300 200/170/3.54s/400 250/205/3.81s/695 

20 
10/10/2.89s/38 30/27/2.51s/120 50/44/2.84s/201 100/63/2.86s/397 150/80/3.34s/601 200/147/3.51s/794 250/138/3.88s/976 

10/10/2.72s/17 30/30/2.60s/54 50/50/2.72s/96 100/97/3.36s/201 150/143/3.69s/323 200/172/3.79s/443 250/203/3.98s/654 

30 
7/5/2.89s/29 30/20/2.08s/121 50/36/2.85s/195 100/64/2.93s/400 150/78/3.39s/588 200/109/3.89s/776 250/129/2.95s/982 

7/7/1.69s/14 30/29/1.69s/49 50/49/3.11s/112 100/92/3.32s/192 150/139/3.46s/317 200/169/3.99s/441 250/201/3.85s/635 

40 
8/7/2.89s/33 30/14/2.65s/108 50/37/2.89s/197 100/56/2.72s/391 150/90/3.59s/582 200/106/3.03s/794 250/133/3.96s/940 

8/8/1.66s/16 30/30/2.31s/54 50/50/2.96s/105 100/97/2.85s/210 150/136/3.88s/315 200/178/4.11s/485 250/211/4.05s/657 

50 
10/5/2.76s/37 30/18/2.73s/117 50/41/2.89s/199 100/53/2.95s/382 150/82/3.78s/585 200/107/3.89s/776 250/120/3.84s/979 

10/10/2.73s/18 30/29/2.51s/50 50/50/2.88s/86 100/94/4.47s/208 150/134/3.86s/319 200/174/3.79s/462 250/203/3.95s/623 

60 
10/6/2.76s/37 30/20/2.09s/111 50/34/2.84s/203 100/64/2.68s/391 150/64/2.89s/591 200/147/3.18s/767 250/115/3.95s/982 

10/10/1.65s/17 29/29/2.55s/62 50/49/2.95s/92 100/94/3.83s/195 150/137/3.91s/322 200/181/4.03s/492 250/197/4.15s/646 

70 
9/5/2.75s/36 30/23/2.69s/121 50/26/2.84s/194 100/39/3.83s/397 150/57/3.98s/576 200/94/3.71s/782 250/91/3.96s/982 

9/9/1.65s/14 30/30/3.79s/67 50/49/2.87s/98 100/89/3.01s/196 150/135/3.87s/327 200/169/3.64s/440 250/195/3.99s/647 

 

Figure 9. Nodes counted in different scenarios with mobile nodes and stationary originator. 
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Figure 10. Response time in different scenarios with mobile nodes and stationary originator. 

 

Figure 11. Total number of control messages in different scenario with mobile nodes and stationary originator. 

Based on the results obtained in the Table 3, we can see 

that for a number of nodes up to 150, Algorithm II performs 

an effective counting even for very high speeds compared to 

Algorithm I. Now, for both algorithms when there is a high 

density of nodes (when the total number of nodes is equal to 

200 and 250), the accuracy of the counting degrades, 

however it is still significantly more precise in Algorithm II. 

Additionally, the results obtained in question of response 

time and total numbers of control messages are substantially 

better for Algorithm II. For example, as reported in Table 3, 

for a scenario of 250 nodes and a speed of nodes equal to 50 

mps (180 km/h), the originator should count 250 nodes. 

When we run the simulations, Algorithm I counted 120 

nodes, with a response time of 3.84 s and a total number of 

control messages equal to 979, which are far below the 

results obtained in Algorithm II, with 203 counted nodes, a 

response time of 3.95 s, and a total number of control 

messages equal to 623. 

5.4. Scenarios with Mobile Nodes and Mobile Originator 

In this section, we report results for experiments of the 

proposed algorithm when both the nodes and the originator 

are mobile. At the beginning of the simulations, the nodes 

were randomly positioned in an 800m x 800m squared area, 

while the originator was initially placed at its center. Both, 

the nodes and the originator were moving according to the 

random waypoint mobility model (RandomWPMobility), 

without making stops at the visited positions, i.e., with a wait 

time of 0 s. For both, nodes and the originator, we chose 

RBCT_TIME=0.2s, INT_BTW_REQ=0.2s, and 

ThrCountReq=0.3. The originator started the counting 

process with a hopLimit=3. 

In Table 4, we selected a fixed propagation range of 250 

m, but we varied the speed of the nodes and the originator 

(from 1 mps to 70 mps), as well as the total number of nodes 

(10, 30, 50, 100, 150, 200, and 250). The results for each 
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speed of mobile nodes are divided in two rows (results for 

Algorithm I are in the upper rows and results for Algorithm II 

are in the lower rows). Cells of Table 4 are represented as 

values a/b/c/d, where a denotes the number of nodes that are 

within the scope of the originator using multihop routing 

(i.e., nodes that should be counted), b the number of nodes 

actually counted by the algorithm, c the associated response 

time to count the nodes, and d the total number of control 

messages sent during the counting. 

Similarly to the simulations of Table 3, for a number of 

nodes up to 150, Algorithm II performs an effective counting 

even for very high speeds compared to Algorithm I. Now, for 

a number of nodes equal to 200 or 250, in both algorithms 

the accuracy of the counting degrades, however being 

substantially better in Algorithm II. For example, we can see 

in Table 4 that for a scenario of 250 nodes, and a speed of 

nodes and the originator equal to 40 mps (144 km/h), the 

originator should count 250 nodes. When we run the 

simulations, Algorithm I counted 129 nodes, with a response 

time of 3.26 s, and a total number of control messages equal 

to 943. However, Algorithm II counted 198 nodes with an 

associated response time of 3.98 s and a total number of 

control messages equal to 707. The results obtained in 

Algorithm I are by far outperformed by those obtained in 

Algorithm II. 

Table 4. Nodes counted when varying the speed of the nodes and the originator as well as the number of nodes. 

Speed 

(mps) 

Total Number of Nodes 

10 30 50 100 150 200 250 

1 
7/5/2.05s/22 29/29/2.55s/83 50/45/2.84s/191 100/78/2.72s/376 150/104/2.98s/555 200/140/2.85s/767 250/115/3.22s/934 

7/7/1.70s/14 29/29/2.88s/60 50/50/2.72s/83 100/98/3.45s/204 150/140/3.72s/306 200/193/4.23s/525 250/218/3.79s/588 

3 
7/7/2.03s/28 30/24/2.63s/93 50/48/2.91s/192 100/86/2.85s/382 150/88/3.0s/579 200/127/3.85s/770 250/132/3.52s/979 

7/7/1.70s/14 30/30/2.23s/57 50/50/2.52s/88 100/100/3.64s/206 150/144/3.84s/304 200/190/4.01s/549 250/217/3.64s/586 

5 
9/9/2.55s/30 30/28/2.56s/114 50/48/2.84s/194 100/78/2.90s/379 150/92/3.33s/585 200/149/2.49s/767 250/156/3.87s/976 

9/9/1.71s/14 30/30/1.75s/55 50/47/3.26s/79 100/99/3.57s/206 150/144/3.77s/308 200/190/3.96s/553 250/208/3.57s/530 

10 
10/9/2.81s/40 30/25/2.49s/117 50/46/2.94s/200 100/67/2.95s/376 150/80/2.90s/549 200/148/2.99s/698 250/159/3.69s/940 

10/10/1.64s/22 30/30/2.00s/58 50/50/2.46s/88 100/100/3.06s/202 150/138/3.57s/320 200/187/3.81s/538 250/203/3.47s/689 

20 
7/6/2.48s/33 29/27/2.11s/83 50/32/2.90s/182 100/54/2.80s/370 150/93/3.01s/567 200/144/3.02s/794 250/130/2.90s/829 

7/7/2.96s/17 29/29/3.90s/55 50/50/2.62s/86 100/97/3.09s/210 150/143/3.84s/311 200/184/3.95s/544 250/194/3.42s/654 

30 
9/9/2.72s/38 27/22/2.72s/101 50/40/2.67s/191 100/84/2.84s/330 150/77/3.00s/576 200/142/3.80s/773 250/153/3.51s/946 

9/9/2.47s/15 27/27/2.20s/51 50/49/2.15s/86 100/100/3.15s/196 150/139/4.01s/355 200/182/4.39s/552 250/193/3.60s/575 

40 
9/8/2.87s/30 30/17/2.78s/102 50/17/2.94s/161 100/68/3.0s/379 150/59/2.90s/540 200/108/3.01s/779 250/129/3.26s/943 

9/9/4.06s/18 30/30/4.80s/61 50/47/2.60s/75 100/94/3.64s/216 150/144/3.78s/352 200/175/3.95s/678 250/198/3.98s/707 

50 
10/5/2.77s/37 30/13/2.78s/110 50/39/2.84s/194 100/43/2.87s/364 150/96/2.92s/486 200/43/3.50s/679 250/92/2.96s/796 

10/10/2.42s/19 30/30/2.75s/62 50/49/2.88s/92 100/96/3.92s/192 150/141/3.95s/381 200/176/3.68s/653 250/195/4.12s/695 

60 
10/5/2.48s/34 30/16/2.56s/96 50/24/2.91s/185 100/64/2.83s/373 150/51/3.13s/558 200/78/3.04s/767 250/66/2.94s/892 

10/10/1.90s/21 30/30/2.47s/52 50/49/4.03s/78 100/94/4.37s/242 150/139/3.64s/365 200/168/3.89/625 250/192/4.60s/689 

70 
10/3/2.51s/40 30/17/2.65s/102 50/29/2.74s/182 100/41/3.22s/379 150/56/2.74s/561 200/36/3.51s/665 250/102/3.91s/964 

10/9/1.69s/21 30/30/2.69s/54 50/49/3.12s/95 100/92/3.83s/267 150/142/3.86s/377 200/173/3.91s/637 250/189/3.92s/672 

Fig. 14, 15, and 16 show the results of the simulations for scenarios with 100 nodes, where we varied the speed of the nodes 

and the originator (from 3 mps to 70 mps), as well as their propagation range (100 m, 200 m, and 300 m). From there results, 

we can see that Algorithm II has a higher precision in the counting of nodes than Algorithm I, particularly in scenarios when 

the propagation range values are equal to 200 m and 300 m. 

 

Figure 12. Nodes counted in different scenarios with mobile nodes and mobile originator. 
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Figure 13. Response time in different scenarios with mobile nodes and mobile originator. 

 

Figure 14. Total number of control messages in different scenario with mobile nodes and mobile originator. 

5.5. Additional Experiments 

In this section, we study the behavior of the proposed 

algorithm when we vary the size of the area where the nodes 

and the originator are placed, and therefore, check if it 

presents scalability issues. To do this, we performed some 

experiments by changing the size of the rectangular area with 

a density of 100 nodes/km
2
 (see Table 5). At the beginning of 

the simulations, the nodes were randomly positioned in a 

rectangular area, while the originator was placed in its center. 

Both, the nodes and the originator were moving according to 

the random waypoint mobility model (RandomWPMobility), 

without making stops at the visited positions, i.e., with a wait 

time of 0s and a speed of 50 mps (180 km/h). For both, nodes 

and the originator, we chose RBCT_TIME=0.2s, 

INT_BTW_REQ=0.2s, and ThrCountReq=0.3, with a fixed 

propagation range of 300 m. The originator started the 

counting process with a hopLimit=3. In Table 5, from the first 

to the seventh column, we have: (1) the rectangular size of 

the simulation area, (2) the total number of nodes, (3) the 

number of nodes that are within the scope of the originator 

using multihop routing, (4) the number of nodes that the 

algorithms could count, (5) the associated response time, (6) 

the counting error in percent, and (7) the total number of 

control messages sent. Note that the last four columns have 

values represented as a/b, where a is for Algorithm I and b is 

for Algorithm II. In general terms, simulation results show 

that Algorithm II also performed well, in different rectangular 

areas, at high speeds, with a small number of control 

messages and an acceptable response time, being much more 

efficient than Algorithm I. 

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

3 5 10 20 30 40 50 60 70

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Nodes Speed (mps)

0

50

100

150

200

250

300

350

400

3 5 10 20 30 40 50 60 70

T
o

ta
l 

N
u

m
b

e
r 

o
f 

C
o

n
tr

o
l 

M
e

ss
a

g
e

s 
S

e
n

t 

Nodes Speed (mps)



 American Journal of Networks and Communications 2017; 6(1): 1-19 17 

 

 

Table 5. Nodes counted when varying the size of the rectangular area (mobil nodes and originator). 

Size of the 

Area 

Total Number 

Nodes 

Reachable 

Nodes 

Nodes Count 

Algorithm 

Response 

Time 

Counting 

Error 

Total Messages 

Sent 

500m x 500m 25 25 21/25 2.11s/1.70s 16.00%/0.00% 100/41 

500m x 750m 38 38 19/38 2.95s/2.72s 50.00%/0.00% 149/67 

500m x 1000m 50 50 28/49 2.56s/2.46s 44.00%/2.00% 151/89 

500m x 1250m 63 63 31/62 2.84s/2.59s 50.79%/1.58% 234/112 

500m x 1500m 75 63 29/55 2.88s/3.08s 53.97%/12.70% 214/133 

750m x 800m 60 59 22/59 2.81s/2.69s 62.71%/ 0.00% 198/130 

750m x 1000m 75 72 28/70 3.62s/2.67s 61.11%/2.78% 203/139 

750m x 1250m 94 91 56/85 2.79s/2.93s 38.46%/6.59% 298/162 

800m x 800m 64 64 28/64 3.07s/2.97s 56.25%/0.00% 235/127 

800m x 1000m 80 79 35/73 2.87s/2.78s 55.70%/7.60% 280/162 

800m x 1250m 100 85 24/82 3.59s/3.51s 71.76%/3.53% 276/182 

1000m x 1000m 100 98 55/86 2.84s/3.51s 43.88%/12.24% 296/187 

1000m x 1250m 125 95 26/91 3.82s/4.73s 72.63%/4.21% 249/184 

1250m x 1250m 156 122 44/101 3.06s/4.52s 63.93%/17.21% 338/228 

1500m x 1500m 225 120 45/104 2.76s/4.45s 62.50%/ 13.33% 327/326 

2000m x 2000m 400 241 53/198 2.82s/4.65s 78.00%/17.84% 665/672 

 

6. Conclusions and Future Work 

Multi-interface multi-channel wireless networks offer an 

aggregate bandwidth to users in the form of orthogonal 

channels. To take advantage of this possibility, new routing 

protocols, new channel assignment mechanisms, and in 

general new algorithms are required. In this research, we 

presented a novel multi-interface multi-channel algorithm to 

count nodes using wireless networks, based on ideas initially 

presented in [26]. The major enhancement in the new 

algorithm is the usage of two NICs in each nodes (only one 

NIC is required in [26]), with the intention to reduce 

interferences and collisions that occur between the counting 

PDUs (COUNT_REQUEST and COUNT_REPLY) and 

users’ traffic. For that, one fixed channel is used to receive 

incoming control messages in the first interface. On the other 

hand, the objective of the second interface is the sending of 

outgoing control messages, and its current channel is 

switched accordingly to the fixed channel of the receiver 

node. Additionally, we implemented a discovery protocol 

where BEACON messages are broadcasted periodically, 

allowing nodes to discover their 1-hop neighbors and infer 

their actual position and speed at any time. 

To validate and study the performance of our new 

algorithm, we performed simulations where we varied 

several parameters such as nodes’ speed, total number of 

nodes, signal propagation range, size of simulation area, etc. 

The results that we obtained with the algorithm proposed in 

this paper outperformed the ones of our previous algorithm 

[26]. The analysis indicates that our new algorithm efficiently 

computes a total number of nodes very close to the real one, 

even in scenarios where the nodes are moving at very high 

speed with a small number of control messages and an 

acceptable response time. 

As future work, we are interested in studying the 

application of our algorithm in the vehicular context 

(motorways, urban roads, rural roads, parkings, etc) using 

Wireless Access in Vehicular Environment (WAVE) [32], 

which could be used in applications to improve the safety and 

comfort of drivers and passengers. Also, many security issues 

will arise at the time of implementing the algorithm for a 

specific application, such as what nodes will have the 

authorization to start the counting process and how to enforce 

this policy to avoid flooding of the network or DoS (Denial-

of-Service) attacks. This is another direction that we are 

interested to explore as an extension of our work. 
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