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Abstract: Matrix inversion algorithm acting an important role in MIMO wireless communication.In this paper, we pre-

senta matrix inversion algorithm and it’s applications in the high speed MIMO LTE receiver which is based on floating point 

DSP. Matrix operations are the most costly computational module within MIMO receivers but a matrix inversion algorithm is 

very easy to compute and significantly reduce the computational module cost. We will demonstrate the MIMO LTE appli-

cations for reducing the module cost by square matrix inversion algorithms. 
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1. Introduction 

Multi Input Multi Output (MIMO) -Long Term Evolu-

tion (LTE) is the one of the newest technologies in wireless 

communications to improve bandwidth utilization efficien-

cy. The access mode of multi-user MIMO LTE using a 

popular digital scheme Orthogonal Frequency Division 

Multiple Access (OFDMA) for downlink and Sub-Carrier 

Frequency Division Multiple Access (SC-FDMA) for up-

link which provides high data rate in wireless environments. 

Multiple access channels are achieved in OFDMA by as-

signing narrow sub-bands, each narrow sub-band has a flat 

frequency response and frequency selective channel is 

converted into a lot of flat-fading sub-channels. This can 

achieve a higher MIMO spectral efficiency averaging in-

terferences from neighbouring cells and less affected to 

various kinds of impulse noise. The floating point DSP’s 

have better precision, higher dynamic range, and a smaller 

development cycle. These features result in reduced receiv-

er complexity. This paper is organized as follows: In sec-

tion 2, 3 and 4, we have described system model, matrix 

inversion algorithms and polar decomposition with matrix 

inversion respectively. The implementation and simulation 

results are illustrated in Section 5. Finally, conclusions are 

presented in Section 6. 

2. System Model 

Most of the detection or the equalization processneeds to 

invert a matrix which is either the channel state information 

( )W  or a nonlinear function of it (function ( )W ). If in-

creasing the number of transmitter and receiver antennas is 

provide a higher data rate and the dimension of matrix 

function ( )f w  increases, for more computations to invert 

the matrix in fewer times. In computing, floating point sys-

tem represents real numbers which support a wide range of 

values. The numbers are in general represented to a fixed 

point or fixed numbers are of significant digits and scaled 

using an exponent. The base for the scaling is normally 2, 10, 

and 16. Symbolic form * es b , where s is the value of the 

significant, b is the base, e is the exponent. The advantage of 

floating point over fixed point representation is that it can 

support a much wider range of values. The floating point 

format needs slightly more storage, if stored in the same 

space; floating point numbers achieve their greater range at 

the expense of precision. The speed of floating point opera-

tions is an important measure of performance for computa-

tion. For LTE application we have used MMSE equalization 

or detection algorithm. In Figure 1 shows the MMSE de-

tection block diagram. 

Let A is the 4x4 matrix for 4-steam MIMO-LTE and

ˆ
MMSEF , the MMSE output equalizer, the solution can be 

written as below [1]: 
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Figure 1. Block diagram of MMSE detector. 

3. Matrix Inversion Algorithms 

For matrix inversion, the size of the matrix is larger than 

2 2×  in fixed- point implementation. The fixed-point algo-

rithm has poor stability but floating-point work well and 

computation time requires fewer cycles like as cofactor, 

block-wise and systolic array method for matrix inversion 

operations as bellows: 

3.1. Matrix Inversion Using Cofactors Algorithm 

Let A be the n n×  matrix, the ijM is the determinant of 

the sub-matrices of A  and ijC  is the cofactor of ija , the 

matrix of cofactor formed 
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the cofactor ( 1)i j

ij ijC M+= − , where thi is the row, 
thj the 

column of the matrix A . The adjoint of A is the transpose 

of the matrix of cofactors and it is denoted by ( )adj A  . If 

A is invertible matrix then
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− = , for a 

MIMO LTE application we have used 4 4× matrix as an 

example, the inversion of a matrix A can be written as [10], 

[11]: 
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To compute sub-matrices 12M  where 1i =  and 2j =  

which will be neededfor 12C . To compute the determinant of 

the matrix we get by removing the first row and second 

column. Here is that work 
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Now we can get the cofactor of the matrix A , 
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. The determinant 

of sub-matrices can be calculated from its diagonal values. 

For floating-point implementation, one division is used for 

computation of1/ det( )A . 

3.2. Block-wise Matrix Inversion Algorithm 

Matrices can be inverted block-wise by using Schur 

complement. For matrix inversion divides a square matrix 

into equal small matrices. Let 4x4 matrixes A, it is divided 

into four 2x2 sub-matrices and inverses by using the fol-

lowing formula [8]: 

P Q
A

R S

 
=  
 

                    (4) 

where P m m= × , Q m n= × , R n m= × , S n n= ×  ma-

trix and S is the invertible. The inversion each sub-matrices 

of matrix A  as shown in Figure 5 and given by, 

1 1

1

1 1 1

X P QY
A

Y RP Y

− −
−

− − −

 −
=  − 

        (5) 

where
1 1 1 1X P P QY RP− − − −= +  and

1Y S RP Q−= − . 

 

Figure 5. Block-wise matrix inversion algorithm. 

The common parts of -1P  , 1RP−  and 1Y −  contributes 

to complexity reduction. If P Q , R  and S  are all scalars, 

the inverse of a 2 2×  matrix, 
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The matrix A  has complex conjugate symmetric values 

of non-diagonal components for all targets sub-matrices in 

the MMSE detection and ( )ps qr−  becomes a real value in 

this case. 

3.3. Systolic Array Process 

Systolic array is a computing communication processing 

which has some advantage like as synchrony, modularity 

and regularity, spatial and temporal locality, pipelining etc. 

For computation, it is a simple and regular design, network 

and balancing computation with input and output. The block 

diagram of the matrix inversion process and the complete 

multiplication of sub-matrices using a systolic array process 

in Figure 2 [2], [3], [6], Figure 3 and Figure 4 [6] the ele-

ment-wise inversion algorithm for matrix triangulization 

and it is involves local communication between nodes which 

is suitable for hardware implementation. The triangle has 

two different blocks. One is real values block and another is 

imaginary values block. These two parts perform rotations 

on each element in input matrix as shown in Figure 2. Vector 

operation on imaginary inputs valued which means it nulli-

fies the imaginary parts of a complex number and outputs 

the rotation angle to the real parts. Let A is the 4 4× input 

matrix and I  is the identity matrix or the controller of the 

system as shown in Figure 2. Initial state the operation of 

input matrix inversion is stored in storage block1. After 

receiving the first value, imaginary block start processing it. 

Imaginary block does not have to wait for the first step to 

finish and these two states can be pipelined. The imaginary 

block performs vector zing on the values and sends the 

rotation angle to the real block. The output of the imaginary 

blocks enters the real blocks for more processing. After 

processing, all values are stored in storage block 2. The final 

output inverse of a matrix A is stored in storage block 2. The 

identity matrix I  controls the flow of inputs and outputs to 

each imaginary & real block and storage blocks of the sys-

tem. In Figure 4, the tri-array provides upward and 

rightward communication channels, as opposed to the 

downward and rightward ones provided in the first phase 

processing. In Figure 4, if 45θ = ° and 

Let, 
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s in 4 5 c o s 4 5 12

i
U

i
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We can express by [11]: 
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where Λ is diagonal and phase shift matrices. 

 

Figure 2. Element-wise matrix inversion. 

 

Figure 3. Sub-matrices (3*3) multiplication using a systolic array algo-

rithm. 
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Figure 4 .The Parameters of the rotation angles { }i jθ emerge from the 

right side and data buffer to store these parameters with the top -row 

connected to the diagonal processing elements of the tri-array. 

4. Polar Decomposition with Matrix 

Inversion 

If A is non-singular square n n×  matrices, 
n nA ×∈ℂ this 

algorithm computes the polar decomposition,  

A QU VQ= =              (8) 

where Q is the orthogonal matrix, U is the symmetric 

positive definite matrix and right stretches. The forward 

(upper) operation  of the polar decomposition in A , 

2 *U A A=                    (9) 

where ( )*⋅  denotes transpose conjugate. Similarly the 

reverse (lower) case,  

A VQ=                (10) 

where
2 *V AA= whereV is symmetric and left stretches. 

The Principal rotation matrix as given by 

1 1Q U A AV− −= =                   (11) 

where
* *U Q A Q VQ= =  and

* *V AQ QUQ= = . If A is 

nonsingular non-square ( )m n×  matrices and m nA ×∈ℂ this 

can first calculate QR decomposition [7], 

A QR=                      (12) 

where
m nQ ×∈ℂ has orthogonal column, R is upper tri-

angular and nonsingular. The polar decomposition of A is 

given in term of that of R by 

( ) ( )
R R R R

A QR Q U V QU V UV= = = =       (13) 

Let Sub-matrices i j

a b
M

c d

 
=  
 

of matrix A , then a 

factor that makes unit columns vectors

det( )ij i j

d c
Q M sig n M

b a

− 
= +  − 

.The Polar decomposition 

factor Q is the closest possible to matrix ijM , with norm 

measured using Frobeniusnorm 
2

ij F
Q M−  . We can ex-

press 
2

ij F
M  as the diagonal sum and trace of *M M  us-

ing a symmetric Lagrange multiplier matrix r . 

[( ) ( ) ( ) ]T T

ij ijtrace Q M Q M Q Q I r− − + −      (14) 

We can differentiate with respect to Q and express by 

( )ijM Q I r QU= + =                   (15) 

where ( )I r+  is the forward polar symmetric positive 

upper triangular and right stretches matrix. Similarly we can 

write, 

( )ijM I r Q VQ= − =               (16) 

where ( )I r−  is the reverse polar symmetric lower tri-

angular and left stretches matrix. 

This factorization is the polar decomposition of ijM . We 

can write  

1 * 1( ) ( )MU MU I− − =                 (17) 

where
TQ Q I=  and symmetric inverse is given by 

1 * 1

2 *

U M MU I

U M M

− − =
∴ =

               (18) 

Similarly we can write by equation (17) 

2 *V MM=                     (19) 

From equation (2) matrix inversion of A to get an MMSE 

solution using lower and upper triangular, forward polar and 

reverse polar operations as below: 

1ˆ ˆ
MMSEF A y−=                  (20) 

where 
1ˆ H

nny W R y−= . 

For lower triangular case: 

2 *ˆ ˆˆ
MMSE MMSEy V F MM F= =                (21) 

and for upper triangular case: 

2 *ˆ ˆˆ
MMSE MMSEy F U F M M= =          (22) 

5. Implementation and Simulation Re-

sults 

Matrix A is a 4 4× matrix of complex, floating point 

values and output is the inverse matrix. In Figure 5, the 

sub-matrix 1 1P QY− −−  can be computed from the hermitian 

transpose of 1 1Y RP− −− . Matrix A has four 2 2×  sub-matrix 

arithmetic units. Matrix A has four 2 2×  sub-matrix 
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arithmetic units. These units are to be implemented using 

pipeline circuit in Figure 5 and Figure 6.The number of 

computation depends on the number antennas L and the 

cost of MMSE equalizer for 4 4× matrix inversion as fol-

lows [4]: 

3 210 5flopsf L L L= + + (23) 

The noise covariance matrix 
1

nnR−
 in equation (1) is a 

diagonal matrix and all diagonal elements are equal. We 

assume equal noise variance and additive white noise for all 

receive antennas. In Figure 6, the inverse channel matrix: 

( ) 1
1 2

k k k

H H

sc sc sc sc
W W W I Wσ

−− = + (24) 

The target matrix 
2

k k

H

sc sc sc
T W W Iσ= + and the output of 

the equalizer: 

1 1 1ˆ ( ) ( ) ( ) ( )
k k k k k k k

H H

MMSE sc sc sc sc sc sc scF t W y t T W y t A W y t
− − −= = = (25) 

where
1 1

ksc
T A− −=  and k

sc is  the number of sub-carrier 

and t  the number of step for MIMO receiver. The receiver 

complexity ( ){ }L
O E  where L is the numberof receiver 

antennas and the processing elements E . In Figure 6, the 

block floating scaling factors are settled to decrease the 

finite length errors in the 2 2×  sub-matrix multiplication 

and inverse units. Complex floating point operations (flops) 

scaling for each scalar complex addition count one flop and 

each complex multiplication count three flops. For square 

matrices n nA ×∈ℂ , n nB ×∈ℂ  , n nC ×∈ℂ and complex vector

1ˆ nd ×∈ℂ , the computational cost of   the matrix operation, 

number of flops and useful vector counts between QR and 

polar decompositions are as shown in Table 1.Simulation 

results from the matrix inversion algorithms using polar 

decomposition, floating point operation (25) we tested as 

shown in Figure 7and Figure 8. The BER performance on 

without channel matrix inversion is compared to that of with 

channel matrix inversion algorithm for 4 4×  case in which 

four receivers with the highest norm values are selected out 

of number of users has been shown in Figure 9.It can be 

mitigated noise enhancement very fast. 

 

Figure 7. Matrix inversion using polar decomposition (matrix size 16x16). 

Table 1. Compare to QR and Polar Decomposition. 

Matrix Operation 

 Number of Flops ( )f l o p sf
 

QR [4], [1] 

Decomposition 
Polar Decomposition 

A+B 
2n  

2n  

A*B 3
2 / 3n  

3 / 3n  

A*AH ( )3 2
4 / 2n n n+ −  

( )( ) 3
1/ 6N n−  

where 

. .N no of iterations=
1
2* *;A MM M QA= =  

C-1 3 24n n n+ +  3 2
2n n n+ −  

A*a 2
4 n n−  2

2n n−  

 

Figure 6. Block diagram of transmission architecture. 

 

Figure 8. 16x16 channel matrix inversion. 
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Figure 9. BER performance using matrix inversion algorith. 

6. Conclusions 

Matrix inversion is designed and implemented on various 

types of DSP’s like as Xilinx vertex 5 using cofactors, block- 

wise, systolic array and polar decomposition methods in 

floating point. All 32 bits are real and imaginary precision. 

One sign bit and 8 exponents bit. Word length ( )l  of 4 4×
the matrixhas a floating-point C block-wise cycles 

1 ( )
ksc

l A y t−+  and floating point cofactor 
1 ( )

ksc
l A y t−+  

and block-wise methods save about 3 to 4 times the 

fixed-point polar decomposition based inversion in terms of 

cycle counts. Polar decomposition factor (8) QU which are 

unique, independent coordinates, both efficient and easy to 

compute. So our proposed method increasing the matrix 

inversion processor clock speed and reduces the receiver 

computational module cost. 
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