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Abstract: The study of specific heat is motivated by the fact that a sudden change in the value of specific heat might be 
interpreted as a signal of a phase transition. It is also an established fact that multifractal analysis has been proved to be highly 
effective in characterizing fluctuations which is considered to be important tool for understanding the mechanism of quark-gluon 
plasma (QGP) in high energy nucleus-nucleus collisions. The Present research work provides some fascinating investigations on 
multifractal specific heat, c using the concept of entropy, fq which is found as a potential procedure in the study of multifractal 
specific heat along with the earlier known approaches. The investigations are done for the produced shower particles in nuclear 
emulsion detector for 28Si-nucleus interactions at 14.5 A GeV/c in the framework of generalized dimension. An attempt is also 
made to discuss certain universal properties of multifractal specific heat and entropy. We have computed c, by applying the 
methodology of modified and Takagi moments (Tq). Experimental results are compared with the predictions of LUND model 
FRITIOF. Moreover, the constant-specific heat method, which is based on the concept of entropy and is commonly accepted in 
conventional thermodynamics, is demonstrated to be suitable in multifractal thermodynamics also. The values of ‘c’ calculated 
from these methods are compared with constant specific heat approximations (CSHs) obtained using multifractal entropy (fq). It is 
found that the values of ‘c’, estimated using Takagi approach are consistent with those of Bershadskii's work as compared to those 
calculated using (Ga

m) moments and multifractal entropy, fq. This is obtained for both experimental and for the FRITIOF 
generated data for the three types of interactions namely, CNO, emulsion and AgBr. The findings of this paper reveal useful 
information regarding the choice of method used and our results are consistent with CSH approximation for both experimental 
and simulated data and also in conjunction with recent studies on multifractal specific heat. 

Keywords: Multiparticle Production, Entropy, Multifractal Specific Heat, Relativistic Nuclear Collisions,  
Quark-Gluon Plasma, Multifractality 

 

1. Introduction 

The description of multifractality in thermodynamic terms 
[1] enables the investigation of fractal features of stochastic 
systems using ordinary thermodynamic concepts such as 
phase transition [2]. The methodology of modified ��� and 
Takagi moments, widely documented [3-5] and applied in 
our earlier works [6-8] assist us in obtaining multifractal 
spectra for both experimental and simulated data. The 

methodologies of the generalized dimensions, Dq, obtained 
from these two methods are given in appendix I and II of this 
paper. The thermodynamical picture of multi-particle 
production in high energy relativistic nuclear collisions can 
be very well understood by extracting a basic quantity, the 
multifractal specific heat, ‘c’ in terms of ��� and Tq moments 
[3-5] for both data sets. This parameter ‘c’, might also be 
used as a customary attribute of the particle production in 
high energy nuclear collisions [9]. Bershadskii [10] provided 
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a thermodynamic explanation of the concluded outcome with 
reference to CSH. It is well known that in regular 
thermodynamics, constant specific heat is extensively 
significant in many important circumstances; for example, 
the specific heat of gases and solids is actually a consistent 
absolute temperature throughout huge or lower temperature 
intervals [11].  

In this paper an attempt is made to explore the thermal 
properties and their manifestation due to underlying physics 
which is considered important aspect for understanding the 
mechanism of multiparticle production and hunt to discern 
the hadronization process with regard to fractal measures. As 
stated earlier we have calculated multifractal specific heat, c 
using the modified ���  and Takagi moments for the 
interaction of 14.5A GeV/c 28Si nuclei with the three groups 
of targets, namely CNO, emulsion and AgBr. The 
experimental results are also analyzed to the results acquired 
from LUND model, FRITIOF generated data. 

It may be worth mentioning that we have also extracted c, 
using CSH approximation by calculating the multifractal 
entropy fq, as we found scarcity of the literature on 
multifractal entropy [10]. This paper strengthen some 
significant information as it apply the approach of 
multifractal entropy fq for estimating c, for both experimental 
and FRITIOF simulated events on 14.5 A GeV/c for the three 
types of collisions namely, CNO, Em and AgBr. 

The mathematical formalism of Bershadskii concept of 
multifractal specific heat, c is widely discussed in the 
literature [6, 8, 10, 12, 13]. The generalized dimension 
equation, Dq, may be derived from modified ��� and Takagi 
moments, Tq which helps extracting ‘c’ is given below for the 
ready reference for the readers. 

D�	≅	�	
��
� ���
�����

                                   (1) 

In Eq. (1) ‘a’ denotes the information dimension, D1, and 
‘c’ is the constant specific heat. In this case q might be 
understood as the temperature’s inverse q = (�
�) [11, 14]. In 
the next section the concept of multifractal entropy is briefly 
discussed along with its mathematical formalism used to 
obtain constant specific heat approximation, denoted by ‘ca’. 

2. Multifractal Entropy and  

CSH-Approximation1 

The concept of entropy owes its origin to the work of 
Rudolf Claudius [15] who popularized its usage in 
thermodynamics, the quantity of energy in a system that 
cannot create work is measured. Physicists, like Boltzmann 
[16, 17], Gibbs [18], etc. are generally credited in the 
literature to have contributed towards the development and 
refinement of this concept further. Since then, the role and 
applicability of the concept of entropy, as a measure of 
various properties (energy that cannot be converted into 

                                                             
1 This mathematical formalism of CSH approximation using multifractal entropy 

draws upon [10] 

work, disorder, uncertainty, randomness, complexity, etc.) 
has widened to appear in several scenarios, such as 
thermodynamics, statistical mechanics, information theory, 
measure-preserving dynamical systems, typological 
dynamics, and so on [19]. Due to its fascinating features, the 
science of entropy attracted the attention of researchers, not 
only from Physics, but also from other disciplines, including, 
Logic and Statistics, Biology and Economics. However, the 
notion of entropy has been termed differently depending on 
what context it is applied in. For example, when entropy 
concerns energy loss and is applied to explain 
thermodynamic principles, it is termed as thermodynamic 
entropy, when it concerns data loss, it is known as 
information entropy (or Shannon’s entropy) [20], similarly, 
Hartley’s entropy (which precedes Shannon’s entropy) [21] 
and R´enyi’s entropy (generalization of Shannon’s entropy) 
[22]. High energy physicists [23–32] have intensively used 
the science of entropy to investigate the possibility of the 
occurrence of the formation of Quark-Gluon-Plasma (QGP) 
and to get a better understanding of the underlying 
mechanism of multi-particle process in high energy nuclear 
collisions (also often referred to as multifractal entropy). In 
reality, the study of entropy is important not only in the 
search for the development of QGP states but also in 
studying correlations and event-by-event variations. Guided 
by the purpose of the present paper, the method of entropy 
(or multifractal entropy for our purpose) is applied to 
calculate specific heat, ‘c’, defined by Eq. (1) and the 
mathematical procedure to do this are outlined below. 

Let us consider a thermodynamic interpretation of 
multifractality [1, 2]. As discussed earlier it is well accepted 
that in usual thermodynamics, constant specific heat is 
extensively relevant in various important cases, for instance, 
the specific heat of gases and solids is truly consistent and 
independent of temperature, spanning a bigger or smaller 
temperature gaps [11]. 

Let us assume that the entire volume of a sample is a d-
dimensional cube of size L. We partition this volume into N 
boxes of linear dimension l (N~ (L/l)d). Each box is labeled 
with the index i, and the measure function of a field ���, �� is 
constructed for each box. 

��	��� = � ������∞

�                            (2) 

The volume of the ith box is denoted by vi. The generalised 
dimension, Dq, can thus be expressed as follows [2] 

!� = "#$�� %⁄ →(�
�)*+���,

��
��*�)�� %⁄ �,                     (3) 

The partition function may now be described using the 
following equation: 

-�.� = ∑ ��
�

�                                 (4) 

As a result, the following scaling relationship emerges: 

-�.� ∼ �" 1⁄ �2���                         (5) 
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Here, 3�.� = !��. − 1�                    (6) 

Furthermore, the partition function may be written as: 

-�.� ≃ �7 �8��" 1⁄ ��9
:�9��8             (7) 

Here α represents the singularity strength of the measure µ 
and the f(α)-singularity spectrum characterize the statistical 
distribution of the singularity exponent α. In the limit 
(l/L) → 0 , the sum (7) is dominated by the 

term �" 1⁄ ���)<*�9
:�9�, . Now from 	3�.� , one gets the 
following equation 

3�.� = $#=9*.8 − >�8�,                 (8) 

As a result, 3�.� is achieved by Legendre converting the 
f(α). When f (α) and 3�.� are smooth functions, the equation 
(8) may be expressed as follows: 

3�.� = .8 − >�8�, ?:
?9 = 8                 (9) 

As stated already, according to the thermodynamic 
interpretation of these equations, q may be described as an 
inverse of temperature q=T−1 and the limit (l/L)→ 0 can be 
seen as the thermodynamic limit of infinite volume (V= ln 
(L/l)→ ∞� . The partition function may then be rewritten 

under the known form by associating∝� = 
"=��

ln	�1 "D �E  with 

the energy Ei (per unit of volume) of a microstate i,  

-�.� = ∑ F�G� �−.H��                     (10) 

From the definition f(α) = lnNα((l/L)) / ln(L/l), the 
singularity spectrum f(α) plays the role of the entropy (per 
unit of volume). The attribute structure of plots f (α) versus α 
is reminiscent of plots of the dependence on E of the entropy 
for the thermodynamic systems. 

Let us now propose the concept of constant specific heat 
(CSH) approximation. In this situation, the entropy is 
approximated by [11]: 

>�.� = I − JK"=.                           (11) 

The constant specific heat is denoted by 'ca.' Now, using 
Eqs. (6), (9), and (11), one may calculate the CSH-
approximation from the generalized dimensions provided by 
Eq (1). 

3. Details of the Data 

In the present experiment arandom data sample which 
consists of 605 interactions with nh ≥ 7 have been examined, 
where nh represents the number of relativistic charged 
particles emitted from interaction having energy of 14.5A 
GeV 28Si14-nucleus interactions with their relative velocities 
β≤0.7 are analyzed. Moreover, other significant information 
concerning the stacks, criteria for selecting the events and the 
method of measuring emission angles may also be found in 
Powel’s book [33] and elsewhere [34-36]. Furthermore, the 
experimental results of the present work are compared with 
the predictions of LUND model, FRITIOF, which are 
simulated to match the true experimental data. 

4. Results and Discussion 

Figure 1 depicts the variations of the generalized 

dimensions, Dq, versus 
�)�

��
��  obtained from modified ��� 

moments for order, q = 2-6 for experimental data on 14.5 A 
GeV/c 28Si14-nucleus collisions. The best linear fit straight 
lines are drawn for comparison with CSH-approximation 
(Eq. (1)). Nearly comparable patterns were found for the 
FRITIOF generated events. The values of multifractal 
specific heats, ‘c’, estimated from this figure along with 
FRITIOF generated data are presented in Table 1. It is 
interesting to mention that the value of ‘c’ is found to 
increase with increasing target size, while it is consistent 
around 0.24 for the three classes of interactions for the 
FRITIOF simulated events. Table 1 seems to suggest that the 
values of ‘c’ for the experimental events using modified ��� 
are far less consistent for all the three categories of collisions. 
Furthermore, several high-energy physicists have obtained 
remarkably comparable multifractal specific heat values [7, 
12, 37-38]. 

Table 1. Values of multifractal specific heat, ‘c’, from modified	���, Takagi moments and multifractal entropy, fq for the experimental and FRITIOF simulated 

events on 14.5A GeV/c 28Si-nucleus interactions. 

DATA TYPE ‘cm’ (Modified LMNmoments) ‘cT’ (Takagi moments) ‘ca’ (Multifractal entropy) 

EXPT.  
CNO 0.78±0.08 0.21±0.01 0.47±0.004 
EMULSION 0.88±0.07 0.15±0.01 0.49±0.003 
AgBr 0.98±0.09 0.28±0.003 0.62±0.005 
FRITIOF  
CNO 0.23±0.01 0.16±0.02 0.15±0.03 
EMULSION 0.28±0.02 0.21±0.02 0.23±0.04 
AgBr 0.22±0.01 0.20±0.006 0.19±0.02 

Note: In this table ‘c’ stands for constant specific heat approximation and the subscripts m, T and a indicate the method of modified���, Takagi moments and 
multifractal entropy f(q) respectively used to compute ‘c’. 

For extracting multifractal specific heat, ‘c’, from Takagi 

moments (Tq), we have plotted Dqagainst 
�)�

��
�� for 

experimental data for 28Si-nucleus-collisions in Figure 2 and 

carryout linear best fits with respect to CSH-approximation 
(Eq. (1)). It is worth noting that a similar pattern was seen for 
the LUND model, FRITIOF simulated data set, suggesting 
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the importance of Bershadski's interpretation of 
multifractality [39] in the context of a phase transition. 
Furthermore, for the FRITIOF data, multifractal specific heat 
c values diverge somewhat from the comparable 
experimental values. On the other hand, a finite non-zero 
value of c appears to be a good indicator of the presence of 
multifractality in the distribution of relativistic charged 
particles produced [13, 37]. 

The values of c for both the data sets are furnished in Table 
1. It may be pointed out that the values of c, evaluated from 
both the data sets for all the three classes of interactions are 
increases with increasing target size and reveal some 
universality. 

 

Figure 1. The generalized dimensions Dq vs lnq / (q-1) plots for the 

experimental data on 14.5A GeV/c 28Si-nucleus interactions (Modified 

���moments). 

Figure 3 depicts the variations of multifractal entropy f(q) 
against lnq which is calculated using Eq. (11). One can also 

extract the values of specific heat, ca, from this figure. A 
linear best fitted straight line shows a good agreement 
between CSH-approximation and the experimental data 
points. The estimated values of constant specific heat, ‘ca’ ∼ 
0.52 from this figure is less consistent for the experimental 
data points. However, for the FRITIOF generated events the 
consistency in the values of ‘ca’ is observed even using 
multifractal entropy fq. This may be attributed to the fact that 
lower statistics of experimental data are considered in the 
present work. Our findings, however, are consistent with 
those of Bershadski [10]. 

A noticeable trend to observe from Table 1 is the increase 
in the values of ‘c’ for the three classes of collisions, CNO, 
emulsion and AgBr for the experimental data points across 
all the three methods used and consistency in the values of c 
have been observed for the FRITIOF simulated data. 

 

Figure 2. Dependence of the generalized dimensions, D
q
 on lnq / (q-1) for 

the experimental data (Takagi moments, Tq). 
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Figure 3. Variations of multifractal entropy f (q) with lnq for 14.5A GeV/c 
28Si-nucleus interactions. 

5. Conclusions 

The empirical results of this paper lead to the following 
observations: 

The values of the multifractal specific heat, c obtained 
using modified ��� as well as by multifractal entropy (CSH) 
are less consistent as compared to those computed using 
Takagi moments, for the experimental data set for all the 
three target sizes. However, a close consistency is observed 
for the values of ‘c’ estimated using all these three methods 
and across three categories of interactions for FRITIOF 
simulated data. It is also to be noted that the values of c, 

computed using Takagi moments are almost in conformity 
with CSH approximation obtained by Bershadskii. On the 
other hand, a finite non-zero value of c appears to be a good 
indicator of the presence of multifractality in the distribution 
of relativistic charged particles produced. 

These results seem to suggest the superiority of Takagi 
approach over modified ���  and also over multifractal 
entropy, while extracting the values of constant specific heat 
as a universal characteristic of thermodynamics process in 
multi-particle production in relativistic nuclear collisions. 
They also signify the role of high multiplicity events for the 
better explanation of the mechanism of multi-particle 
production process in these collisions. The common feature 
of multifractal specific heat, c extracted using the three 
approaches is that the values of ‘c’ increase with increasing 
target size (CNO, emulsion and AgBr) for the experimental 
data. Thus, analysis of multiparticle production data develop 
quite interesting and effective way for describing fluctuations 
and describe effectively mechanism and thermodynamic 
behavior of hadronization process in regard to fractal 
measures. The new frontier created by the LHC's high 
multiplicity events provides fertile ground for investigation 
of fluctuations and phase transitions that would not be 
possible at lower energies. 
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Appendix 

Appendix 1. Determination of Generalized Dimension 

Using Modified OPQ Moments 

To separate the dynamical and statistical fluctuations and 
examine the self-similar cascade process, the statistical 
component must be suppressed. Hwa and Pan's modified ��� 
moments are employed for this purpose. 

��� =	∑ RS�TU
SV� W*=S − .,                       (12) 

Where W*=S − ., represents the step function, which is 
unity for =S >  1 and disappears in all other situations. 
Summation is performed exclusively on non-empty bins 
YZ  in this case. The symbols Pj and =S  have the same 
meaning as in the case of normal Gq moments. When the 
particle multiplicity is great enough = YD ≫ . , ��  and 
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���moments are almost similar. According to the idea of 
multifractality, a self-similar particle emission process 
should display power-law behavior of the form: 

��� 	 ∝ 	Y
\]̂                                  (13) 

where ��� denotes the modified mass exponent which can be 
retrieved from the following equation. 

��� = 
∆	�)〈a]̂ 〉
∆ cdT                                   (14) 

The dynamical component of 〈���〉 can be estimated from: 

〈��
?e)〉 	= 	 f 〈a]̂ 〉

〈a]ghih〉jY�
�                        (15) 

MonteCarlo produced events are utilized in the calculation 

of 〈��k\K\〉 . It is also worth noting that 〈��
?e)〉 has the 

following power-law dependency on M: 

< ��
?e) >	∝ Y
\]mno

                             (16) 

where 

��?e)= ��� − ��k\K\ + . − 1                        (17) 

Where ��k\K\ is the statistical part's slope. If 〈���〉 =〈��k\K\〉, 
then 〈��

?e)〉  is Y�
� is the outcome for trivial dynamics, 
according to Eq. (15). The result of trivial dynamics is 

��?e) =. − 1 . Any departure from this would indicate the 
presence of dynamical fluctuations. 

The generalized dimensions, !�
\e), are considered to be the 

most and important property of the fractals and are envisaged 
to represent scaling behavior. Generalized dimensions are 
defined as: 

!�
\e) 	≅ 	 \]

mno

�
�                                (18) 

We calculated the values of !�
\e)  using Eq. (18) for 

various orders of the moments. 

Appendix 2. Determination of Generalized Dimension 

Using Takagi Moments 

The multifractal moments, Gq, and modified ��� 
moments all have one or more limitations. In an event, the 
mathematical limit of phase space partition number 
(M→ ∞� cannot be realized in actuality due to the finite 
number of relativistic charged particle multiplicity, ns. 
Even the step function, W which was incorporated in the 
formulation of the modified ���  moments, cannot totally 
eliminate the saturation effects, especially at higher |.| 
levels. Non-statistical fluctuations of the high multiplicity' 
of hadrons produced in hadronic and nuclear collisions at 
extremely high energy may therefore be investigated. 
Takagi and Miyamura conducted substantial study on this 
topic. 

Takagi believes that the particle density, R�S , is linked to 

���rs� in the following fashion: 

���rs� = ln∑ ∑ RS���V�TSV�  for . > 0           (19) 

where q denotes the moment's order It should be noted that 
the above formula is analogous to a linear logarithmic 
function of resolution, t�rs�, of the form: 

���rs� = u� + v�lnt�rs�                   (20) 

where the constants u� and v�  are independent of rs and for 
a given range of	t�rs�, generalized dimension, !� , can be 
computed from: 

!�  = 
w]

��
��                                (21) 

Takagi has modified Eq. (20) to estimate the fluctuations 
as follows: 

"=〈=�〉 = u� + *v� + 1, lnt�rs�              (22) 

It's worth noting that the parameters v�  and !�  are 
unaffected by the bin width,rs. The generalized dimensions, 
!� ,	for q = 2,3,4,5, and 6, may be calculated using the slope 
values found by Eq (22). However, the value of the 
information dimension !�  may be computed using the 
following relationship: 

〈)�))〉
〈)〉  = x� + !�"=〈=〉                             (23) 

Thus, !� can be obtained from the slope of the variation of 
〈)�))〉

〈)〉  with"=〈=〉. 
A declining trend in the values of !�  with the order of 

moment, q would suggest the existence of multifractality in 
the multiplicity distribution. However, if the !�  remains 
constant with increasing order of moments, q the conclusion 
is monofractality. 

Takagi also proposed that the information on entropy may 
be calculated from a simple equation: 

y�rs�= - 
〈)�))〉

〈)〉  + lnz                              (24) 

This is not the same as Simak's study on entropy [14]. 
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