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Abstract: Elastic scattering phenomena arising in electron-helium scattering are dominant processes. The determination of 

accurate elastic differential cross sections for electron-helium scattering has a considerable importance. An accurate calculation 

of the plane-wave first Born exchange amplitude of electrons elastic scattering by helium atoms is reported. The direct and 

exchange amplitudes are calculated analytically from the Hartree-Fock orbital wave functions by using a variational method. The 

forms of these wave functions are very suitable for analytical calculations and powerful to generalize to more complex atomic 

systems. The interaction potential is modelled by the static Coulomb interaction between the incident electron and the atomic 

system. The differential cross sections are calculated at intermediate energies taking into account the exchange effects. We have 

established in the high energies region, by neglecting the exchange effects, the analytical expressions of the total and momentum 

transport cross sections suitable for the calculation of the plasma transport properties. A very compact form of the Born 

amplitude has been proposed as a finite series of Gaussian functions, which represents a major tool in the calculations of 

differential cross sections of two-electron atomic systems. Numerical results are used to analyze the contribution of the exchange 

amplitude to the differential cross sections at intermediate and high energies. The differential cross sections are calculated for the 

energy range 30-400 eV. We find good agreement in high energy domain scattering with experimental results and other 

sophisticated calculations without using any adjustable parameter. 
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1. Introduction 

Many research has been done in the recent past to study the 

elastic diffusion of electrons by atoms, ions, molecules or 

solids both theoretically and experimentally [1-9]. The 

differential cross section for elastic scattering of electrons by 

neutral atoms has been investigated by many authors [10-13]. 

Many theoretical models are employed to deal with the 

interaction potential during the diffusion process [14]. Y. 

Kucut et al. have presented a new potential set by deriving a 

formula for the depth of the real and imaginary parts of the 

optical potential for  �He elastic scattering at low energies 

[15]. 

In this paper, we present a theoretical approach to such 

processes based on a detailed study of the first Born 

approximation. We proceed to the accurate calculation of both 

the direct and exchange amplitudes. Our method applies 

essentially to the regions of intermediate and high energy. In 

the low energy domain, the first Born approximation will be 

inappropriate because many processes can occur as wave 

distortion, polarization of the target... The introduction of the 

exchange term in the evaluation of the differential cross 

section contributes to a significant improvement of the first 

Born approximation results. The choice of the shape of the 

radial wave functions is crucial for determining the exchange 

term. To describe the quantum process of the scattering of an 

incident particle given by a potential, we must first study the 

behavior over time of the wave packet which represents the 

quantum state of this particle. The characteristics of this wave 

packet are assumed to be known for the long and 

post-collision times when the particle has not yet been affected 

by the interaction potential. We know that the future evolution 

of the wave packet is obtained immediately if we apply the 

fundamental theorem of the superposition of stationary states. 

This is the reason why we are going to study the eigenvalue 
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equation of the Hamiltonian of relative motion. We investigate 

directly on these stationary states and not on the wave packet. 

The eigenstates of the Hamiltonian of relative motion must 

verify the Schrodinger equation which the exact analytical 

resolution is only possible so far for simple atomic systems. 

For complex systems, several approximation methods exist, 

either numerical or analytical [16-18]. In this work, the radial 

functions of the Slater type with variational parameters are 

been used. This choice reduces drastically the difficulties 

linked to analytical calculations but also the time of numerical 

calculation. However, we lose precision in the results obtained 

with these radial functions. The polarization effects, which are 

energy-dependent, are not taken into account in this study. The 

potential due to the polarization can be neglected in the 

asymptotic region for diffusion since it is proportional to ��� 

in comparison to the Coulomb static potential which is in ���. 

In low energy scattering, the projectile polarizes the target. 

The polarization potential must be introduced in the 

determination of the differential cross section. The first Born 

approximation can predict the correct scattered amplitude for 

small target which has relatively small atomic number Z. On 

the other hand, the calculation of the phase is inaccurate in the 

first Born approximation [19]. At low scattering energies, and 

especially near the scattering center, the interaction 

substantially changes the state of the projectile, so the 

approach by the plane wave function becomes inaccurate. It 

appears the phenomena of distortion of the wave functions. It 

is necessary in calculations, to take account these effects. 

The independent model is adopted here by neglecting the 

correlation effects between the two atomic electrons. The 

model is expected to be less applicable for diffusion. The 

Hartree-Fock slater wave functions are widely used in various 

atomic processes dues to their applicability in different 

calculations. Natalie M. Cann et al. have evaluated the 

differential cross sections by using the explicit correlated 

wave functions with N = 100 number of terms [20]. In their 

work, they did not take into account the exchange amplitude 

for the elastic scattering from the helium ground state. Jorge L. 

S. Lino proposed a development of the Schwinger 

multichannel method for the elastic scattering of positrons by 

helium atom. The method is based on the first Born 

approximation with the inclusion of the polarization potential 

[21]. 

The present work is structured as followed. In section 2 of 

this paper, the Born direct and exchange amplitude are derived. 

The analytical expression of the total and momentum transport 

cross sections are established. Section 3 presents our results in 

different energy region for differential cross sections. We 

compare our results with some theoretical and experimental 

data for electron-helium scattering. 

2. Born Amplitudes 

The initial channel wave function which consists of the 

incident electron and the bound electrons, will be described as 

the product of two wave functions, one describing the incident 

electron and the other reflecting the dynamics of the bound 

electrons. The incident electron state will be given by the 

plane wave according to the first Born approximation. Bound 

states wave function of the ground state of the target is 

solution to two-system Schrödinger equation. The interaction 

potential between the electron and the atomic system is the 

static Coulomb potential averaged over the target state 

��(r�, r�) 

�(�) = ���(r�, r�) �− �
��

+ �
���

+ �
���

� ��(r�, r�)�     (1) 

where ��� = |r� − r�|. The vector positions of the free and the 

two bound electrons are respectively r�, r� and r�. Due to 

the normalization of the atomic wave functions and the 

indistinguishable of the atomic electrons, the integration with 

respect to r�, r� gives [6] 

�(�) = − �
� + �  �(��)

| � �|  !r"             (2) 

The total electron density of the two-electron system is: 

#(��) = 2 �  %��(r�, r�)&� !r�           (3) 

For helium and the two-electron systems, the density # is 

exactly evaluated by using both Hartree-Fock and Hylleraas 

types wave functions from reference [22]. �(�) can be seen 

as the potential of an electron in the static field of a helium 

atom in ist’s state ��. It can be really evaluated by using the 

explicit form of Hartree wave function ��(r�, r�) =
'(r�)'(r�). In the Hartree Approximation, one assumes that 

the eigen-states of the total Hamiltonian can be written as a 

product of single particle states. The variational 

approximation is then used to derive an equation for these 

single-particle states. The atomic orbital function '(r) is in 

the following form: 

'(�) = ( exp(−,�) + - exp(−.�)         (4) 

For the helium atom [23], the constants are ( = 2.60505, 

- = 2.08144, , = 1.41, . = 2.61. The analytical function 

of helium and some atoms wave functions are established by 

Carla Roetti and Enrico Clementi [24]. The helium radial 

function from this reference is given by: 

'(�) = 0.76838 8� + 0.22346 8� + 0.04082 89 − 0.0994 8� + 0.00230 8;             (5) 

where 8�  are in the following form: 

8� = 2 <9/� exp(−< �)               (6) 

From index 1 to 5 the values of < are respectively: 1.41714, 

2.37682, 4.39628, 6.52699, 7.94252. The radial function of 

equation (5) must be normalized by division by √? 

? = 8 ∑  ;�A� ∑  ;�A� B�B�
(CD CE)F/�
(CDGCE)F          (7) 

BH are coefficients of 8H in equation (5). We have written 

python code to deal with the variational method, generalized 

to atoms and ions with two electrons. The results obtained are 

recorded in table 1. We rewrite this function in a compact way 
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for convenient usage as: 

'(�) = ∑  ��A� B�  exp(−I��)           (8) 

With this notation, we calculate the function �(�) as: 

�(�) = −2 ∑  9�A�
JD

KDF � (2 + L�  �) M�KD� ,       (9) 

�(�) represents the average electrostatic interaction of the 

incident electron with the set of atomic electrons. Consider the 

more ready question; we find the sum of the mean values of 

the quantity |� − ��|��. It can be seen as a screening potential. 

Hence, to the first Born approximation the elastic scattering 

amplitude is defined as: 

NO = − �
�P  �  M� Q   �(�)! r           (10) 

where q = k� − k� . Momentum vectors of incident and 

scattered electron are respectively k�  and k� . Let us 

remember that we assume the momentum conservation 

T� = T� = T . Equation (10) is nothing but the Fourier 

transform of the potential �(�). If U is the angle between the 

two momentum vectors it follows 

V = 2 T sin Z
�                 (11) 

We have implicitly choosen the polar axis in the direction of 

the incident electron momentum vector k�. Using the Bethe 

integral 

�  [D \ ]^_ `
�  ! r = � P

a�Gb�,              (12) 

we perform calculation of the integral in equation (10) as 

NO = 8 ∑  9�A�
JD
KDF

c �
a�GKD�

+ KD�
(a�GKD�)�d          (13) 

In general, it can be shown that the limit of the first Born 

amplitude is 

NO = N� = 16 ∑  9�A�
JD
KDe

≠ 0           (14) 

The first Born amplitude is a monotonically decreasing 

function of the transfer momentum as V → +∞. The form of 

the amplitude NO of equation (13) may well be replaced by the 

Gaussian type function as 

NO = ∑  iℓA� -ℓ exp(−kℓ V�).           (15) 

with k� = 0 and -� = N� given by equation (14). The other 

parameters are obtained by making a fit of the function NO(V) 

of the equation (13) using programming languages such as 

Python, Matlab, Gnuplot etc. This form is more suitable for 

evaluating the differential cross section and the total and 

transport sections. If we want to make corrections to the first 

approximation of Born, we must add in the Born development 

the higher order terms in our calculations. The calculations of 

these higher order terms will be very cumbersome. Instead, we 

will just take into account only the exchange term. The first 

Born exchange amplitude is given in the case of 

electron-helium elastic scattering by lO = −m l� + l� + l9. 

The different terms of the exchange amplitude are in the 

following form 

l� = − �
� P 〈'(r)M�o� �| �

��
|M�o� '(r�)〉          (16) 

l� = − �
� P 〈'(r)M�o� �| �

���
|M�o� '(r�)〉         (17) 

l9 = − �
� P 〈'(r�)'(r)M�o� �| �

���
|M�o� '(r�)'(r�)〉    (18) 

The evaluation of these three terms of the exchange 

amplitude is more complicated. After straightforward 

calculations we find 

l� = −4 ∑  ��A�
KD qD rD

%H�GKD�& %H�GqD�&�             (19) 

l� = − ∑  ��A� B�
s�

sKDsqD
 t��(T, L� , k�)            (20) 

B�, L� and k� are respectively elements of 

II = %(�, -�, ( -, ( -&               (21) 

LL = %,, ., ,, .&                 (22) 

kk = %,, ., ., ,&.                (23) 

The function t��(T, L� , k�)  is a three-denominator Lewis 

integrals 

t��(T, L, k) = �  u v
w� (|v�oD|�GK�) (|v�ox|�Gq�)       (24) 

The third term l9 is split into two factors as l9 = l9� ⋅
l9� 

l9� = b J
(H�Gb�)� + z O

(H�Gz�)�              (25) 

l9� = −8 ∑  9�A�
rD
KDF

 %( {(,) + - {(.)&        (26) 

The auxiliary function {(|) has the following form 

{(|) = �
H�G}� − �

H�G(KDG})� − KD (KDG})
%H�G(KDG})�&�       (27) 

Here the coefficients are 

II = %(�, -�, 2 ( -&               (28) 

LL = %2 ,, 2 ., , + .&             (29) 

The auxiliary function t��(~, �) is analytically evaluated 

by R. R. Lewis, Jr [25] 

t��(~, �) = �
� �����  log ��G� �����

��� ������        (30) 

where ~ = ~(L�, L�), � = �(L�, L�). The quantity ~ − �� 

is always positive definite for real values of the parameters 

and variables. 

~ = %V� + (L� + L�)�& (L�� + T�) (L�� + T�)     (31) 

� = L� (L�� + T�) + L� (L�� + T�)         (32) 
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The second derivative of t��(~, �) in equation (17) can be written as 
s�

sKDsK�
t��(T, L�, L�) = ~�� t�� + ��� t�� + ~�� %~�� t�� + ��� t��& + ��� %~�� t�� + ��� t��&             (33) 

The t��  are the partial derivatives with respect to 

(~�� ≡ ~, ��� ≡ �), and ~�� , ��� are the partial derivatives 

with respect to (L�, L�) as [26]: 

t�� = s������(�,�)
s�� s��                (34) 

c~��
���

d = s���
sK�� sK��

c~��
���

d             (35) 

In the present case, the function t�� is real because ~� is 

always defined positive. We write t�� as follow 

t��(~, �) = � K�K�(�/�)
�              (36) 

The nth derivatives of t�� , ~��  and ���  can be 

evaluated without too much difficulty having regard to the 

relatively simple expression of t�� . The full scattering 

amplitude for helium atom is just NO + lO . The function 

t��(~, �) has a lower limit when ~ tends to zero. This lower 

limit is equal to 2/� . The condition of zero momentum 

transfer corresponds to the zero scattering angle (U = 0) or 

to a zero energy (� = 0) scattering. 

The elastic differential cross section �(U) in atomic units 

L��/�� is given by [27] 

�(U) = u �
u Ω = |NO + lO|�.            (37) 

The direct and indirect amplitudes are both real functions in 

first Born approximation. From our calculations, we notice 

that the differential cross section will depend strongly on the 

nature of the interaction rather than the nature of the wave 

function for a given atom. On the other hand, when the study 

is focused on different atoms, it will undoubtedly depend on 

the electron density. The total elastic cross section, ��(T), can 

be obtained after integration over all possible scattering 

directions as: 

��(T) = 2� �  P� �(U)sinU ! U = PH�  �  �H�� �(�) ! �,   (38) 

with the change of variable � = V�. In the same way, the total 

momentum transport cross section can be expressed as: 

��(T) = 2� �  P� �(U)(1 − cosU) ! U = P�H�  �  �H�� � �(�) ! �. 
(39) 

At high collision energies, the exchange effects can be 

neglected in the calculation of the scattering cross section. In 

this case, its expression is established as follows: 

�(�) = ∑  9�A� ∑  9�A� (�� c �(�GKD�)(�GKE�) + KE�(�GKD�)(�GKE�)� + KD�(�GKD�)(�GKD�)� + KD�KE�(�GKD�)�(�GKE�)�d            (40) 

with (�� = 64 (�(�/(L�L�)9 . With this last form of the 

differential cross section expressed according to the square of 

the modulus of the transfer moment, one can give the 

analytical expressions of the two quantities �� and �� as: 

��(T) = PH�  ∑  9�A� ∑  9�A� (��  [,��(2T�) − ,��(0)]     (41) 

��(T) = P�H�  ∑  9�A� ∑  9�A� (��  [.��(2T�) − .��(0)]    (42) 

In the previous double summation, we will pay attention to 

the case where the index � = �, which gives a different result 

for � ≠ �. 

c,��(�).��(�)d = � �1L��L��
�               (43) 

where the matrix � for � = � is given by 

� =
 
¡¢

���GKD�
��(�GKD�)� ��9(�GKD�)F

log(� + L��) + KD��GKD� − ��GKD�(�G�KD�)� − 9�GKD��(�GKD�)F£
¤¥  (44) 

In the case of � ≠ � we have 

¦,��(�).��(�)§ = � ©̈©©
ª1L��L��L�� L��«¬¬

¬­
             (45) 

The matrix elements ��H are defined as: 

��� = �KE��KD�  log �GKD��GKE�             (46) 

��� = �(KE��KD�)�  log �GKD��GKE� + �(KD��KE�)(�GKD�)      (47) 

��9 = �(KE��KD�)�  log �GKE��GKD� + �(KE��KD�)(�GKE�)      (48) 

��� = � ®¯°x�±E�x�±D�(KE��KD�)F + (��GKE�GKD�)(KE��KD�)�(�GKD�)(�GKE�)      (49) 

��� = �KE��KD�  ²L�� log(� + L��) − L�� log(� + L��)³    (50) 

��� = KE�KE��KD�  log �GKE��GKD� + KD�(KE��KD�)(�GKD�)      (51) 

��9 = KD�KE��KD�  log �GKE��GKD� − KE�(KE��KD�)(�GKE�)      52) 
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��� = KE�GKD�

(KE��KD�)F  log �GKE�

�GKD�
             (53) 

The total momentum transport cross section is necessary for 

the calculation of energy averaged momentum transport cross 

section. Plasma transport proprieties depend strongly on these 

cross sections determination. 

3. Results 

In table 1, we have given the variational parameters and the 

corresponding energy for some systems with two electrons. 

These parameters fully determine the normalized radial wave 

function. Besides the normalization condition, the radial wave 

function also satisfies the finitude condition. We can see that 

the total energy of the atom or the ion decreases as the atomic 

number m increases. It will be easier to tear off an electron for 

these high m  ions than for low atomic number ions. The 

variational parameters increase with the atomic number, so 

these orbitals are further from the nucleus than for low m ions. 

Hence their relatively weak bond to the nucleus. 

Table 1. Variational atomic wave functions parameters of two-electrons 

systems and their corresponding ground state energies. 

 ´  µ  ¶  ·  −¸(¹. º)  

H � 0.4622 1.2144 0.6979 1.4166 0.4878 

H » 2.9064 1.4530 0.7560 1.2409 2.8616 

L ¼G 2.4478 4.5748 1.7968 0.6494 7.2364 

B »½G 3.4446 6.2337 2.2001 0.5674 13.611 

B ¾G 4.4434 7.9034 3.5298 0.7049 21.986 

C ¿G 5.4420 9.5632 2.2706 0.3710 32.361 

Table 2. Comparison of differential cross sections (10��� IÀ�/��)  at 

� = 400 M� , with experiments. Fisrt column represents the present Born 

results without exchange effects and second column with exchange. 

Á  Direct Exchange Ref. [28] Shyn [29] 

6 0.157287 0.182852 0.1831898 0.275 

12 0.118649 0.137041 0.1373959 0.173 

24 0.050271 0.056707 0.0575412 0.101 
25 0.046481 0.052302 0.0531684 0.061 

30 0.031429 0.034888 0.0358690 0.035 

36 0.019931 0.021722 0.0227400 0.021 
48 0.008729 0.009120 0.0100289 0.0092 

60 0.004343 0.004324 0.0050576 0.0047 

72 0.002428 0.002293 0.0028712 0.0024 
84 0.001499 0.001339 0.0017979 0.0015 

96 0.001006 0.000850 0.0012215 0.0010 

108 0.000726 0.000580 0.0008894 0.00070 
120 0.000557 0.000422 0.0006878 0.00055 

132 0.000452 0.000327 0.0005614 0.00054 

144 0.000387 0.000268 0.0004813 0.00047 
156 0.000346 0.000233 0.0004322 0.00047 

At low scattering angles, the correction due to the exchange 

effect provides an improvement in the determination of the 

differential cross section. According to the data in table 1, 

from angles greater than 84 degrees, the exchange term brings 

no improvement to the first Born approximation. Our 

calculations are in good agreement with the relativistic results 

of the reference [28]. Nevertheless, the two theories had 

difficulty in correctly estimating the differential cross-section 

at low angles diffusion. In this area, many physical 

phenomena can occur alongside diffusion such as absorption, 

excitation followed by de-excitation. 

We represent in the figure 1, the variation of the radial 

distribution of the helium atom in the ground state. Our 

calculations give the same results as those of reference [23]. 

The probability of finding an electron in the 1s orbital for this 

configuration is approximately � = 0.564103 , with an 

approximate value equal to 0.866448 . We note a slight 

difference between our results and those calculated by Roetti 

and Clementi [24]. However, the general appearance of the 

different density curves are similar. In view of the orbital 

energy found at -0.91795 u.a by these authors, we can estimate 

that our results are quite correct. 

 

Figure 1. Radial density distribution Â(�) = %� '(�)&� of the helium atom in 

the ground state. Line curve is the present calculation full and open circle 

curves are from Ref [23] and Ref [24] respectively. 

Figure 2 represents the low energy scattering differential 

cross sections. The present numerical results are not in a good 

agreement with the experimental data. These results are 

expected in the first Born approximation that did not take 

account the distortion effects on incident electron wave 

function [30]. Atomic distortion causes the differential cross 

section to have a relatively high peak in the forward direction 

at all energies considered [31]. 

 

Figure 2. Differential cross section for 50 eV. Star symbols are the present 

first Born with exchange. Full circle curve is from Shyn [29], open circle are 

from D. F. Register et al. [1] and full triangle are from M. J. Brunger et al. [8]. 

Solid line is from relativist calculations of A. Jablonski et al. [28]. 

Figure 3 shows our differential cross sections at 100 eV 

compared with the relativist calculations of Ref. [28] and 

experimental results of Ref. [29]. As observed, our results 

exhibit reasonable agreement with [28] study. In Comparison 

with the experimental data, the two theories differential cross 

sections are too small for forward scattering electrons. 
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Nevertheless, for high impact energies as in figures 4 and 5 we 

observe good agreement with experimental differential cross 

section. 

 

Figure 3. Differential cross section for 100 eV. Star symbols curve is the 

present first Born approximation with exchange, full circle curve is from Shyn 

[29] and solid line is from relativist calculations of A. Jablonski et al. [28]. 

 

Figure 4. Differential cross section for 200 eV. Star symbols curve is the 

present first Born approximation with exchange, full circle curve is from Shyn 

[29] and solid line is from relativist calculations of A. Jablonski et al. [28]. 

 

Figure 5. Differential cross section for 400 eV. Star symbols curve is the 

present first Born approximation with exchange, full circle curve is from Shyn 

[29] and solid line is from relativist calculations of A. Jablonski et al. [28]. 

Figure 6 shows the elastic electron helium scattering at 

energies 30, 50, 80, 100 and 200 eV. We note in this graph a 

progressive decrease of the maximum with the increase of the 

energy of the incident electron. A completely predictable 

result due to the dependence of the amplitude of Born in T��. 

It is interesting to note that in the small angle region, all curves 

converge approximatively to the same value. This 

convergeance is due to the (1 − cosU) factor that multiply 

the energy T� in the momentum expression. We recall that all 

differential cross sections are multiplied by sinU for better 

clarity to the representation. At the upper limit of the 

scattering angle, the differential cross section naturally 

converges to zero, due to the multiplication by the sine 

function. 

 

Figure 6. Quantity Ã(U) = ��ÄU ! �/! U in atomic units vs U for elastic 

scattering for helium at different energies. Solid curve corresponds to 30 eV 

while filled, opened circles respectively to 50eV and 80 eV. Stars and dot curve 

correspond to 100 eV and 200 eV respectively. 

4. Conclusion 

Calculated differential cross sections for electron elastic 

scattering by helium atom are presented. We also presented 

the atomic variational parameters and plotted the density 

variation of the ground state. Differential cross section have 

been calculated in the first Born approximation from the 

variational Hartree-Fock wave functions for the helium atom. 

These calculations provide an extensive set of elastic 

differential cross sections for electron-helium collisions. 

Exchange amplitude is explicitly calculated and introduced to 

the first Born approximation. Detailed comparisons between 

the first Born approximation with exchange and the relativistic 

calculations of Jablonski et al. were presented. Numerical 

calculations have been performed in energy range from 30 eV 

to 400 eV and for the all scattering angles 0 Å - 180 Å. The 

comparisons show that, at low energies electron impact, we 

note a reasonable agreement. But consideration of both 

distortion and polarization effects in the calculations at low 

energies collision should significantly improve this agreement. 

At high energies, the first Born approximation provide an 

accurate differential cross sections. It should be noted that 

differential cross sections and their absolute values are very 

important in our quantum mechanical description of 

electron-atom interaction. We have provided a consistent set 

of analytical expressions suitable to machine code 

implementation. 
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