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Abstract: Variational calculations of the helium atom states are performed using highly compact 26-parameter correlated 

Hylleraas-type wave functions. These correlated wave functions used here yield an accurate expectation energy values for 

helium ground and two first excited states. A correlated wave function consists of a generalized exponential expansion in order 

to take care of the correlation effects due to N-corps interactions. The parameters introduced in our model are determined 

numerically by minimization of the total atomic energy of each electronic configuration. We have calculated all integrals 

analytically before dealing with numerical evaluation. The 1S
2
 1

1
S and 1S2S 2

1, 3
S states energies, charge distributions and 

scattering atomic form factors are reported. The present work shows high degree of accuracy even with relative number terms 

in the trial Hylleraas wave functions definition. The results presented here, indicate that the highly compact twenty-six 

variational parameters model will have the quantitative and qualitative applicability for the study of electronic correlation. The 

correlated wave functions are used to calculate the atomic form factor for the diffusion of electrons by the helium atom. The 

atomic form factor is evaluated as the Fourier transform of the electron density distribution of an atom or ion, which is 

calculated from theoretical correlated wave functions for free atoms. Finally, suggestions are made as to the way the atomic 

form factor of the helium atom may be approximated by a sum of Gaussians for efficiency use.  
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1. Introduction 

Several theories and methods of calculations have been 

elaborated these last years to calculate energy levels and 

electronic charge distribution of atoms and molecules. The 

method of the self-consistent field proposed in 1927 by D. 

Hartree is one of the best resolution processes of the quantum 

chemistry problems. The stationary Schrödinger equation can 

be solved analytically in a very restricted number of case 

(atomic hydrogen, harmonic oscillator, etc.) Most problems 

of the chemistry and quantum mechanics are solved with the 

help of approximate methods. In many cases, variational 

method enables us to solve much more efficiently the 

Schrödinger equation.  

The problem of bound states of two-electron systems has a 

long history an attracts continuing interest. The variational 

principle of solving this problem is largely used. In order to 

have accurate final wave function and energy, an adequate 

trial function is chosen and a large number of variational 

parameters must be introduce [1]. The number of parameters 

increases with the system size up to several hundreds and the 

optimization requires efficient strategies [2]. Several kinds of 

trial functions are used to deal with two-electron atomic or 

ion systems [3-6]. A comparative study of two-electron 

systems with different potentials is done by authors of Ref. 

[7]. They discuss the limits of validity of the correlation 

hypothesis. Usually, the method consists of the product of 

two factors wave functions. The first term includes the 

electron–nucleus interactions. The second term takes into 

account both the electron–electron interaction and the 

correlation between all the parts of the system elements. This 

second terms can be constructed by a sum with a large 

number of parameters or by a specific mathematical function. 

The Hartree–Fock method, the multiconfiguration Hartree-

Fock method and the Ritz method both apply the variational 

method. The variational method is sometimes, combined 

with other methods to investigate the bound states of two-

electron system [8]. Highly correlated wave functions can be 

obtained by including more terms in the polynomial 
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representation of the correlation function [9-12]. Alternative 

correlated wave functions are proposed with few terms in the 

expansion of the correlation [13-15].  

As illustration, we will discuss two electron systems; this 

includes helium and helium like systems. These are the 

simplest systems in which we can study correlation, but they 

do exhibit many interesting challenges of complex atoms. 

The 1��  and 2�,��  states energies of the helium atom are 

calculated by using Hylleraas basis wave functions that 

introduces the coordinates (�, 	, 
). The principal reason of 

introducing these new variables was the volume integral 

reduction from six to three integrals. A screening parameter 

has been introduced in our trial wave functions that can be 

seen as an effective nuclear charge of the atom. The main 

purpose of the present paper is to extend the calculation of 

the ground and two first excited states energy of helium. In 

the other hand, the calculation of charge distribution is 

important for the determination of scattering atomic form 

factor. The atomic form factor is the scattering contribution 

from a single, isolated atom. Generally, it describes the shape 

of a scattering object. More specifically, it is the Fourier 

transform of the atom's spatial distribution. An accurate 

calculation of wave function is very important to determine 

the spatial distribution that governs the shape of the atomic 

form factor. In the most general case of an arbitrary 

distribution of scattering density, the form factor is computed 

by integrating over all space. 

The paper is structured as follows. In section 2 we 

construct the twenty-six parameters variational wave 

function. In this section, we have also established all the 

analytical expressions involved in the calculation and 

minimization of the total energy of the system and the 

electronic density of each configuration respectively. We 

derive in section 3, the explicit expression of the scattering 

atomic form factor. The analytical expressions are obtained 

with the spherical symmetry density. The binomial expansion 

is used to evaluate the radial integrals where it’s needed. We 

compare our results with some previous calculations done by 

other authors in section 4.  

2. Variational Calculations 

The Schrödinger equation for the helium atom, or the 

positive ions or the negative hydrogen ion of the 

isoelectronic sequence is  � = ��                                              (1) 

Where the Hamiltonian � is given by 

� = − ��∇�� − ��∇�� − ��� − ��� + ����                  (2) 

where ��, 	�� are the coordinates of the two electrons; ���  is 

the distance between them, � = 2 the charge atomic number, �  and �  the eigenfunction and eigenenergy of the system. 

The complete description of the S-states requires only three 

independent coordinates, ��, ��  and ���  [16]. The effects of 

correlation are globally introduced in the wave functions by 

inter-electronic repulsion potential 
���� . Variational methods 

for solving the Schrödinger equation (1) rely on a 

reformulation of the eigenvalue problem. Solving the 

Schrödinger equation for bound states is equivalent to finding 

functions � that leave the energy functional 

��� = ��| |�!��|�!                                  (3) 

Which is recognized as the expectation value of the energy 

for a stationary state � satisfying the boundary conditions. In 

addition to the boundary conditions, the variation must also 

have the expected integrability, continuity and 

differentiability properties. With the natural Hylleraas 

coordinates � = �� + ��,  	 = �� − ��,  
 = |�� − ��| . We see 

that the variables �  and 
  are always positives but the 

variable 	 can take both the positive or negative values. The 

integrals in equation (3) will contain two parts. The 

contribution to the integral from (– 	) is identical with that 

from 	. In this condition, we multiplied the volume element 

by a factor of 2. The resulting volume element is now found 

to be in the following form #$ = 2%�(�� − 	�)
#�#	#
               (4) 

The limits of integration become 0 ≤ 	 ≤ 
 ≤ � ≤ +∞                       (5) 

The form of the wave functions used is as follows [17] �(�, 	, 
) = ∑ *+,+(�, 	, 
)-+./                (6) 

From the variational principle, one obtains the matrix 

eigenvalue problem: (� − �	0)	* = 0                               (7) 

The Hamiltonian and overlap matrix are represented by � 

and 0 respectively. The coefficients *+ are elements of the C 

matrix. The secular equation is: 

1 ��� − 20�� ��� − 20�� ⋯ ��- − 20�-��� − 20�� ��� − 20�� ⋯ ��- − 20�-	⋮	 	⋮	 ⋮�-� − 20-� �-� − 20-� ⋯ �-- − 20--1 = 0   (8) 

Where 2 is the eigenvalue matrix and the matrix elements �+5 = 6+5 + $+5 . The kinetic energy matrix elements of the 

Hamiltonian are defined by: 

6+5 = 7 #� 7 #
 7 #	(8/ + 8� + 8�)9/:/;/               (9) 

Where 

8/ = 
(�� − 	²) =>?@>: >?A>: + >?@>B >?A>B + >?@>9 >?A>9 C     (10) 

8� = �(
� − 	�) =>?@>9 >?A>: + >?A>9 >?@>: C                    (11) 

8� = 	(�� − 
�) =>?@>9 >?A>B + >?A>9 >?@>B C                   (12) 

and the potential matrix elements $+5 are expressed as 
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$+5 = 7 #� 7 #
 7 #	�4��
 + 	� − �²�,+,59/:/;/         (13) 

The overlap matrix elements are given as: 0+5 = 7 #� 7 #
 7 #	
(�� − 	�),+,59/:/;/        (14) 

It is important to remark, the small difference introduced 

in our two equations (11) and (12). The factor 2 that appears 

in equation (32.17) in the reference [18], is replaced by a 

derivative sum. We assume in this work, that the trial 

function ,+(�, 	, 
) is expressed as ,+(�, 	, 
) = EFG: �⁄ �I@	J@
�@              (15) 

Where K  is a nonlinear variational parameter. The L+,		M+  
and �+ are integers that define each term of the trial function. 

In order to check our calculations, we use a few terms in the 

trial function definition like L = �0,0,0,0,2,1�, M =�0,0,2,0,0,0�  and � = �0,1,0,2,0,1� . With these values, we 

obtain the ground state energy � = −2.9033  u.a and the 

nonlinear parameter that represent the screening factor is K = 3.78. The corresponding wave function can be written 

using equations (6) and (15) as �(�, 	, 
) = EF�.ST:(−6.1037 − 1.8970
 − 0.9212	� +0.4466
� − 0.0513�� − 0.5811�
)      (16) 

The wave function � of (6) must be multiplied by W  in 

order to be normalized 

W = �X��|�! ; 	��|�! = ∑ *+*5,+,5-+,5         (17) 

One can determine the charge distribution by Z(��) = 7�²#��                             (18) 

To deal with this integral, we consider the triangle formed 

by the three vectors ��, ��, 	���  and pass the [ − axis by 

rotation along ��, which is taken for a moment as a constant. 

The angles transformation give \� → \��  and ,� → ,�� . 

This rotation allows us to write the volume element of 

electron 2 as #�� = ���#��#,���^_\��#\�� . Then equation 

(16) can be put in the following form 

Z(��) = 7 ���;/ #�� 7 #,���`/ 7 �² sin \��#\��/̀        (19) 

As ,�� is an independent variable, we first integrate over ,�� and we get a factor 2%. The angle \�� is related to the 

variable ��� by: ���� = ��� + ��� − 2���� cos \��                     (20) 

By differentiating on both sides of this equation, we obtain 

the needed relation as sin \�� #\�� = ������� #���                         (21) 

Substituting the relation (21) into (19), and rewriting 

properly the integration domain, we have: 

��Z(��) = 2% 7 ��#�� 7 �²���#�����f��|��F��|;/             (22) 

The integration over the ��� coordinate is possible. There 

are two regions of integration: �� > �� and �� < ��. So we can 

split the domain integration into two terms. In this way the 

charge distribution is written as  Z(��) = Zi(��) + Zj(��), where we have set  

Zi(��) = ��̀� 7 ��#����/ 7 �²���#�����f����F��                  (23) 

Zj(��) = ��̀� 7 ��#��;�� 7 �²���#�����f����F��               (24) 

To evaluate the two integrals in equations (23) and (24), 

the binomial theorem will be useful. 

Zi(��) = �̀∑ ∑ k@kAlmno��@f�Af� (p� − p�)-5-+             (25) 

With 

p� = ∑ ∑ (−1)q� r_�s�t r_�s�t-�q�-�q� u�!��wmx�Gx�y� �(z�)       (26) 

The function �(z) is defined later in equation (28)  

p� = ∑ ∑ (−1)q{ r_�s�t r_|s|t-{q{-}q} u�!��wmx�Gx�y� �(z�)        (27) 

where we have _� = L+ + L5 + �+ + �5 + 2 , _� = M+ + M5 , _� = L+ + L5 , _| = M+ + M5 + �+ + �5 + 2 , z� = s� + s� +1, z� = s� + s| + 1,  ~ = _� + _� + 1 , and �-q�  are the 

binomial factors. The quantity �(z) is define as 

�(z) = 1 − EFG�� ∑ (G��)�q!uq./                  (28) 

The same procedure is used to derive 

Zj(��) = �̀∑ ∑ k@kAlmno��@f�Af� (p� − (−1):p�)-5-+        (29) 

with � = �+ + �5 . In equation (27), everything is kept as in 

(23) except �(z) → 1 − �(z) . By using the Hylleraas 

coordinates, on can easily evaluate the normalization 

constant as: 

��|�! = ∑ *+*5*/ (�f�)!Gwy}-+,5                     (30) 

Where 

*/ = �(-�f�)(-{f�)− �(-�f�)(-{f�)            (31) 

The numbers _�, _|  and ~  are defined above. The total 

spherical charge distribution is obtained as  Z(�) = 2Z(�� = �)                           (32) 

3. Atomic Form Factor 

The scattering atomic form factor obtained from first Born 

approximation has the following form: 6(M) = 7Z(�)exp	(^M. �)#��                        (33) 

Thus 6(M)  is proportional to Fourier transform of the 
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electronic density Z(�). For the spherical symmetry density, 

we have: 

6(M) = 4% 7 �²Z(�) ���J�J� #�;/                     (34) 

where M = 2s�^_(\ 2)⁄  is the transfer momentum to the 

atomic system. s and \	are respectively the wave number and 

scattered angle of the electron. We can remark, when the 

momentum tends to zero, the limit of 6(M) is 

limJ→/ 6(M) = 7 ��Z(�)#�;/ = �                (35) 

One can evaluate without any difficulties the atomic form 

factor integrals with the explicit form of the charge 

distribution of equation (32). After calculations, we find  2^M6(M) = 6�(M) − 6�(−M) + 6�(M) − 6�(−M)   (36) 

We remind that ^ is the complex symbol. 

6�(M) = ∑ ∑ k@kA�@f�Af� �6��(M) − 6��(M)�-5-+         (37) 

6�(M) = ∑ ∑ k@kA�@f�Af�-5-+ �6��(M) − (−1):6��(M)�   (38) 

With 

6��(M) = ∑ ∑ (−1)q�-�q�-�q� r_�s�t r_�s�t u�!��wmx�Gx�y� �(#�, z�) (39) 

6��(M) = ∑ ∑ (−1)q{-{q{-}q} r_�s�t r_|s|t u�!��wmx�Gx�y� �(#�, z�) (40) 

And 

�(#, z) = �!(GF+J)�y� − ∑ (�fq)!G�q!(�GF+J)�y�y�uq./            (41) 

with #� = _� + _� + 1 − z� , #� = _� + _� + 1 − z� . 6��  and 6��  have respectively the same expression as 6��  and 6�� 

with here 

�(#, z) = ∑ (�fq)!G�q!(�GF+J)�y�y�uq./                   (42) 

The expressions derived here in order to evaluate the atomic 

form factor are very complicate to deal with. For future 

applications of this work, the atomic form factor is well 

approximated, in the range of scattering momentum transfer 

between 0 ≤ M ≤ 10, by a sum of Gaussians of the form: 6(M) = ∑ �+exp	(−�+ 	M��+.� ) + �/                 (43) 

Where the values of the constants �+, �+ and �/ are tabulated 

below in table 2. The equation (43) is more tractable to deal with 

the atomic form factor than equation (36). 

4. Results and Discussions 

We compare in table 1 calculated energies obtained with 

our fifteen terms wave function with other theoretical model. 

Our calculations are accurate within an absolute error ∆� = �(�19� − E(present	work)) : 0.676 	10F�	 for 1�� , 

699.64	10F� for 2�� and 35.93	10F� for 2��.  

Table 1. The nonrelativistic energies for the 1��, 2�� and 2�� states of He 

atom. Bold numbers are from the present work, italic numbers from 

reference [20] and normal numbers are from reference [19]. 

States Basis -E (u.a) 

1��  

50 2.903723701 

700 2.90372437700 

1400 2.903724377034119596 

2��  

50 2.145274406 

700 2.14597404604 

1500 2.14597404605441738 

2��  

50 2.175193448 

500 2.175229378237 

1200 2.17522937823679130573 

Figures 1 and 2 show plots of the charge distribution �²Z(�) 
versus the electron radius � in atomic units (a.u) of the helium 

atom of states 1�� and 2�,�� respectively. We compare in figure 

1, the hydrogenic limit and the variational Hartree-Fock models 

with the present Hylleraas approach. The variational Hartree-

Fock model gives the same charge distribution as the Hylleraas 

model. The hydrogenic model overestimates the probability of 

presence in the vicinity of the maximum for state 1s1s. The 

curve obtained with this model decreases rapidly before being 

cancelled out for the large values of the radius position. 

We can say that the variational Hartree-Fock model 

describes quite properly the atomic structure because the 

significant quantity is the square of the wave function that 

defines the electron probability presence at position �. 
Figure 2 shows the same charge distribution for the two 

states 2�,�� near the nucleus and far from the origin. At large 

distance it is obvious that all charge distributions functions 

converge to zero. This behavior is due to the asymptotic 

nature of the wave functions. We notice two distinct maxima 

that correspond to the probability of the electron’s presence 

in orbital 1s and orbital 2s. It is logical to observe the same 

amplitude for the first peak that describes the orbital 1s. For 

the second peak, we see a discrepancy between the two 

curves due to the energy difference between the two states, 

with nevertheless the same amplitudes. 

We present in figures 3 and 4 the scattering atomic form 

factor of electron helium collision versus the transfer 

momentum. In both figures, the scattering atomic form factor 

decreases with the increasing transfer momentum. The behavior 

of the plots is expected, because the energy transferred to the 

target becomes more import that can induce transitions or 

rearrangement processes when the excitation energy is reached.  

In figure 4, we remark that the scattering atomic form 

factor is quite the same of the two states 2�� and 2��. The 

small variation between the two states scattering atomic form 

factor can be explained by the similarity on their wave 

function form. Nevertheless, we see a slight offset of the two 

curves in the vicinity of M = 1, which is explained by the 

probability of the presence of the second electron in the 

orbital 2�. This probability of presence varies significantly 

from one configuration to another. The atomic form factor 

tends towards zero for fairly high transfer moments. This is 

foreseeable because in this area moments of transfer, capture 

processes largely dominate. 
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Figure 1. Plot of the ground state 1�� charge distribution ���� 
 ��Z��� 

from equation (32) for He. The hydrogenic and the variational Hartree-Fock 

charge distribution are represented respectively by filled and opened circle 

curve. The present Hylleraas approximation charge distribution is 

represented by line curve. 

Table 2. The coefficients values of the approximated atomic form factor of 

the three states of helium atom. 

Coefficients ���  ���  ���  

�/  0.00678637 0.00875839 0.0156208 

��  0.535535 0.313819 0.0987228 

��  0.269436 0.369448 0.121975 

��  0.0265823 -0.360732 1.00182 

��  0.929621 0.586244 3.13333 

��  0.227123 1.12541 0.0753508 

��  0.501576 4.4784 7.89644 

�|  0.153599 0.2088 -0.0967258 

�|  0.0211122 0.029995 0.0193181 

��  0.430681 0.521892 0.361228 

��  0.0621708 0.0957924 0.0298007 

��  0.619694 0.181254 0.544152 

��  0.13695 0.20935 0.121959 

 

Figure 2. Plot of the first excited states 2�,�� charge distribution ���� 


��Z���  from equation (32) for He. Line and filled circles curve are 

respectively for the singlet state 2�� and triplet state 2��. 

 

Figure 3. Plot of the ground state 1�� atomic form factor from equation (33) 

for He. Line, opened and stars curves are respectively obtained by using the 

Hylleraas type functions, Hatree-Fock wave functions and hydrogenic limit’s 

functions. 

 

Figure 4. Plot of the first excited states 2�,��  atomic form factor from 

equation (33) for He. Line and filled circles curves are respectively for the 

singlet state	2�� and triplet state 2��. 

5. Conclusion 

The energy levels for 1��  and 2�,��  states of helium are 

calculated by diagonalizing the Hamiltonian with the Hylleraas 

basis functions. With this method one can retrieve high excited 

energy levels under some degree of accuracy. We have varied 

the only nonlinear parameter K to obtain the minimum eigen-

energies and corresponding wave function through the 

expansion coefficients *+. We can also determine analytically 

the nonlinear parameter by minimizing the energy functional 

with K. We find that the ground state energy is more accurate 

than the excite states energies. The problem of obtaining 

accurate wave functions for the helium atom was solved with 

the works of C. L. Pekeris [20], K. Frankowski [22]. 

These studies are very useful to understand the electronic 

correlations in two electron-atomic systems. The results of 

our work demonstrates the advantage of using four 

variational parameters wave functions, which have the same 

analytic structure for helium iso-electronic sequence. There is 

still some interest in trying to obtain high accuracy with 

smaller number of variational parameters suitable for 

scattering atomic form factor, generalized oscillator strength 

and cross sections calculations in atomic collision processes. 

This must involve examining the form of the correlated term 

which is included in the trial wave function. The choice of 

this trial wave function must be as efficient as possible to 

ensure accuracy and portability. 

We show the importance to have accurate wave function in 

atomic collision processes namely in scattering atomic form 

factor calculations. First the hydrogenic limit model 

overestimates the charge distribution and the scattering 

atomic form factor. All results found in this present work can 

be easily extended to the helium like ions. The accuracy of 

the calculations made in this work may be substantially 

improved by increasing the size of the base of the test wave 

functions. This will have as a consequence, the lengthening 

of the calculation time. 
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