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Abstract: The effects of heavy doping and donor (acceptor) size on the hole (electron)-minority saturation current density 

JEo(JBo), injected respectively into the heavily (lightly) doped crystalline silicon (Si) emitter (base) region of n
+
 - p junction, 

which can be applied to determine the performance of solar cells, being strongly affected by the dark saturation current density: 

Jo≡JEo + JBo, were investigated. For that, we used an effective Gaussian donor-density profile to determine JEo, and an empirical 

method of two points to investigate the ideality factor n, short circuit current density Jsc, fill factor (FF), and photovoltaic 

conversion efficiency η, expressed as functions of the open circuit voltage Voc, giving rise to a satisfactory description of our 

obtained results, being compared also with other existing theoretical-and-experimental ones. So, in the completely transparent 

and heavily doped (P-Si) emitter region, CTHD(P-Si)ER, our obtained JEo-results were accurate within 1.78%. This accurate 

expression for JEo is thus imperative for continuing the performance improvement of solar cell systems. For example, in the 

physical conditions (PCs) of CTHD (P-Si) ER and of lightly doped (B-Si) base region, LD(B-Si)BR, we obtained the 

precisions of the order of 8.1% for Jsc, 7.1% for FF, and 5% for η, suggesting thus an accuracy of JBo (≤ 8.1%). Further, in the 

PCs of completely opaque and heavily doped (S-Si) emitter region, COHD(S-Si)ER, and of lightly doped (acceptor-Si) base 

region, LD(acceptor-Si)BR, our limiting η-results are equal to: 27.77%,…, 31.55%, according to the Egi-values equal to: 

1.12eV ,…, 1.34eV, given in various (B,…, Tl)-Si base regions, respectively, being due to the acceptor-size effect. Furthermore, 

in the PCs of CTHD (donor-Si) ER and of LD(Tl-Si)BR, our maximal η-values are equal to: 24.28%,…, 31.51%, according to 

the Egi-values equal to: 1.11eV ,…, 1.70eV, given in various (Sb,…, S)-Si emitter regions, respectively, being due to the donor-

size effect. It should be noted that these obtained highest η-values are found to be almost equal, as: 31.51%%� 31.55%, 

coming from the fact that the two obtained limiting J�-values are almost the same.  

Keywords: Donor (Acceptor)-Size Effect, Heavily Doped Emitter Region, Ideality Factor, Open Circuit Voltage, 

Photovoltaic Conversion Efficiency 

 

1. Introduction 

The minority-carrier transport in the non-uniformly and 

heavily doped (NUHD), quasi-neutral, and uncompensated 

emitter region of impurity-silicon (Si) devices such as solar 

cells and bipolar transistors at temperature T
� 300 K� , 

plays an important role in determining the behavior of many 

semiconductor devices [1-29]. It should be noted that the 

minority-carrier saturation current density, J�� , injected 

into this emitter region strongly controls the common 

emitter current gain [4-8]. Thus, an accurate determination 

of this J�� or an understanding of minority-carrier physics 

inside heavily doped semiconductors is imperative for 

continuing the performance improvement of bipolar 

transistors, and that of solar cell systems, which is 

commonly characterized in terms of the parameters such as: 

the ideality factor n, short circuit current density J�� , fill 

factor FF, and photovoltaic conversion efficiency η, being 
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expressed as functions of the open circuit voltage V��[4]. 

Further, it should be noted that, in most fabricated silicon 

devices, the effective Gaussian donor-density profile ρ
x�, 

being proposed in next Equation (24),
 
varies with carrier 

position x in the emitter region of width W [13, 18-20, 22],
 

and it decreases with increasing W, being found to be in 

good agreement with that used by Essa et al. [13].
 
As a 

result, many other physical quantities, given in this NUHD 

n(p)-type thin emitter region such as [1-45]: the band gap 

narrowing (BGN), ΔE� , Fermi energy E� , apparent band 

gap narrowing (ABGN), ΔE�� , minority-hole (electron) 

mobility μ�
��, minority-hole (electron) lifetime τ�
��, and 

minority-hole (electron) diffusion length L�
�� , strongly 

depend on ρ
x�. 

In the present paper, we determine an accurate expression 

for the minority-hole current density J�� , injected into the 

NUHD emitter region of n" − p junction silicon solar cells 

at 300 K, being also applied to determine the performance of 

such crystalline silicon solar cells. 

In Section 2, we study the effects of impurity size [or 

compression (dilatation)], temperature and heavy doping, 

affecting the energy-band-structure parameters such as: the 

intrinsic band gap E�% , intrinsic carrier concentration n% , 

band gap narrowing ΔE� , Fermi energy E� , apparent band 

gap narrowing ΔE�� , and effective intrinsic carrier 

concentration n%� . In Section 3, an accurate expression for 

the optical band gap (OBG), E�& , is investigated in next 

Equation (16), being accurate within 1.86%, as showed in 

Table 3. Some useful minority-carrier transport parameters 

such as: μ� and L�, being given in the heavily doped n-type 

emitter region, and μ� , τ�  and the minority-electron 

saturation current density J'� , being given in the lightly 

doped p-type base region, are also presented in Section 4. 

Then, in Section 5, an accurate expression for the minority-

hole saturation current density J��, injected into the heavily 

doped emitter region of n" − p junction silicon solar cells at 

300 K is established in Equation (39) or its approximate form 

given in Eq. (44), indicating an accuracy of the order of 

1.78%, as seen in Table 4. Further, the total saturation current 

density: J� = J�� + J'� , where J'�  [1, 7],
 
determined in 

Equation (21), is the minority-electron saturation current 

density J'� , injected into the lightly doped base region of n" − p junction silicon solar cells, can be used to investigate 

the photovoltaic conversion effect, as presented in Section 6. 

Finally, some concluding remarks are given and discussed in 

Section 7.  

2. Energy-Band-Structure Parameters in 

Donor (Acceptor)-Si Systems 

Here, we study the effects of donor (acceptor) [d(a)]-size, 

temperature, and heavy doping on the energy-band-structure 

parameters of d(a)-Si systems, as follows.  

2.1. Effect of d(a)-Size 

In d(a)-Si-systems at T=0 K, since the d(a)-radius r*(�), in 

tetrahedral covalent bonds is usually either larger or smaller than 

the Si atom-radius r� , assuming that in the P(B)-Si system r+(') = r� = 0.117 nm , with 1 nm = 10./m , a local 

mechanical strain (or deformation potential energy) is induced, 

according to a compression (dilation) for r*(�) > r�  (r*(�) <r�) , respectively, due to the d(a)-size effect. Then, in the 

Appendix A of our recent paper [42], basing on an effective 

Bohr model, such a compression (dilatation) occurring in 

various d(a)-Si systems was investigated, suggesting that the 

effective dielectric constant, ε(r*(�)), decreases with increasing r*(�). This r*(�)-effect thus affects the changes in all the energy-

band-structure parameters, expressed in terms of ε(r*(�)) , 

noting that in the P(B)-Si system ε(r+(')), = 11.4. In particular, 

the changes in the unperturbed intrinsic band gap, E��5r+(')6 =1.17 eV, and effective d(a)-ionization energy in absolute values E*�(��)5r+(')6 = 33.58 meV, are obtained in an effective Bohr 

model, as [42]: 

E��5r*(�)6 − E��5r+(')6 = E*�(��)5r*(�)6 − E*�(��)5r+(')6 =
E*�(��)5r+(')6 × :;<(=>(?))<(=@(A))BC − 1D  (1) 

Therefore, with increasing r*(�) , the effective dielectric 

constant ε(r*(�))  decreases, implying that E��5r*(�)6 

increase. Those changes, which were investigated in our 

previous paper [42], are now reported in the following Table 

1, in which the data of the critical d(a)-density N�F(�G)(r*(�)) 

are also reported. This critical density marks the metal-to-

insulator transition from the localized side (all the impurities 

are electrical neutral), N(N�) ≤ N�F(�G)5r*(�)6 , to the 

extended side, N(N�) ≥ N�F(�G)(r*(�)), assuming that all the 

impurities are ionized even at 0 K. However, at T = 300 K, 

for example, all the impurities are thus ionized and the 

physical conditions, defined by: N(N�) > J�F(�G)(r*(�)) and N(N�) < J�F(�G)(r*(�)), can thus be used to define the n(p)-

type heavily and lightly doped Si, respectively.  

Table 1. The values of KL(M), N(KL(M)), and OPQ(KL(M)), and critical impurity density JRS(RT)(KL(M)), obtained in our previous paper [42], are reported here. 

Donor Sb P As Bi Ti Te Se S 

T=0 K r* (nm) 0.1131 0.1170 0.1277 0.1292 0.1424 0.1546 0.1621 0.1628 ε(r*)  12.02 11.40 8.47 7.95 4.71 3.26 2.71 2.67 E��(r*)(eV)  1.167 1.170 1.197 1.205 1.333 1.547 1.729 1.749 N�F(r*)(10&U cm.W)  3 3.52 8.58 10.37 50 150.74 261.24 274.57 
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T=0 K r� (nm) 0.1170 0.1254 0.1263 0.1352 0.1410 ε(r�)  11.40 8.88 8.49 5.57 4.42 E��(r*) (eV)  1.170 1.195 1.201 1.292 1.387 N�G(r�)(10&U cm.W)  4.06 8.58 9.83 34.73 69.87 

 

2.2. Temperature Effect 

Being inspired from excellent works by Pässler [33, 34],
 

who used semi-empirical descriptions of T-dependences of 

band gap of the Si by taking into account the cumulative 

effect of electron-phonon interaction and thermal lattice 

expansion mechanisms or all the contributions of individual 

lattice oscillations [33-35], we proposed in our recent paper 

[43] a simple accurate expression for the intrinsic band gap in 

the silicon (Si), due to the T-dependent carrier-lattice 

interaction-effect, E�%5T, r*(�)6, by  

E�%5T, r*(�)6 ≃ E��(r*(�)) − 0.071 (eV) × XY1 + ( CZ[[\.]/&W ^)C.C\&_ `a.ab` − 1c                    (2) 

where the values of E��(r*(�)) due to the d(a)-size effect are 

given in Table 1 and those of E�%5T = 300 K, r*(�)6 

tabulated in Table 2. Further, as noted in this Reference 43, in 

the (P, S)-Si systems, for 0 K ≤ T ≤ 3500 K, the absolute 

maximal relative errors of this E�%-result were found to be 

equal respectively to: 0.22% and 0.15%, calculated using the 

very accurate complicated results given by Pässler [34]. Then, 

in the n-type HD silicon at temperature T, the effective mass 

of the majority electron can be defined by [31, 32]:  

m�(T, r*) = :0.9163 × ;0.1905 × �fg(=@)�fh(Z,=@)BCD&/W × m� =
m�� × ; �fg(=@)�fh(Z,=@)BC/W

                  (3) 

which gives: m�� = m�(T = 0 K) = 0.3216 × m� , m� 

being the electron rest mass, and the effective mass of the 

minority hole yields [31, 32]:
  

mk(T) = gk.C/W × 5b.mmnopqrb.nsbtoap×`buavrb.``qno`o×`bunvarb.`asna`p×`buovnrb.nbaoop`×`bupvm`rb.mspnnpa×`buavrb.aapspto×`bunvarb.qmstaq`×`busvnrb.`qaqmp`×`bupvm 6C/W
                (4) 

which gives mk(T = 0 K) = mk� = 0.3664 × m�. Here, gk = 2 is the effective average number of equivalent valence-band 

edges. Now, the intrinsic carrier concentration n% is defined by 

n%C(T, r*(�), g�) ≡ N�(T, r*, g�) × Nk(T, gk) × exp ;.�fh5Z,=@(A)6x?Z B                          (5) 

where, N�(k)  is the conduction (valence)-band density of 

states, given by [31, 32]:
  

N�(T, r*, g�) = 2g� × 5yz5v,{@6×|?va}ℏa 6na (cm.W)      (6) 

Nk(T, gk) = 2gk × 5y�(v)×|?va}ℏa 6na (cm.W)       (7) 

where ℏ = h/2π  is the Dirac’s constant, k'  is the 

Boltzmann constant, and g� is the effective average number 

of equivalent conduction-band edges. Moreover, for r* ≡ r+ and at 300 K, some typical n%-results obtained 

for different g�-values, calculated using Equation (5), 

are given as follows.  

(i) If g� = 6 , one then gets: n% = 10.7 × 10/ cm.W , 

being just a result investigated from a measurement of 

energy-band-structure parameters and intrinsic 

conductivity by Green [31].  

(ii) If g� = 5, one then obtains: n% = 9.77 × 10/ cm.W , 

according to a result given from a capacitance 

measurement of a pin diode biased under high 

injection, by Misiakos and Tsamakis [37].  

(iii) Finally, if g� = 4.9113, one then gets: n% = 9.68 ×10/ cm.W, according to a result proposed by Couderc 

et al. (C) as [38]: n%(�) = 1.541 × 10&� × T&.�C& ×exp �− �fhCxZ� cm.W = 9.68 × 10/ cm.W  for T=300 K, 

basing on their updated fit of experimental data for the 

minority-carrier mobility and open-circuit voltage 

decay, which were given by Sproul and Green [36].  

Further, from Equations (5, 2), in donor-Si systems and for 

T=300 K, the numerical results of n% and E�%, calculated for g� = 6, 5, and 4.9113, as functions of KL(M), are tabulated in 

Table 2.  

Table 2. The values of intrinsic carrier concentration ��(� = 300 �, KL(M), �R) and intrinsic band gap OP� are calculated for �R = 6, 5, ��� 4.9113, using 

Equations (5, 2), respectively, as functions of KL(M). 
Donor Sb P As Bi Ti Te Se S g� = 6  E�%(300K) in eV 1.1215 1.1245 1.1515 1.1595 1.2875 1.5015 1.6835 1.7035 n%(300K) in 10&\ cm.W 1.13 1.07  6.34 × 10.& 5.43 × 10.& 4.56 × 10.C 7.26 × 10.[ 2.14 × 10.� 1.46 × 10.� 
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Donor Sb P As Bi Ti Te Se S 

g� � 5  

n%
300K� in 10&\ cm.W 1.04 9.779 10.& 5.79 9 10.& 4.96 9 10.& 4.17 9 10.C 6.63 9 10.[ 1.96 9 10.� 1.33 9 10.� 

g� � 4.9113  

n%
300K� in 10&\ cm.W 1.03 9.689 10.& 5.74 9 10.& 4.92 9 10.& 4.13 9 10.C 6.57 9 10.[ 1.94 9 10.� 1.32 9 10.� 

 

Acceptor B Al Ga In Tl 

g� � 6  E�%
300K� in eV 1.1245 1.1495 1.1555 1.2465 1.3415 n%
300 K� in 10&\ cm.W 1.07 6.59 9 10.& 5.87 9 10.& 1.01 9 10.& 1.60 9 10.C 

 
From those results, one remarks that, for T=300 K, n% 

decreases with increasing r*
�� since E�%5T, r*
��6 increases, 

being due to the d(a)-size effect.  

2.3. Heavy Doping Effect 

First of all, in the donor-Si system, we define the effective 

intrinsic carrier concentration n%�, by 

n%�C w N 9 p� w n%C 9 exp Y��fA
x?Z _         (8) 

where n%C is determined in Equation (5). Here, we can also 

define the “effective doping density” by [8]: N����. w
N/exp Y��fA

x?Z _  so that N����. 9 p� w n%C.  Here, p�  is the 

density of minority holes at the thermal equilibrium and the 

ABGN is defined by: 

ΔE�� w ΔE� ( k'T 9 ln � �
��� # E�        (9) 

where N� is defined in Equation (6), the Fermi energy E� 

due to the effects of heavy doping and Fermi-Dirac statistics 

is determined in Equation (A3) of the Appendix A, being 

accurate within 2.11 9 10.[ [39], and the BGN, ΔE�, due to 

the heavy doping effect, is determined in Equation (A9) of 

the Appendix B.  

Furthermore, in order to determine the minority-carrier 

saturation current J��, injected into the uniformly and heavily 

doped emitter region of the silicon devices, Jain and Roulston 

(JR) [15], Klaassen, Slotboom and Graaff (KSG) [16], Zouari 

and Arab (ZA) [17], Stem and Cid (SC) [18],
 
and Yan and 

Cuevas (YC) [19],
 
proposed their empirical expressions for 

the ABGN, being obtained in the P-Si system at 300 K, by: 

ΔE��
���
N� � 8.5 9 10.W 9 Xln5 �
n.o9`b`q zyun6 ( ��ln5 �

n.o9`b`q zyun6�C ( 0.5c 
eV�                   (10) 

ΔE��
^���
N� � 6.92 9 10.W 9 Xln5 �
`.n9`b`q zyun6 ( ��ln5 �

`.n9`b`q zyun6�C ( 0.5c 
eV�                 (11) 

ΔE��
� �
N� � 18.7 9 10.W 9 ln5 �
q9`b`q zyun6 
eV�  (12) 

ΔE��
���
N� � 14 9 10.W 9 ln5 �
`.m9`b`q zyun6 
eV�  (13) 

ΔE��
¡��
N� � 4.2 9 10.�  9 �ln5 �
`b`m zyun6�W 
eV�  (14) 

Then, in such the P-Si system at 300K, being inspired by 

the term: k'T 9 ln � �
��� given in Equation (9), and also by 

the result: ΔE��
¡��
N� given in Equation (14), we can now 

propose a modified (Mod.) YC-model for the ABGN so that 

its numerical results are found to be closed to those 

calculated by using Equation (9), as:  

ΔE��
¢�*.¡��
N, g�� � 114.94 9 10.]  9 Yln �o.q`sq9`bn
�� 9 �9s

fz �_W  
eV� � 114.94 9 10.]  9 £ln ; �9; sfzB
o9`b`o zyunB¤W 
eV�    (15) 

having a same empirical form as that given in Equation (14).  

 

 
Figure 1. (�, ¥� our ABGN-results given in heavily doped donor-Si systems, 

with a condition: J 0 JRS
KL�. 
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Figure 2. (¦&, ¦C� our ABGN-results given in heavily doped donor-Si systems, 

with a condition: J 0 JRS
KL�. 

Now, for g� � 6 , in d-Si systems at 300 K, our 

numerical ABGN ( ΔE�� )-results are calculated, using 

Equation (9). First, ours, obtained for the P-Si system, are 

plotted as a function of N in Figure 1 (a), in which, for a 

comparison, the other ones, calculated using Equations 

(10-15), are also included. Secondly, in this P-Si system, 

the relative deviations between ours and the others are 

also plotted as functions of N in Figure 1 (b). Finally, in 

Figure 2 (c&, cC�, ours are plotted in donor-Si systems as 

functions of N. 

Here, one observes that:  

(i) our numerical ABGN-results obtained using Equations 

(9, 15) are found to be closed together as seen in Figure 

1 (a), and their absolute maximal relative deviation 

yields: 3.03%, which occurs at N � 1.2 9 10C\ cm.W, 

as observed in Figure 1 (b), and  

(ii) in Figure 2 (c&, cC�, for a given donor-Si system, due to 

the heavy doping effect, ours increase with increasing N, and for a given N, ours increase (§) with increasing r*, due to the donor-size effect. 

Then, in the following, it is possible to define the optical 

band gap (OBG), expressed in terms of the ABGN (or BGN), 

suggesting a conjunction between the electrical-and-optical 

phenomena. 

3. Conjunction Between Electrical-and-

Optical Phenomena 

First of all, we define the optical band gap (OBG) by [25]: 

E�&
N, T, r*, g�� w E�%
T, r*� # ΔE� 
N, T, r*, g�� ( E�
N, T, r*, g��                          (16) 

where the intrinsic band gap E�%  is determined in 

Equation (2), the BGN ΔE�  is investigated in Equation 

(A9) of the Appendix B, and the Fermi energy E� is given 

in Equation (A3) of the Appendix A, suggesting that the 

optical phenomenon is represented by E�&. Furthermore, it 

is possible to establish a conjunction between the 

electrical and optical phenomena, obtained from Equations 

(9, 16), as: 

E�&
N, T, r*, g�� w E�%
T, r*� # ΔE�� 
N, T, r*, g�� ( k'T
9 ln ; N

N�
T, r*, g��B 

which can be rewritten, for example, replacing ΔE��  by 

ΔE��
¢�*.¡��
N� determined in Equation (15), as: 

E�&
¢�*.¡��
N, T, r*, g�� w E�%
T, r*� # ΔE��
¢�*.¡��
N, g�� ( k'T 9 ln � �
��
Z,=@,�z��             (17) 

Now, in the P-Si system, our numerical OBG-results, 

calculated using Equations (16, 17) for g� � 6, 5, 4.9113 

and at T=300 K, are tabulated in following Table 3, in which 

our numerical results of E�&  and E�&
¢�*.¡�� , obtained for 

g� � 6, are accurate within 1.86% and 1.9%, respectively, 

and found to be the best ones, compared with those obtained 

for g� � 5, 4.9113 . One notes that the relative deviations 

(RDs) between calculated E�&-results and E�&-data [44] are 

defined by: 1 # ��¨�©¨�ª�* �f`.=��©¨ª� 
�f`.*�ª� . 

Table 3. Our numerical results of optical band gap (OBG), expressed as functions of N for �R � 6, 5, 4.9113, and their relative deviations. 

« 
¬­¬® ¯°.±�  4 8.5 15 50 80 150 

E�&
eV�-data [44] 1.020 1.028 1.033 1.050 1.056 1.059 

Our OBG-results are obtained, using Equation (16). g� � 6  E�&
eV�  1.0390 1.0465 1.0496 1.0483 1.0463 1.0479 

RD(%) -1.86 -1.80 -1.61 0.17 0.92 1.05 
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« (¬­¬® ¯°.±)  4 8.5 15 50 80 150 g� = 5  E�&(eV)  1.0411 1.0478 1.0501 1.0473 1.0462 1.0470 

RD(%) -2.07 -1.92 -1.66 0.25 0.92 1.14 g� = 4.9113  E�&(eV)  1.0413 1.0479 1.0502 1.0473 1.0463 1.0468 

RD(%) -2.09 -1.93 -1.66 0.26 0.92 1.15 

Other OBG-results are obtained from Equation (17). g� = 6  E�&(¢�*.¡�)(eV)  1.0394 1.0459 1.0489 1.0492 1.0469 1.0415 

RD(%) -1.90 -1.74 -1.54 0.08 0.86 1.66 g� = 5  E�&(¢�*.¡�)(eV)  1.0412 1.0470 1.0495 1.0485 1.0456 1.0394 

RD(%) -2.08 -1.85 -1.59 015 0.98 1.85 g� = 4.9113  E�&(¢�*.¡�)(eV)  1.0414 1.0471 1.0495 1.0484 1.0454 1.0392 

RD(%) -2.09 -1.86 -1.60 0.15 0.99 1.87 

The underlined |³´|-values are the maximal ones. 

Here, our best choice is g� = 6 , meaning that at T ≥300 K, due to the high thermal agitation energy k'T, all the 

six equivalent conduction-band edges are effective.  

4. Minority-Carrier Transport 

Parameters 

Here, in the heavily doped n-type emitter region and the 

lightly doped p-type base region of n" − p junction silicon 

solar cells, the minority-hole (electron) transport parameters 

are studied as follows. 

4.1. Heavily Doped n-type Emitter-region Parameters 

In order to determine the minority-hole saturation-current 

density J��, injected into the heavily doped n-type emitter-

region, we need to know an expression for the minority-hole 

mobility μ� , being related to the minority-hole diffusion 

coefficient D� , by the well-known Einstein relation: D� =x?Z� × μ�, where e is the positive hole charge. Here, in donor-

Si systems at 300 K and for any g�, since the minority-hole 

mobility depends on N [10], and also on g� and ε(r*) [11], 

we can propose: 

μ�(N, T, r*, g�) = ¶130 + �\\.&W\
&"; �×sp×`b`q zyun×fzB`.ao· × �<(=@)<(=>)�C ×

� ZW\\ ^�W/C  (cmCV.&s.&)           (18) 

noting that as T = 300 K, g� = 6, and r* ≡ r+, Equation (18) 

is reduced to that given by del Alamo et al. [10]. Moreover, 

Equation (18) indicates that, for a given N and with 

increasing r*, μ� decreases, since ε(r*) decreases as seen in 

Table 1, being due to the d-size effect, in good accordance 

with that observed by Logan et al. [9]. Further, from 

Equations (5, 8, 9, 15, 18), we can define the following 

minority-hole transport parameter F as [22, 25]: 

F(N, T, r*, g�) ≡ FhaGg×�º = �»¼½½.�º ≡ �
�º×�¾G£¿?À�|?v ¤  (cm.� × s), 

N����. ≡ �
�¾G£¿?À�|?v ¤                 (19) 

where N����.  is the “effective doping density” [8] and the 

ABGN is determined in Equation (9) for our ΔE��-result or 

in Equation (15) for our approximate ΔE��(¢�*.¡�)-one. 

Furthermore, the minority-hole length, L�(N, T, r*, g�) =Áτ� × D� , τ�  being the minority-hole lifetime, can be 

determined by [22, 25]: 

L�.C(N, T, r*, g�) = Âτ� × D�Ã.& = (C × F)C = �C ×
�»¼½½.�º �C = �C × FhaGg×�º�C

     (20) 

where the constant CÂ= 10.&� (cm[/s)Ã was chosen in this 

work. Here, one remarks that τ� can be computed since D� 

(or μ�) and F are determined respectively in Equations (18, 

19). 

4.2. Lightly Doped p-type Base-Region Parameters 

Here, the minority-electron saturation current density 

injected into the lightly doped p-type base region, with an 

acceptor density equal to N�, is given by [1, 7]:
  

J'�(N�, T, r� ) = �×Fha(Z,=A,�zÅ])×�»¼(�A,v,{A)Æ¼(�A)�A       (21) 

where n%C(T, r*(�), g� = 6) is determined in Equation (5) and D�(N�, T, r�) ≡ x?Z� × μ�(N�, T, r�)  is the minority-electron 

diffusion coefficient, noting that Equation (21) is valid only 

for N� ≤ 10&] cm.W.  

Here, in the acceptor-Si system, μ�  is the minority-

electron mobility, being determined by [3, 11, 16]:
  

μ�(N�, T, r�) = Ç92 + &W]\./C
&"� �A`.n×`b`qzyun�b.t`È × �<(=A)<(=?)�C ×

� ZW\\ ^�W/C  (cmCV.&s.&)        (22) 

being reduced to the result obtained by Slotbottom and de 

Graaff [3, 16], as T=300 K and r� = r', and τ�(N�) is the 
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minority-electron lifetime, computed by [16, 25]: 

τ�
N�).& = &C.�×&\un + 3 × 10.&W × N� + 1.83 × 10.W& × N�C. (23) 

Furthermore, Equation (22) indicates that, for a given N� 

and with increasing r�, μ� decreases, since ε(r�) 

decreases, as seen in Table 1, in good accordance with that 

observed by Logan et al. [9].  

Then, in P(B)-Si systems at 300 K and for g� = 6 , 

Klaassen et al. confirmed, in Figures 1 and 2 of their paper 

[16], that the expressions (18, 22) for minority-hole (electron) 

mobility μ�(�) are simple and accurate. 

In the following, we will determine the minority-hole 

saturation-current density J��, injected into the heavily doped 

n-type emitter-region of the n" − p junction solar cells. 

5. Minority-Hole Saturation Current 

Density 

Let us first propose in the non-uniformly and heavily 

doped (NUHD) emitter region of donor-Si devices our 

expression for the effective Gaussian donor-density profile or 

the donor (majority-electron) density, defined in the emitter-

region width W, by: 

ρ(x) = N × exp É− � ¾Ê�C × ln Y ��g(Ê)_Ë ≡ N × Y ��g(Ê)_.� ÌÍ�a
  (24) 

where N�(W) ≡ 7.9 × 10&� × exp É− � Ê\.&U[C μÏ�&.\]]Ë (cm.W) , 1 μm = 10.[ cm , decreases with increasing W, in good 

agreement with the doping profile measurement on silicon 

devices, studied by Essa et al. [13]. Moreover, Equation (24) 

indicates that: 

(i) at the surface emitter: x=0, ρ(0) = N , defining the 

surface donor density, and 

(ii) at the emitter-base junction: x=W, ρ(W) = N�(W) , 

which decreases with increasing W, as noted above. Here, 

we also remark that N�(Ð��) = 7 × 10&� cm.W  was 

proposed by Van Cong and Debiais (VCD) [22], and N�(� ) = 2 × 10&] cm.W, by Zouari and Arab (ZA) [17], 

for their Gaussian impurity density profile. Moreover, all 

the parameters given in Equation (24) were chosen such 

that the errors of our obtained J��–values are minimized, 

as seen in next Table 4, and our numerical calculation 

indicates that, from Equation (24), we can determine the 

highest value of W, being equal here to 85 μm.  

Now, from Equations (8, 9) or Equation (19), taken for 0 ≤ x ≤ W, and using Equation (24), the result: N����.(x =0) ≡ N/exp Y��fA(�)x?Z _ may be rewritten as: 

N����.(x) ≡ ρ(x)/exp Y��fA(Ñ(¾))x?Z _        (25) 

which gives at x=W: N����.(W) ≡ �g(Ê)
�¾G:ÒÓfA5�g(Í)6|?v D. 

Then, under low-level injection, in the absence of external 

generation, and for the steady-state case, we can define the 

minority-hole density by: 

p�(x) ≡ Fha�»¼½½.(¾)                (26) 

and a normalized excess minority-hole density [or a relative 

deviation between p(x) and p�(x)] by [22, 25]: 

u(x) ≡ G(¾).Gg(¾)Gg(¾)                 (27) 

which must verify the two following boundary conditions 

proposed by Shockley as [2]: 

u(x = 0) ≡ .�º(¾Å\)��×Gg(¾Å\)               (28) 

u(x = W) ≃ exp � ÐF(Ð)×Ðv� − 1, for small W − values   (29) 

Here, n(V) is an ideality factor, S (�Ï� ) is the hole surface 

recombination velocity at the emitter contact, V is the applied 

voltage, VZ ≡ (k'T/e)  is the thermal voltage, and the 

minority-hole current density J�(x), being found to be similar 

to the Fick’s law for diffusion equation, is given by [8, 22]: 

J�(x) = − �Fha�(¾) × *©(¾)*¾ = − �Fha�º(¾)�»¼½½.(¾) × *©(¾)*¾        (30) 

where F(x) is determined in Equation (19), in which N is 

replaced by ρ(x), proposed in Equation (24). 

Further, the minority-hole continuity equation yields 

[8, 22]: 

*�º(¾)*¾ = −en%C × ©(¾)�(¾)×Ùºa = −en%C × ©(¾)�»¼½½.(¾)×Úº(Ñ(¾)) = −e ×
Âp(x) − p\(x)Ã × Úº(�)Úº(Ñ(¾)) × &Úº(�).           (31) 

Then, from these two Equations (30, 31), one obtains the 

following second-order differential equation as [22]: 

La©(¾)*¾a − *�(¾)*¾ × *©(¾)*¾ − ©(¾)Ùºa (¾) = 0       (32) 

Using the two boundary conditions (28, 29), one thus gets 

the general solution of this Equation (32) as [22]: 

u(x) = �A(W) × sinh5P(x)6 + B(W) × cosh5P(x)6� ×�exp � ÐF(Ð)×Ðv� − 1�                   (33) 

where A(W) ≡ &�%F�5+(Ê)6"ß(Ê)×����5+(Ê)6 , Ι(W, S) ≡ '  =
�º(�g(Ê))�×Ùº(�g(Ê))  and  P(x) ≡ á C × F(x)dx¾\ , since 

*+(¾)*¾ ≡ C ×F(x). Here, C = 10.&� (cm[/s), as that chosen in Equation 

(20), and the hyperbolic sine-and-cosine functions are 

defined by: sinh(x) ≡ 0.5 × Âe¾ − e.¾Ã  and cosh(x) ≡0.5 × Âe¾ + e.¾Ã. 
Further, from Eq. (33), as P(W) ≪ 1 (or for small W) one 

has:  A ≃ &ã  or B ≃ 1 , and one therefore obtains: u(W) ≃Yexp � ÐF(Ð)×Ðv� − 1_ , which is just the boundary condition 

given in Equation (29). Now, using Equations (30, 33), 

one gets: 



25 Huynh Van Cong et al.:  Best Performance of n+ - p Crystalline Silicon Junction Solar Cells at 300 K,  

Due to the Effects of Heavy Doping and Impurity Size. I 

  

J�(x, N, T, r*, g�, S) =−J��(x, N, T, r*, g�, S) × �exp � ÐF(Ð)×Ðv� − 1�    (34) 

where J��  is the minority-hole saturation current density, 

being injected into the heavily doped n-type emitter region 

for 0 ≤ x ≤ W and given by: 

J��(x, N, T, r*, g�, S) = en%CC × �A(W) × cosh5P(x)6 +B(W) × sinh5P(x)6�        (35) 

One also remarks that, from Equations (20, 33-35) and 

after some manipulations, one gets: u(x = 0) ≡ .�º(¾Å\)��×Gg(¾Å\), 
being just the boundary condition given in Eq. (28). Now, 

using the P(x)-definition given in Equation (33), at T=300 K, 

one can define the inverse effective minority-hole diffusion 

length by: 

&Ùº,¼½½.(¾ÅÊ,�,Z,=@,�z) = &Ê á *¾Ùº(¾)Ê\ = &Ê á C × F(x)dx ≡Ê\P(x = W, N, T, r*, g�) /W     (36) 

where L� = (CF).& is defined in Equation (20), in which N 

is replaced by ρ(x) , being determined in Equation (24). 

Therefore, Equation (36) can be rewritten as: 

P(x = W, N, r*, g�) ≡ ÊÙº,¼½½. = ÊÙº × ÙºÙº,¼½½.        (37) 

for a simplicity. Then, from Eq. (33, 35), since B = A ×Ι(W, S) one obtains: 

J��(x = 0, N, r*, g�, S) = en%CC × A = �Fha��%F�(+)"ß×����(+) (38) 

J��(x = W, N, r*, g�, S) = en%CC × ����(+)"ß×�%F�(+)�%F�(+)"ß×����(+)  (39) 

Now, from those results (34, 38, 39), one gets: 

�º(¾Å\,�,=@,�z,�)�º(¾ÅÊ,�,=@,�z,�) ≡ �Óg(¾Å\,�,=@,�z,�)�Óg(¾ÅÊ,�,=@,�z,�) = &����(+)"ß×�%F�(+) (40) 

Further, using Equations (27, 33, 34) and going back to the 

minority-hole continuity equation defined in Equation (31), 

one gets: 

&�Óg(¾ÅÊ) × YJ��(x = W) − J��(x = 0) = &Úº(�) × Q�,���.(x =
W, N)_,                      (41) 

where τ�(N, r*, g�) is determined in Equation (20), and Q�,���.(C/cmC)  is the effective excess minority-hole charge density 

given in the emitter region, defined by [22]: 

Q�,���.(x = W, N) ≡ á e × Âp(x) − p\(x)Ã × Úº(�)Úº(Ñ(¾))Ê\ dx.  (42) 

Finally, from Equations (40, 41), if defining the effective 

minority-hole transit time by: τª,���.(x = W, N, S) ≡Q�,���.(x = W, N)/J��(x = W, N, r*, g�, S) , one then obtains 

the reduced effective minority-hole transit time, as:
22 

Úç,¼½½.(¾ÅÊ,�,=@,�z,�)Úº = 1 − �Óg(¾Å\,�,=@,�z,�)�Óg(¾ÅÊ,�,=@,�z,�) =
1 − &����(+)"ß×�%F�(+).       (43) 

Now, from above Equations (38-43), some important 

results can be obtained and discussed below.  

5.1. Very Large è(= ¬­é­  êëì , íîï ðñòëóôõ) or è → ∞ 

and ø ≪ ¬ or ù ≪ úû,õüü. 
Here, various results can be investigated as follows. 

(i) From Equations (38-40), since Ι(W) = �º(�g(Ê))�×Ùº(�g(Ê)) →
0  as S → ∞ , 

�Óg(¾Å\,�,=@,�z ,�)�Óg(¾ÅÊ,�,=@,�z ,�) ≃ &����(+) → 1  since P ≪ 1 , or J��(x = W, N, r*, g�, S → ∞) ≃J��(x = 0, N, r*, g�, S → ∞). Therefore, from Equation 

(43), one obtains: 
Úç,¼½½.(¾ÅÊ,�,=@,�z,�→ý)Úº(�) → 0, suggesting 

a completely transparent emitter region (CTER). 

(ii) Further, from Equations (18-20, 39), since Ι → 0 and P ≪ 1, the result (39) is now reduced to: 

J��(x = W, N, r*, g�, S → ∞) ≃ �Fha�+ = �Fha�×Ê × Ùº,¼½½.Ùº =
�Fha×�º�»¼½½×Ê × Ùº,¼½½.Ùº                    (44) 

being found to be independent of S and C, since 
Ùº,¼½½.Ùº  is 

independent of S and C as observed in Equations (20, 36), 

and noting that the ABGN-expression is determined by 

Equation (9) or by Equation (15). 

Now, in the P-Si system, for T = 300 K, r* ≡ r+ and g� =6, 5, 4.9113 , our two numerical J�� -results are calculated, 

using Equations (44, 9) and (44, 15), and given in Table 4, in 

which the CTER -condition, P ≪ 1  (or 
Úç,¼½½.Úº(�) ≪ 1) , is 

fulfilled, and we also compare them with modeling and 

measuring J��-results investigated by del Alamo et al. (ASS) 

[10, 12]. One notes that their modeling J��-result [10], based 

only on two independent parameters: N����/D� and L�, can 

be obtained, for L�,���. = W, from our above result (44). This 

could explain a great difference between their modeling 

results [10, 12], being accurate within 36%, and ours, 

accurate within 1.78%, for g� = 6, as those observed in the 

following Table 4.  
Table 4. Our present results of þ�Q ( �R�a) expressed as functions of N for �R = 6, 5, 4.9113, and their relative deviations (RDs), calculated by: RD(%)=1-

( �K����� þ�Q/ þ�Q-data), where the þ�Q ( �R�a)-data are given in References 10 and 12, the theoretical ASS-þ�Q ( �R�a)-results, obtained by Alamo et al. (ASS) [10, 

12], and also their relative deviations.  

« (¬­¬� ¯°.±)  2.1 3.3 4.4 4.6 12 W (μm)  0.20 1.00 0.23 0.66 0.20 J��(S → ∞)– data  3.2 × 10.&C  8.3 × 10.&W  2.6 × 10.&C  1.1 × 10.&C  2.8 × 10.&C  

ASS- J��(S → ∞)] 3.6 × 10.&C  1.1 × 10.&C  2.6 × 10.&C  1.5 × 10.&C  2.81 × 10.&C  

RD(%)  -12.5 -32.5 0 -36 -0.4 N�( cm.W)  2.65 × 10&�  1.82 × 10&�  2.22 × 10&�  1.60 × 10&]  2.65 × 10&�  
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« 
¬­¬� ¯°.±�  2.1 3.3 4.4 4.6 12 

Present  þ�Q-results are obtained, using Equations (44, 9) 

g� = 6, n% = 1.07 × 10&\ cm.W  
P(N, W)<<1 5.7 × 10.�  2.2 × 10.[  7.2 × 10.�  1.7 × 10.[  6.6 × 10.�  Úç,¼½½.Úº(�) ≪ 1  1.6 × 10./  2.4 × 10.U  2.6 × 10./  1.4 × 10.U  2.2 × 10./  Present J��(S → ∞)  3.242 × 10.&C  8.448 × 10.&W  2.554 × 10.&C  1.080 × 10.&C  2.774 × 10.&C  

RD(%)  -1.32 -1.78 1.77 1.78 0.94 g� = 5, n% = 9.77 × 10/ cm.W  
P(N, W)<<1 5.0 × 10.�  1.9 × 10.[  6.1 × 10.�  1.4 × 10.[  5.7 × 10.�  Úç,¼½½.Úº(�) ≪ 1  1.2 × 10./  1.8 × 10.U  1.9 × 10./  1.0 × 10.U  1.6 × 10./  Present J��(S → ∞)  3.054 × 10.&C  8.124 × 10.&W  2.485 × 10.&C  1.052 × 10.&C  2.693 × 10.&C  

RD(%)  4.56 2.12 4.43 4.35 3.81 g� = 4.9113, n% = 9.68 × 10/ cm.W  
P(N, W)<<1 4.9 × 10.�  1.8 × 10.[  6.1 × 10.�  1.4 × 10.[  5.6 × 10.�  Úç,¼½½.Úº(�) ≪ 1  1.2 × 10./  1.7 × 10.U  1.8 × 10./  1.0 × 10.U  1.6 × 10./  J�� (A/cmC)  3.038 × 10.&C  8.096 × 10.&W  2.479 × 10.&C  1.050 × 10.&C  2.686 × 10.&C  

RD(%)  5.07 2.46 4.66 4.57 4.07 

Present  þ�Q-results are obtained, using Equations (44, 15) g� = 6, n% = 1.07 × 10&\ cm.W  
P(N, W)<<1 5.7 × 10.�  2.2 × 10.[  7.2 × 10.�  1.7 × 10.[  6.5 × 10.�  Úç,¼½½.Úº(�) ≪ 1  1.6 × 10./  2.3 × 10.U  2.6 × 10./  1.5 × 10.U  2.1 × 10./  Present J��(S → ∞)  3.277 × 10.&C  8.472 × 10.&W  2.543 × 10.&C  1.073 × 10.&C  2.813 × 10.&C  

RD(%)  -2.41 -2.07 2.20 2.42 -0.48 g� = 5, n% = 9.77 × 10/ cm.W  
P(N, W)<<1 5.0 × 10.�  1.9 × 10.[  6.2 × 10.�  1.5 × 10.[  5.4 × 10.�  Úç,¼½½.Úº(�) ≪ 1  1.2 × 10./  1.8 × 10.U  1.9 × 10./  1.1 × 10.U  1.5 × 10./  Present J��(S → ∞)  3.083 × 10.&C  8.107 × 10.&W  2.460 × 10.&C  1.040 × 10.&C  2.808 × 10.&C  

RD(%)  3.66 2.32 5.37 5.49 -0.30 g� = 4.9113, n% = 9.68 × 10/ cm.W  

P(N, W)<<1 4.9 × 10.�  1.9 × 10.[  6.1 × 10.�  1.4 × 10.[  5.3 × 10.�  Úç,¼½½.Úº(�) ≪ 1  1.2 × 10./  1.7 × 10.U  1.9 × 10./  1.0 × 10.U  1.4 × 10./  Present J��(S → ∞)  3.066 × 10.&C  8.075 × 10.&W  2.453 × 10.&C  1.037 × 10.&C  2.809 × 10.&C  

RD(%)  4.20 2.71 5.64 5.75 -0.31 

The underlined |³´|-values are the maximal ones. 

Table 4 indicates that: 

(i) the maximal relative deviations (RDs) in absolute 

values between our results (44, 9) and the J��-data [10, 

12] are found to be: 1.78% for g�=6, 4.56% for g�=5, 

and 5.07% for g�=4.9113, and 

(ii) the maximal RDs in absolute values between our 

results (44, 15) and the J��-data [10, 12] are given by: 

2.42% for g� =6, 5.49% for g� =5, and 5.75% for g�=4.9113. It suggests that our numerical results (44, 

9) for g�=6 are the best ones, since they are accurate 

within 1.78%. Further, one notes that our ΔE�� -

expression given in Equation (9) was obtained, taking 

into account all the physical effects such as: those of 

donor size, heavy doping and Fermi-Dirac statistics, 

while in Equation (15) our ΔE��(¢�*.¡�)  -expression 

is only an empirical one. So, in the following, we will 

choose: g� =6, T=300 K, and our ABGN-expression 

(9), for all the numerical calculations. 

(iii) Furthermore, in particular, for large S and small P, 

from Equation (40) one gets: 

�Óg(¾Å\,�,=@,�)�Óg(¾ÅÊ,�,=@,�) = &����(+)"ß×�%F�(+) ≃ 1 − �º(�g(Ê))�×Ùº(�g(Ê)) × P −
(+)a

C . 

Then, from Equation (43), using Equations (20, 37) one 

obtains in the heavily doped case: 

τª,���.(x = W, N, r*, g�, S) ≃ τ� × X D�5N�(W)6S × L�5N�(W)6 × P + (P)C2 c ≃ WS × L�5N�(W)6L�,���.5N�(W)6 + WC
2D�5N�(W)6 × � L�5N�(W)6L�,���.5N�(W)6�

C
 

≃ Êa
C�º5�g(Ê)6 × ; Ùº5�g(Ê)6Ùº,¼½½.5�g(Ê)6BC , as S → ∞                                 (45) 

and in the lowly doped case (i.e., L�,���. ≃ L�):  

τª,���.(x = W, N, r*, S) ≡ τª = Ê� + Êa
C�º ≃ Êa

C�º, as S → ∞ (46) 

being just a familiar expression given for the minority-hole 

transit time τª obtained by  

Shibib et al. [7]. 

5.2. Small è = ¬­.é­ (êëì ) or è → ­, and ø ≫ ¬ or ù ≫ úû,õüü 

Here, from Eq. (33) and for any N, one has: Ι =
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�º
�g
Ê��
�9Ùº
�g
Ê�� ö ∞ , since S ö 0 . Therefore, from Equation 

(43), one obtains: 
Úç,¼½½.5¾ÅÊ≫Ùº,¼½½.,�,=@,�z,�ö\6

Úº ö 1, suggesting 

a completely opaque emitter region (COER).  

Now, our numerical results of J��
x � W, N, r*, S� w J�� 

and 
Úç,¼½½.
¾ÅÊ,�,=@,��

Úº w Úç,¼½½.
Úº , for simplicity, are respectively 

computed, using Equations (39) and (43), and then plotted 

into Figures 3 (a&, aC), (b) and 4 (a&, aC), (b)  

as functions of N, and Figures 3 (c) and 4 (c), as functions of 

S, noting that in those figures we also include various 

physical conditions such as: S, W, r* and N.  

 

 

 

 
Figure 3. (�& , �C ) Our þ�Q -results obtained as functions of N, with a 

condition: J 0 JRS
KL� , given in heavily doped donor-Si systems, as 

defined in Table 1, (b) ours obtained as a function of N, and (c) ours 

obtained as a function of S. 
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Figure 4. (�& , �C) Our 
��,���./���-results obtained as functions of J 0JRS
KL� in heavily doped donor-Si systems, as defined in Table 1, (b) ours 

obtained as a function of N, and (c) ours obtained as a function of S. 

Some concluding remarks are obtained and discussed 

below. 

(i) Figures 3(a&, aC) and 4(a&, aC) indicate that, since as 

S ö ∞  and W � 1 µm , 
Úç,¼½½.

Úº 
1 4 9 10.U� ≃ 0 , 

according to the CTER, and for a given N, due to the 

donor-size effect, both J�� and 
Úç,¼½½.

Úº  decrease (�) with 

increasing r*. Then, for a given r*, at large values of N I 3 9 10C\ cm.W, due to the heavy doping effect, 

J�� (or 
Úç,¼½½.

Úº ) increases (or decreases) with increasing 

N.  

(ii) Figures 3(b) and 4(b) show that, for a given N, J�� (or Úç,¼½½.
Úº ) decreases (or increases) with increasing W.  

(iii) Figures 3(c) and 4(c), suggest that, for given S, J�� 

(or 
Úç,¼½½.

Úº ) decreases (or increases) with increasing W.  

(iv) In particular, in Figure 4(c), as S ö 0  and W �
85 µm, 

Úç,¼½½.
Úº ö 1, according to the COER. 

Finally, it should be noted that in next Section 6 we must 

know the numerical results of dark saturation current density, 

defined by:  

J�
x � W, N, r*, S, N�, r�� w J��
x � W, N, r*, S� (J'�
N�, r��      (47) 

where J'� and J��  are determined respectively in 

Equations (21, 39). Then, those are tabulated in the following 

Table 5, in which all the physical conditions are also 

presented.  

Table 5. Our numerical results of  þQ � þ�Q ( þ�Q, calculated using Equation (47), where þ�Q ��� þ�Q are determined respectively in Equations (21, 39), and 

those are obtained in the three following cases. 

First case: In the heavily doped (HD) P-Si emitter region (N � 10C\ cm.W), and in the lightly doped (LD) B-Si base region (N� � 10&] cm.W) in which 

J'� � 6.0912 9 10.&W  �  
�Ïa�. 

For S � 10�\ cm/s and W � 0.206 nm, according to the completely transparent emitter region, one has: 

J�� � 2.4833 9 10./  �  
�Ïa� ≫ J'� and J� � 2.4839 9 10./  �  

�Ïa� ≃ J�� 

For S � 10�\ cm/s and W � 4.4 nm, according also to the completely transparent emitter region, one has: J�� � 1.1645 9 10.&\  �  
�Ïa� ≫ J'� and 

J� � 1.1706 9 10.&\  �  
�Ïa� ≃ J�� 

For S � 10[ cm/s and W � 0.36 µm, one has: J�� � 1.2237 9 10.&W  �  
�Ïa� 1 J'� and J� � 7.3148 9 10.&W  �  

�Ïa� ≃ J'� 

For S � 10.�\ cm/s and W � 85 µm, according also to the completely opaque emitter region, one has: J�� � 4.7117 9 10.&/  �  
�Ïa� â J'� and J� �

6.0912 9 10.&W  �  
�Ïa� � J'� 

Second case: In the completely opaque HD S-Si emitter region (N � 5 9 10C\ cm.W, S � 10.�\ cm/s and W � 85 µm), and in the lightly doped a-Si base 

region, in which N� �  10&] cm.W. 
r�, r��  
r�, r'�  
r�, r ¨�  
r�, r���  
r�, rãF�  
r�, rZ¨�  

J��  �  
�Ïa�  1.8728 9 10.C/  1.8728 9 10.C/  1.8728 9 10.C/  1.8728 9 10.C/  1.8728 9 10.C/  

J'�  �  
�Ïa�  6.0912 9 10.&W  1.8033 9 10.&W  1.3660 9 10.&W  2.6485 9 10.&�  5.3080 9 10.&�  

J�  �  
�Ïa�  6.0912 9 10.&W  1.8033 9 10.&W  1.3660 9 10.&W  2.6485 9 10.&�  5.3080 9 10.&�  

J� � J'�       

Third case: In the completely transparent HD d-Si emitter region (N � 5 9 10C\ cm.W, S � 10�\ cm/s and W � 0.000206 µm), and in the lightly doped 

Tl-Si base region, in which N� �  10&] cm.W and J'� � 5.3080 9 10.&�  �  
�Ïa�. 


r*, rZ¨�  
r��, rZ¨�  
r+, rZ¨�  
r �, rZ¨�  
r'%, rZ¨�   

J��  �  
�Ïa�  2.7206 9 10./  2.6794 9 10./  1.5402 9 10./  1.2336 9 10./   

J�  �  
�Ïa�  2.7206 9 10./  2.6794 9 10./  1.5402 9 10./  1.2336 9 10./   
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r*, rZ¨�  
rZ%, rZ¨�  
rZ�, rZ¨�  
r��, rZ¨�  
r�, rZ¨�   J��  �  �Ïa�  1.6600 × 10.&&  7.5378 × 10.&�  9.7654 × 10.&U  4.6878 × 10.&U   J�  �  �Ïa�  1.6600 × 10.&&  7.5909 × 10.&�  6.2845 × 10.&�  5.7767 × 10.&� ≃ J'�   

 

Some important remarks are given and discussed below.  

(i) In the first case, with decreasing S and increasing W, J� thus decreases from the CTER to the COER, and 

one gets in this COER: J� = J'�. 

(ii) In the second case or in the COER-conditions, J'� 

decreases with increasing r� , being due to the 

acceptor-size effect, and for given r�  one has: J� = J'� since J�� = 0.  

(iii) In the third case or in the CTER-conditions, J�� 

decreases with increasing r*, being due to the donor-

size effect, and for (r�, rZ¨), one gets: J� = 5.7767 ×10.&�  �  �Ïa� ≃ J'� = 5.3080 × 10.&�  �  �Ïa� , which 

can be compared with the similar result, obtained the 

second case or in the COER-conditions, as: J� =J'� = 5.3080 × 10.&�  �  �Ïa�, calculated for (r�, rZ¨).  

It should be noted that these values of J�  will strongly 

affect the variations of various photovoltaic conversion 

parameters of n" − p junction silicon solar cells, such as: 

the ideality factor n, short circuit current density J�� , fill 

factor FF, and photovoltaic conversion efficiency η, being 

expressed as functions of the open circuit voltage, V�� [4], as 

investigated in the following. Our empirical treatment 

method used is that of two points. The first point is 

characterized by [27]: 

V��& = 624 mV, J��& = 36.3 Ï �Ïa , FF& = 80.1 %   (48) 

and the second one by [23, 28]:  

V��C = 740 mV, J��C = 41.8 Ï �Ïa , FFC = 82.7 %.   (49) 

In the following, we will develop our empirical treatment 

method of two points, used to determine J�� and FF, basing 

on accurate results given in Equations (48) and (49). 

6. Photovoltaic Conversion Effect 

The well-known net current density J  at T=300 K, 

expressed as a function of the applied voltage V, flowing 

through the n" − p junction of silicon solar cells, is defined 

by: 

J(V) ≡ JG�.(V) − J� × ;�
�

�(�)×�v − 1B , VZ ≡ x?Z� =25.8543 mV                       (50) 

Noting that J(V) = 0  at V = V�� , V��  being an open 

circuit voltage, at which JG�.(V = V��) ≡ J��(W, N, r*, S, N�, r�, V��) , where J��  is the 

short circuit current density. Here, JG�. is the photocurrent 

density and J�(W, N, r*, S, N�, r�) ≡ J�� + J'�  is the “dark 

saturation current density” or the n" − p  junction leakage 

saturation current density in the absence of light, defined in 

Equation (47). Therefore, the photovoltaic conversion effect 

occurs, according to:  

J��(W, N, r*, S, N�, r�, V��) ≡ J�(W, N, r*, S, N�, r�) × (ek − 1), v(W, N, r*, S, N�, r�, V��) ≡ ÐgzF×Ðv           (51) 

Here, n is the ideality factor, being determined by our empirical treatment method of two points, as: 

n(W, N, r*, S, N�, r�, V��) = n&(W, N, r*, S, N�, r�, V��&, J��&) + nC(W, N, r*, S, N�, r�, V��C, J��C) × ; V��V��& − 1B�� , 
 yF = 1.1248                                            (52) 

which is valid for any W, N, r*, S, N�, r�, V�� ≥ V��&, and increases with increasing V�� for given W, N, r*, S, N� and r�. 

Further, the values of V��&, J��&, V��C and J��C are given in Equations (48, 49), and the numerical results of n&(C) can be 

determined from Equation (51) by: 

n&(C)5W, N, r*, S, N�, r�, V��&(C), J��&(C)6 ≡  Ðgz`(a)Ðv × &
¨F ;��z`(a)

�g "&B                   (53) 

implying that both n&(C) (or n) and J� have the same variations for given (W, N, r*, S, N�, r�)-variations, being found to be an 

important remark.  

Furthermore, in Equation (52), for the CTER-conditions such as: 

W = 4.4 nm = 0.0044 μm, N = 10C\ cm.W, r* = r+, S = 10�\ �Ï� , N� = 10&] cm.W, r� = r'                (54) 

the exponent yF = 1.1248 was chosen such that:  

n5W, N, r*, S, N�, r�, V��&(C)6 ≡ n&(C)5W, N, r*, S, N�, r�, V��&(C), J��&(C)6 = 1.2344 (1.4534) respectively. 
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For example, from the above remark given in Eq. (53) and 

from the first case reported in Table V, we can conclude that, 

with decreasing S and increasing W, both n and J� decrease 

from the CTER to the COER. Therefore, from Equation (51), J�� thus increases from the CTER to the COER, since J�� is 

expressed in terms of �
k≡ �gz

�×�v. 

Then, the values of the fill factor FF for V�� = V��&(C) can 

be found to be given by: 

FF&(C)5W, N, r*, S, N�, r�, V��&(C)6 = k5Ê,�,=@,�,�A,=A,Ðgz`(a)6.¨F�k5Ê,�,=@,�,�A,=A,Ðgz`(a)6"\.�C�k5Ê,�,=@,�,�A,=A,Ðgz`(a)6"���`(a)                (55) 

where z��`(a) = 1.1 (0.472) was chosen such that, under the 

above conditions (54), the values of FF&(C), calculated using 

Equation (55), are identical to the data given in Equations (48, 

49): 80.1% (82.7%), respectively [27, 23].  

Moreover, in the case where both series resistance and 

shunt resistance have a negligible effect upon cell 

performance, z��`(a),À{¼¼� = 1, as proposed by Green [4].  

Now, by applying a same above treatment method of two 

points, one has: 

FF(W, N, r*, S, N�, r�, V��) = FF&(W, N, r*, S, N�, r�, V��&) + FFC(W, N, r*, S, N�, r�, V��C) × ; V��V��& − 1B��� ,  
y�� = 2.0559                                                (56) 

which is valid for any W, N, r*, S, N�, r�, V�� ≥ V��& , and 

increases with increasing V�� for given W, N, r*, S, N� and r�. 

Here, the value of y��(= 2.0559)  was chosen such that, 

under the conditions (54), FF5W, N, r*, S, N�, r�, V��&(C)6 ≡FF&(C)5W, N, r*, S, N�, r�, V��&(C)6 = 80.1% (82.7%) , 

respectively [27, 23]. 

Then, the photovoltaic conversion efficiency η  can be 

defined by:  

η(W, N, r*, S, N�, r�, V��) ≡ ��z×Ðgz×��+h�.       (57) 

where J��  and FF are determined respectively in Equations 

(51, 56), being assumed to be obtained at 1 sun illumination 

or at AM1.5G spectrum (P%F. = 0.100 Ê�Ïa) [27, 28].
 
 

In summary, all above parameters such as: n, J�� , FF 

and η, defined in above, strongly depend on J�, determined 

in Equation (47), which is thus a central result of the present 

paper.  

Now, for given physical conditions such as: W, N, r*, S, N� and r�, and by taking into account all remarks 

given in Table 5 and also in above Equation (53), our 

numerical results of n, J��, FF and η, expressed as functions V��, are respectively computed by using Equations (52, 51, 

56, 57), and reported in following Table 6 and Figures 7, 8 

and 9. 

In Table 6, in which, for 624 ≤ V��(mV) ≤ 750 [23, 24, 

27-29] the physical conditions used are: 

W = 0.206 nm, N = 10C\ cm.W, r* ≡ r+, S = 10�\ �Ï� , N� = 10&] cm.W, r� ≡ r'                 (58) 

according to the CTER, we get the precisions of the order of 

8.1% for J��, 7.1% for FF, and 5% for η, calculated using the 

corresponding data [23, 24, 27-29], which is strongly 

affected by J� = J�� + J'�, as noted above, suggesting thus 

an accuracy of J'� (≤ 8.1%), since J�� was accurate within 

1.78%, as given in Table 4.  

Table 6. With the physical conditions given in Equation (58), our present results (PR) of n, þ�R(��R�a), FF(%), and  (%), calculated using Equations 

(52,51,56,57), being compared with corresponding data [23, 24, 27-29], and their relative deviations (RD), computed using the formula: RD= |1 −(�³/´���)|. 
Data (D) from References !"¯ (°!)  n #$¯(%&)5#$¯(')6;&'  ))(%&)5))(')6;&'  *(%&)5*(')6; &'  

[28] 750 1.7474 40.24 (39.5); 1.9 80.58 (83.2); 3.1 24.32 (24.7); 1.5 

[23, 28] 740 1.7222 41.01 (41.8); 1.9 80.11 (82.7); 3.1 24.31 (25.6); 5.0 

[28] 738 1.7172 41.16 (40.8); 0.9 80.02 (83.5); 4.2 24.31 (25.1); 3.2 

[28] 737 1.7146 41.23 (41.3); 0.2 80.00 (82.7); 3.3 24.30 (25.2); 3.6 

[28] 718 1.6676 42.43 (42.1); 0.8 79.22 (83.2); 4.8 24.13 (25.1); 3.8 

[24] 710 1.6481 42.82 (42.3); 1.2 78.95 (82.6); 4.4 24.00 (24.8); 3.2 

[28, 29] 706 1.6384 42.98 (42.7); 0.6 78.82 (82.8); 4.8 23.91 (25.0); 4.3 

[24] 705 1.6360 43.02 (42.2); 1.9 77.87 (83.1); 6.3 23.89 (24.7); 3.3 

[24] 703 1.6312 43.08 (42.0); 2.6 78.73 (82.7); 4.8 23.84 (24.4); 2.3 

[28] 695 1.6122 43.30 (40.2); 7.7 78.50 (80.5); 2.5 23.62 (22.5); 4.9 

[28] 680 1.5772 43.37 (40.5); 7.1 78.14 (80.3); 2.7 23.05 (22.1); 4.3 

[29] 671.7 1.5584 43.20 (40.5); 6.5 77.98 (80.9); 3.6 22.63 (22.0); 2.8 

[28] 667 1.5479 43.01 (39.8); 8.1 77.91 (80.0); 2.6 22.35 (21.3); 4.9 

[27] 665 1.5434 43.91 (42.2); 1.7 76.87 (78.7); 1.0 22.22 (22.1); 0.5 
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Data (D) from References !"¯ 
°!�  n #$¯
%&�5#$¯
'�6; &'  ))
%&�5))
'�6; &'  *
%&�5*
'�6; &'  

[24] 655 1.5217 42.21 (39.8); 6.1 77.74 (79.4); 2.1 21.50 (20.7); 3.8 

[28] 643 1.4968 40.83 (39.3); 3.9 77.64 (83.6); 7.1 20.38 (21.1); 3.4 

[27] 632 1.4758 38.80 (39.2); 1.0 77.59 (75.8); 2.4 19.02 (18.7); 1.7 

[27] 624 1.4630 36.30 (36.3); 0.0 77.58 (80.1); 3.1 17.57 (18.1); 2.9 

The underlined RD (%)-values are the maximal ones. 

In Figures 5 (a), (b), (c) and (d), the physical conditions used are:  

N � 10C\ cm.W, r* � r+, N� � 10&] cm.W, r� � r', and different 
S, W� # values             (59) 

which are given also in these figures, and in Table 5 for the 

first case. Here, for a given V��, and with decreasing S and 

increasing W, we observe that:  

(i) in the Figure 5 (a), the function n determined in 

Equation (52) (or the function J�  given in Table 5) 

decreases from the CTER to the COER 

(ii) in Figures 5 (b), 5 (c) and 5(d), the functions J��, FF 

and η therefore increase from the CTER to the COER, 

and 

(iii) in Figure 5 (d), for the physical functions: W=85 µm 

and S � 10.�\  cm/s, the function η reaches a 

maximum equal to 27.77% at V�� =715 mV; here 1 µm � 10.] m. 

 

 

 

 

Figure 5. (a) Our n-results, (b) þ�R
 ��

R�a�-results, (c) FF(%)-results, and (d) 

 
%�-results, plotted as functions of +QR  and obtained with increasing W 
and decreasing S (or from the completely transparent emitter region to the 

completely opaque emitter region). 

In Figures 6 (a), (b), (c) and (d), the physical conditions 

used are:  

W � 85 µm, N � 5 9 10C\ cm.W, r* � r�, S � 10.�\ cm
s ,  

N� � 10&] cm.W, r�, and E�%
r�� at 300 K  (60) 

according to the COER, and they are also given in these 
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figures and in Table 5 for the second limiting case, in which J� � J'�, since J�� � 0. Thus, this simplifies the numerical 

calculation of functions n, J��, FF and η, using Equations (52, 

51, 56, 57), where J� is replaced by J'�, determined by Eq. 

(21). Further, in Equation (60), the values of E�%
r��  are 

given in Table 2. Then, for a given V�� and with increasing r�-values, it should be concluded that, due to the acceptor-

size effect,  

(i) in the Figure 6 (a), the function n determined in 

Equation (52) (or the function J�  given in Table 5) 

decreases (�), and 

(ii) in Figures 6 (b), (c), (d), the functions J��, FF and η 

therefore increase (§), and in particular, in Figure 6 (d), 

for the completely opaque (S-Si) emitter-region 

conditions, where J�� =0 or J� = J'� , the maximal η-

values are equal to: 27.77 %,…, 31.55 %, at V��=715 

mV,…,703 mV, according to the E�%-values equal to: 

1.12 eV,…, 1.34 eV, which are obtained in various 

lightly doped (B,…, Tl)-Si base regions, respectively, 

being due to the acceptor-size effect.  

 

 

 

 
Figure 6. For J � 5 9 10C\ ¦,.W and JM � 10&] ¦,.W, (a) our n-results, 

(b) þ�R
 ��

R�a�-results, (c) FF(%)-results, and (d)  
%�- results, plotted as 

functions of +QR and obtained in the COER-conditions. 

Finally, in Figures 7 (a), (b), (c) and (d), the physical 

conditions used are:  

W � 0.000206 µm, N � 5 9 10C\ cm.W, r*, S � 10�\ cm
s ,  

N� � 10&] cm.W, rZ¨, and E�%
r*� at 300 K     (61) 

according to the CTER, and they are also given in Table 5 for 

the third case. Here, the values of E�%
r*� at 300 K are given 

in Table 2. Then, the numerical results of n, J�� , FF and η 

are calculated, using Equations (52, 51, 56, 57). Further, for a 

given V��  and with increasing r� -values, it should be 

concluded that, due to the donor-size effect,  

(i) in the Figure 7 (a), the function n determined in 

Equation (52) (or the function J�  given in Table 5) 

decreases (�), and  

(ii) in Figures 7 (b), (c), (d), the functions J��, FF and η 

therefore increase (§), and in particular, in Figure 7 (d), 

in the conditions of completely transparent and heavily 

doped (donor-Si) emitter-and- lightly doped (Tl-Si) 

base regions, the maximal η-values are equal to: 
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24.28 %,…, 31.51 %, at V�� =748 mV,…,703 mV, 

according to the E�%-values equal to: 1.11 eV,…, 1.70 

eV, obtained in various (Sb,…, S)-Si emitter regions, 

respectively, being due to the donor-size effect, which 

can be compared with those given in Figure 6 (d).  

 

 

 

 
Figure 7. For J � 5 9 10C\ ¦,.W and JM � 10&] ¦,.W, (a) our n-results, 

(b) þ�R
 ��

R�a�-results, (c) FF(%)-results, and (d)  
%�- results, plotted as 

functions of +QR and obtained in the CTER-conditions. 

7. Concluding Remarks 

We have developed the effects of heavy doping and 

impurity size on various parameters at 300 K, characteristic 

of energy-band structure, as given in Sections 2 and 3, and of 

the performance of crystalline silicon solar cells, being 

strongly affected by the dark saturation current density: J� w J�� ( J'�, as given in Sections 4, 5 and 6. Then, some 

concluding remarks are obtained and discussed as follows.  

1 Using the OPG (E�&)-data given by Wagner and del 

Alamo [44], our E�&-results, due to the heavy doping 

effect, and calculated using Equation (16), are found to 

be accurate within 1.86%, as observed in Table 3. 

2 In the CTER-conditions, as those given in Table 4, and 

using the J��-data, given by del Alamo et al. [10, 12], 

by using Equation (44), our J��-results, obtained in the 

heavily doped and completely transparent (P-Si) 

emitter region, are found to be accurate within 1.78%, 

while the modeled J�� -results, obtained by those 

authors, are accurate within 36% [10, 12].  

3 For given physical conditions and using an empirical 

treatment method of two points, as developed and 

discussed in Section 6, both our two results (n and J�) 

have the same variations, which strongly affect other 

(V��, J��, FF, η)-results, as discussed in Eq. (53). Thus, J�, determined in Equation (47), is a central result of 

our present paper. 

4 In the CTER-conditions, as those given in Equation 

(58), and using various (J��, FF, η)-data [23, 24, 27-29], 

we get the precisions of the order of 8.1% for J��, 7.1% 

for FF and 5% for η, suggesting thus a probable 

accuracy of J'� 
H 8.1%� , since our J�� -results are 

accurate within 1.78%. 

5 In the physical conditions of completely opaque and 

heavily doped (S-Si) emitter-and-lightly doped 

(acceptor-Si) base regions, as given in Eq. (60), and in 

the physical conditions of completely transparent and 

heavily doped (donor-Si) emitter-and-lightly doped (Tl-
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Si) base regions, as given in Eq. (61), our obtained 

maximal η-values, due to the impurity-size effect, are 

found to be equal respectively to: 27.77%, …, 31.55%, 

as seen in Figure 6 (d), and 24.28%, …, 31.51%, as 

observed in Figure 7 (d), suggesting that our obtained 

highest η -values are found to be almost equal, as: 

31.51% ≃ 31.55% , since the two corresponding 

limiting J� -values are almost the same, as given in 

Table 5, for second and third cases. 

In summary, being due to the impurity-size effects, our 

limiting value of η&=31.55%, as that given in Figure 6 (d), is 

thus obtained in the following limiting physical conditions as: 

- = 85 .,, J = 5 × 10C\ ¦,.W, OP�(KL = K/)= 1.7035 �+, 0 = 10.�\ ¦,
� ,  

N� = 10&] cm.W, and E�%(r� = rZ¨) = 1.3415, at 300 K,  

and ηC=27.77%, as that given in Figure 5 (d), is obtained in 

the following limiting physical conditions as: 

W = 85 μm, N = 10C\ cm.W, E�%(r* = r+) = 1.1245 eV, S= 10.�\ cms ,  
N� = 10&] cm.W, and E�%(r� = r') = 1.1245, at 300 K. 

Those limiting η&,C –results can be compared with that 

obtained by Richter et al. (R) [26], η�=29.43%, for a thick 100 μm solar cell made of un-doped silicon, as: ηC < η� <η&.  
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Appendix 

Appendix A: Fermi Energy 

The Fermi energy E� , obtained for any T and donor 

density N, being investigated in our previous paper, with a 

precision of the order of 2.11 × 10.[  [39], is now 

summarized in the following. First of all, we define the 

reduced electron density by:  

u(N, T, r*, g�) ≡ ��z(Z,=@,�z) ≡ ℱ&/C(θ)       (A1) 

where N� is defined in Eq. (6), θ(u) ≡ ��(©)x?Z  is the reduced 

Fermi energy, and ℱ&/C(θ)  is the Fermi-Dirac integral, 

defined by [40]: 

ℱà(θ) ≡ C
√4 á ¾à*¾&"�Ìu5

ý\ , x ≡ �x?Z           (A2) 

which was calculated for any values of θ, with a precision of 

the order of 10.�, by Van Cong and Doan Khanh [40], using 

a theorem existence of Hermite interpolating polynomials. 

Then, by a reversion method of u ≡ ℱ&/C(θ) so useful to 

obtain θ(u) , concerned with doped semiconductors at 

arbitrary N and T, our expression for reduced Fermi energy 

was found to be given by [39]:  

θ(u) ≡ ��(©)x?Z = �(©)" ©?�(©)&" ©? ,with A = 0.0005372 and B =4.82842262                                  (A3) 

where, in the degenerate case or when θ(u ≫ 1) → ∞ , 

Equation (A3) is reduced to:  

F(u) = auan �1 + bu.mn + cu.pn�.an ;  a = �3√8/4�C/W
, 

b = &U 59A6C
, and c = ]C.W�W/U��&/C\ 59A6[

, and in the non-

degenerate case or when θ(u ≪ 1) ≪ 0, to: 

G(u) ≃ Ln(u) + 2.WC × u × e.*©, d = 2W/C Y &
√C� − W&]_ > 0 

Appendix B: Approximate Form for Band Gap Narrowing 

(BGN)  

First of all, we will normalize the various energies by 

using the effective Rydberg energy R, as: 

R(T, r*) = 13.605693 × Ïz(Z,=@)<a(=@) (eV)       (A4) 

and we express the effective Wigner-Seitz radius r� 

characteristic of the interactions by: 

r�(N, T, r*, g�) ≡ ; 3g�4πNB&W × 1a'(T, r*) 

Here, a'(T, r*) = 5.2917715 × 10./ × <(=@)Ïz(Z,=@)  (cm) is 

the Bohr radius. Therefore, one has: 

r�(N, T, r*, g�) = 1.1723 × 10U × ��z� �&/W × Ïz(Z,=@)<(=@)   (A5) 

Therefore, the ratio R/r�  is thus proportional to: 
;({>)
;({@) ×

N=&/W
, where N= ≡ � ]×��z×/.///×&\`q �Ïun� . Now, an empirical 

expression for BGN is proposed by: 

ΔE�(N, T, r*, g�) =≡ −R × μ<�(r�) − R × μ�(r�) − R ×μF�.��=(r�) − R × μF�.*(r�) − R × μF�.*(r�) + ΔE�(ÙZ)  (A6) 

where, R and r�  are defined above, and five first 

contributions of the spin-polarized chemical potential energy μ were determined in our previous paper [42], and sixth μ-

one by Lanyon and Tuft [6]. One notes here that the second −R × μ�(r�)-term of Equation (A6) represents the shift in 

majority conduction-band edge, due to the correlation (Cor) 

energy of an effective electron gas, E�(r�), as [42]:  

E�(N, T, r*, g�) =
.\.U���W\.\/\U"=� + b.pqoonb.btbpr{�"�aÂ`u=�(a)Ã}a �×¨F (=�).\.\/WCUU

&"\.\WU[��CU×=�̀ .sqnqppqs  (A7) 

and that from the a Seitz’s theorem [42], one has:  
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μ�(N, T, r*, g�) ≡ .=�
m

W × >

>=�

�z(=�)=�
n = −E�(r�) + =�W ×

?

?{�
E�(r�) ≃ 2.503 × Â−E�(r�)Ã ≡ μ�( )(r�),    (A8) 

being obtained with an accuracy of 1.87% for g� = 6  in 

various donor-Si systems. Then, an approximate expression 

for the BGN is found to be given by:  

ΔE�(N, T, r*, g�) ≃ a& ×  ;({>)
;({@) × N=&/W + aC × ;5{>6

;5{@6 × N=ǹ ×
(2.503 × Â−E�(r�) × r�Ã) + aW × Y<(=>)<(=@)_�/[ × YÏz(Z,=@)Ïz(Z,=>)_&/[ ×

N=&/[ × � Ï�(Z)Ïz(Z,=@) + a[ × �Ïz(Z,=>)×<(=>)Ïz(Z,=@)×<(=@) × N=&/C ×
É1 + �Ïz(Z,=@)Ïz(Z,=>)Ë + a� × YÏz(Z,=@)Ïz(Z,=>)_&/C × Y<(=>)<(=@)_na × N=s̀  (A9) 

noting that, in the P-Si system for 300 K, these constants: a& = 3.8 × 10.W (eV), aC = 6.5 × 10.[ (eV), aW = 2.8 ×10.W (eV), a[ = 5.597 × 10.W (eV), and a� = 8.1 ×10.[ (eV), were chosen such that for g� = 6 the numerical 

results of minority-carrier saturation current J�� are found to 

be accurate within 1.78%, as seen in Table 4. 
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