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Abstract: V. V. Uchaikin suggested a mathematical model of an anomalous diffusion in a space. These model origins in an 

investigation of processes in complex systems with variable structure: glasses, liquid crystals, biopolymers, proteins and a 

turbulence in a plasma. Here a coordinate of diffusing particle has stable distribution and so its density satisfies diffusion 

equation with partial derivatives. In this paper, the anomalous diffusion with periodic initial conditions on an interval with 

reflecting edges, important for example in technical mechanics, is considered and analyzed. 
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1. Introduction 

In [1] a mathematical model of an anomalous diffusion in a 

space was suggested. These model origins in an investigation 

of processes in complex systems with variable structure: 

glasses, liquid crystals, biopolymers, proteins and a turbulence 

in a plasma [2]. 

In this model a coordinate of diffusing particle has stable 

distribution (not normal one). As a result a density of its 

distribution satisfies an analogy of diffusion equation in which 

second derivative by coordinate is replaced by partial 

derivative. 

In this paper the anomalous diffusion with periodical initial 

conditions on an interval with reflecting edges is considered. 

Such problem is important for example in technical mechanics 

for an analysis of fuel mixing in straight flow engine [3] too. 

Suppose that ( ), 0,y t t ≥  is homogeneous random process 

with independent increments and an initial condition 

(0) = 0.y  A random variable ( ) ( ), > 0,y t y tτ τ− ≥  has 

symmetric stable distribution on the straight line ( , )−∞ ∞  

with a parameter , 0 < 2,a a ≤  and a characteristic function  

exp( [ ( ) ( )]) = exp( ( ) | | ).aM iu y t y t uτ τ− − −     (1) 

The distribution density = ( )t tp p u  of the process ( )y t  

in a moment > 0t  is generalized solution of the following 

differential equation with fractional derivatives [1]. 

( ) = ( ) ( ).
a

ta
p y y t

t y
δ δ

 ∂ ∂−  ∂ ∂ 
 

Here ( ) /a a
tp y y∂ ∂  is a -fractional derivative of the 

function ( ),tp y  0 < 2,a ≤  ( ),yδ ( )tδ  are delta-functions 

by variables ,y t  accordingly.  

It is impossible to use the method of Fourier series to 

analyze anomalous diffusion on segment with reflecting edges. 

To get over this difficulty in this paper an analogy with the 

wave equation for finite string with fixed edges is used. Some 

approaches to generalize one-dimensional results are 

considered. Main analytical results of this paper have been 

obtained in [4]. But in this paper these results are 

supplemented by physical interpretation and consideration of 

diffusion in multidimensional cube with reflecting boundaries.  

2. Diffusion on Segment with Reflecting 

Edges 

Assume that ( ), 0,y t t ≥  is uniform random process with 

independent increments; (0) = 0.y  Difference 

( ) ( ), > 0,y t y tτ τ− ≥  has symmetric on ( , )−∞ ∞  stable 
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distribution with parameter , 0 < 2,a a ≤  and the 

characteristic function (1). The process ( ), 0,y t t ≥  

describes in [1] anomalous diffusion on infinite straight line.  

2.1. Geometric Representation 

Each realization of random process ( ), 0,y t t ≥  may be 

considered as a curve Γ  on the plane ( , ).y t  Suppose that 

the curve Γ  is reflected from the lines = 1, = 1.y y − For this 

aim represent the plane ( , )y t  as a transparent and infinitely 

thin sheet of paper with the curve .Γ  Bend this sheet of the 

paper along the lines = 1, = 3,y y± ±  into transparent strip 

1 1y− ≤ ≤  with fragments of the initial curve Γ . The curve 

Γ converted into the curve γ  described by the process 

( ), 0.Y t t ≥  Similar [1] the random process ( ), 0Y t t ≥  may 

be interpreted as a model of the anomalous diffusion on the 

interval [ 1, 1]−  with reflecting edges. It is clear that if the 

curve Γ  coincides with some straight line then the curve γ  

constructing in an accordance with the law of geometrical 

optics: falling angle equals to reflecting angle. 

 

Figure 1. Construction of reflected curve γ . 

2.2. Analytical Representation 

Additionally to geometric representation of the process, 

( ), 0,Y t t ≥  we give its analytic representation by means of 

the functions : [ 2, 2), : [ 2, 2) [ 1, 1]f R g→ − − → − . 

, 1 1,

( ) = ( 2) / 4 2, ( ) = 2 ,1 < < 2,

2 , 2 < 1

u u

f u u mod g u u u

u u

− ≤ ≤
+ − −
− − − ≤ −

 

 

Figure 2. Graphics of functions , .f g  

Then ( ) = ( ( ( ))).Y t g f y t  

2.3. Reflection Formula 

Assume that = ( ), = ( ), = ( )t t t t t tp p u P P u uπ π  are 

densities of random variables ( ), ( ( )), ( )y t f y t Y t  

distributions. Using the function f  graphics (see also Figure 

2) obtain: 

=

( ) = ( 4 ), [ 2, 2), ( ) = 0, [ 2, 2).t t t

k

P u p u k u P u u

∞

−∞

− ∈ − ∈ −/∑  (2) 

From [6, chapter 17, §6, Lemma 1] it is possible to prove 

that the function ( )tp v  has degree asymptotic by u  and so 

series (2) converge. Accordingly, with Formula (2) and with 

graphics of the function g  (see Figure 2) obtain  
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=

( ) = ( 2 ), [ 1, 1], ( ) = 0, [ 1, 1].t t t

k

u p u k u u uπ π
∞

−∞

− ∈ − ∈ −/∑  (3) 

Remark that Formula (3) which gives distribution density of 

diffusion reflected process is analogous to reflection method 

formula which gives solution of wave equation for finite string 

with fixed edges [5, chapter III, §13, points 5, 6]. 

2.4. Rate Convergence to Uniform Distribution 

Define auxiliary function 
=

( ) = ( 4 ), < <t tk
P u p u k u

∞

−∞
− − ∞ ∞∑ , 

it coincides with ( )tP u  for [ 2, 2),u ∈ −  has period 4  and is 

even. Denote ( , ) = ( ), 2 , < 2,ttq u v P v u u v− − ≤  

= inf{ ( , ), 2 , < 2},t tQ q u v u v− ≤  then from Formula (2) we 

have  

0 < 1/ 4, > 0.tQ t≤                  (4) 

Put  

1/ 4, [ 2, 2), 1 / 2, [ 1, 1],
( ) = ( ) =

0, [ 2, 2), 0, [ 1, 1].

u u
P u u

u u
π

∈ − ∈ − 
 ∈ − ∈ −/ / 

 

For functions ( ), ( )u uφ ψ defined on, ( , ),−∞ ∞  introduce a 

norm  

1
( ) ( ) = sup{| ( ) ( ) |, < < },Cu u u u uφ ψ φ ψ− − − ∞ ∞  

believing [ ]z  integer part of real number .z  

Lemma 1. For arbitrary 1t ≥  the following inequality is 

true:  

1 1

[ ] 1
1 1|| ( ) ( ) || 2(1 4 ) || ( ) ( ) || .

t
t C Cu u Q P u P uπ π −− ≤ − −   (5) 

Remark that Lemma 1 is true for any even distribution 

density ( )tp u , which satisfies Formula (4). 

2.5. Self-similarity of Anomalous Diffusion 

Next consideration closely connecting with a concept of a 

self-similar random process (see for example [6]) has a large 

application in modern physics [7-10]. 

Assume that > 0,r  consider Markov process 

( ) = ( ( ( ) / )), 0.rY t rg f y t r t ≥  The process ( ), 0,rY t t ≥  is 

obtained from random process ( ), 0,y t t ≥  by reflection 

from edges of the segment [ , ].r r−  Denote , ,= ( )t r t r uπ π  

distribution density of random variable ( ).rY t  It is obvious 

that ,1 = .t tπ π  

Lemma 2. For [ ] 1at r− ≥  the following inequality is true:  

1

1

[ ] 1
1 1

,

2(1 4 ) || ( ) ( ) ||
|| ( ) ( / ) / || .

a
t r

C

t r C

Q P u P u
u u r r

r
π π

− −− −
− ≤  (6) 

Formula (6) is based on self-similarity property of the 

process ( )Y t  and may be interpreted as an increasing (or a 

decreasing dependently on r ) in 
ar  times of characteristic 

mixing time of anomalous diffusion on segment [ , ]r r−  in a 

comparison with diffusion on segment [ 1,1].−  For < 1r  

anomalous diffusion “works” slower and for > 1r  works 

faster than normal diffusion.  

2.6. Periodical Initial Conditions 

Diffusion process with periodical initial conditions origins 

for example in fuel mixing at straight flow engine [3, chapter 7, 

§ 7.1]. For its modelling, take natural n  and define Markov 

process  

( ) = ( ( ( ) (0))), 0n nZ t g f y t Z t+ ≥
. 

Here random process ( )y t  and random variable (0)nZ  

are independent and (0)nZ  has continuously differentiable 

distribution density ( )nr u , which satisfies conditions: of a 

periodicity  

( )( ) = 2 / , 1 1 2 / ,n nr u r u n u n+ − ≤ ≤ −  

of a symmetry  

( )( 1 1/ ) = 1 1/ , 0 1/ ,n nr n v r n v v n− + − − + + ≤ ≤  

and boundary conditions  

( )
= 0 = 1.ndr v

for v
dv

±  

Then random process ( ), 0,nZ t t ≥  may be considered as 

anomalous diffusion on the segment [ 1, 1]−  but with 

periodical initial conditions, defined by distribution density 

( ).nr u  Denote , ,= ( )t n t n uΠ Π  distribution densities of r. 

v.‘s ( ), > 0nZ t t . 

Lemma 3. The following formula is true  

1

, ,1/

=0

1 2 1
( ) = 1 .

n

t n t n

k

k
u u

n n
π

− + Π + − 
 

∑         (7) 

The equality (7) means that the diffusion (normal or 

anomalous) on the segment [ 1, 1]−  with periodical initial 

conditions and reflecting edges leads to the same result as a 

diffusion on isolated (by reflecting edges) sub segments 

2 1 1 2 3 1
1 , 1 , = 0, , 1,

k k
k n

n n n n

+ + − + − − + + − 
 

…  

of the segment [ 1,1].−  

Remark that the equality (7) is true for each self-similar 

random process ( )y t  with independent and symmetrically 

distributed increments. 

Theorem 1. For 1at n ≥  the following inequality is true:  
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1 1

[ ] 1
, 1 1|| ( ) ( ) || 2(1 4 ) || ( ) ( ) || .

at n
t n C Cu u Q P u P uπ −Π − ≤ − − (8) 

Formula (8) is interpreting as a decreasing in an  times of 

characteristic mixing time of anomalous diffusion on the 

segment [ 1,1]−  with periodical initial conditions. 

2.7. Numerical Experiment 

Obtained analytical results comparing here with results of 

numerical experiment and a closeness of densities ,tπ π  for 

different t  are estimated. For this aim, independent random 

variables with distributions of ( ),Y t  coinciding with a 

distribution of random variable 
1/( ( (1)))ag f t y  are imitated 

by Monte-Carlo method. Random variable (1)y  is imitated 

approximately by normed sum  

1

1/
ˆ(1) = N

a

v v
y

N

+ +…
 

of independent and equally distributed random variables 

1, , ,Nv v…   

1 1( > ) = / 2, ( < ) = / 2, > 1.a aP v t t P v t t t− −−  

By M independent realizations of 
1/ ˆ( ( (1))),ag f t y  

coinciding with ( )Y t  (by distribution), we construct 

frequencies ( ), = 0, ,9,jS t j …  of these realizations 

belonging to sub segments  

2 2( 1) 2
1 , 1 , = 0, ,8, 1 , 1 , = 9.

10 10 10

j j j
j j

+   − + − + −  
   

…  

Analogously with statistics of Chi-square we calculated  

29

=0

1
( ) = 10 ( ) ,

10
j

j

S t M S t
 − 
 

∑  

characterizing a deviation of random variable ( )Y t  

distribution from uniform distribution for different .t  

Table 1. Results of numerical experiment. 

t  S ( t ) for a =1.9 S ( t ) for a =1.95 S ( t ) for a =1.99 

0.01  9169.31  7867.49   6584.26  

t  S ( t ) for a =1.9 S ( t ) for a =1.95 S ( t ) for a =1.99 

0.02  4055.39  3053.09   2537.75  

0.03  2200.99  1298.15   1017.17  

0.04  1061.13  609.86   347.35  

0.05  488.14  289.15   185.43  

0.06  220.69  177.32   122.32 

0.07  135.03  52.97   39.26  

0.08  102.79  39.37   13.26  

0.09  54.89  14.55   12.78  

Table 1 shows qualitative coincidence of numerical results 

with estimates of Formula (8). If 2a →  then rate 

convergence of ( )Y t  to uniform distribution density 

increases. However, it is necessary to remark that an 

increasing of t  demands an increasing of N  that 

complicates numerical experiment. 

3. Multidimensional Diffusion on Square 

with Reflecting Boundaries and 

Periodical Initial Conditions 

In this section, we consider as normal so anomalous 

diffusion on k  - dimensional square with reflecting 

boundaries. Normal diffusion is analyzed by the method of 

Fourier series but for anomalous diffusion it is more 

convenient to use the reflection formula.  

3.1. Multidimensional Normal Diffusion 

Consider a model of k - dimensional normal diffusion in 

the cube [ 1,1] , = 2,3,k k−  with reflecting boundaries. 

Assume that , 1( , , )t n ky yΠ …  is a density of a distribution of 

diffusing particle coordinate at a moment t  in a point 

1( , , ) [ 1,1] :k
ky y ∈ −…   

2

, 12
=1

( , , ) = 0,

k

t n k

rr

y y
t y

 ∂ ∂− Π 
 ∂ ∂ 

∑ …  

, ( 1, , 1, , 1, , 1) = 0, 1 1, = 1, , ,t n r r
r

y y r k
y

∂ Π ± ± ± ± − ≤ ≤
∂

… … …

1

0, 1 1

, , =1 =1

1
( , , ) = ( , , ) cos > 0.

2
k

k

n k k r rk
j j r

y y a j j n j yπ
∞

Π + ∑ ∏
…

… …  

Then we have the following equality 

1

2 2 2
, 1 1

, , =1 =1=1

1
( , , ) = ( , , ) cos exp .

2
k

k k

t n k k r r rk
j j rr

y y a j j n j y n t jπ π
∞  

Π + − 
 
 

∑ ∑∏
…

… …  

For a function, 1 1( , , ), ( , , ) [ 1,1] ,k
k kl y y y y ∈ −… …  define a norm  

2

1 1
2

1 1 1
1 1

|| ( , , ) || = ( , , )
k

k k kL
l y y dy dy l y y

− −∫ ∫… … … , 

so 
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2

1

2 2 2 2
, 1 1

, , =1 =1

1
( , , ) = ( , , ) exp 2 .

2
k k

k

t n k k rk
L j j r

y y a j j n t jπ
∞  

Π − − 
 
 

∑ ∑
…

… …  

If 1( , , ) 0ka i i ≠…  and  

2 2
1 1

=1 =1

< , 1 , , < , ( , , ) 0,

k k

r r k k

r r

i j j j a j j≤ ∞ ≠∑ ∑ … …  

then  

2 2

2 2 2
, 1 0,1 1

=1

1 1
( , , ) exp ( , , ) .

2 2
k k

k

t n k r kk k
L Lr

y y n t i y yπ
 

Π − ≤ − Π − 
 
 

∑… …

 

Consequently, it is possible to choose n - periodical initial 

condition so that in the cube [ 1,1]k−  characteristic mixing 

time decreases in 2 2

=1

k

rr
n i∑  times. In such a way, it is 

possible to decrease characteristic time dependently on 

Fourier coefficients of initial condition 0,1 1( , , ).ky yΠ …  

3.2. Multidimensional Anomalous Diffusion 

Consider k - dimensional diffusion 

1( ( ), , ( )), = 2,3,kY t Y t k…  with independent components 

distributed as ( )Y t  (defined by the parameter a ) and with n - 

periodical initial conditions 
( )

1=1
( ).

k j
j

j
P u∏  Then its 

distribution density may be represented as  

( )
, 1 ,

=1

( , , ) = ( ).

k
j

t n k t n j

j

u u uΠ Π∏…  

Denote limit uniform distribution 

( )
1

=1
( , , ) = ( )

k j
k j

j
u u uπ π∏…  with 

( ) ( ) = ( ).j u uπ π  From 

Theorem 1 we have the inequality  

1
1

( )( ) ( ) [ ] 1 ( )
, 1 ,1( ) ( ) 2(1 4 ) || ( ) ( ) || = , 1.

a jj j j t n j a
t n j j j C t n

C
u u Q P u P u t nπ −Π − ≤ − − ∆ ≥               (9) 

For functions 1 1( , , ), ( , , )k ku u u uΦ Ψ… … defined on the cube, [0,1] k
 introduce a norm  

1 1 1 1 1( , , ) ( , , ) = sup{| ( , , ) ( , , ) |, < , , < }.
k

k k k k kC
u u u u u u u u u uΦ − Ψ Φ − Ψ − ∞ ∞… … … … …

 

Then it is easy to prove the following statement.  

Theorem 2. Assume that 
1/ 1at n ≥  then for = 2k   

2, 1 2 1 2 , ,|| ( , ) ( , ) || (1 )t n C t n t nu u u uπΠ − ≤ ∆ + ∆ . 

And for = 3k   

( )
3

2
, 1 2 3 1 2 3 , , ,|| ( , , ) ( , , ) || 3 / 4 3 / 2 .t n C t n t n t nu u u u u uπΠ − ≤ ∆ + ∆ + ∆  

4. Example: Mixing of Impurity in 

Straight flow Engine 

In an analysis of impurity blowing in an airflow, we 

simplify its picture to divide the most important parameters 

influencing on a mixing time. Therefore, we assume that a 

process of an impurity mixing consists of two stages. In first 

stage, an impurity consists of separate particles, which move 

as Stokes particles and do not diffuse before their merger with 

the airflow. In second period impurity, particles diffuse in 

cross direction to the airflow. 

4.1. Merger of Injected Stokes Particle with Airflow 

Consider first stage when impurity particles move 

independently each other’s. To simplify considered problem 

we believe that the airflow is uniform and different ripples do 

not influence on particles behavior, physical properties of 

matters are constant. 

Assume that Stokes particle with a mass m  is injected 

with a velocity v  in direction x  perpendicularly air flow 

moving with a velocity V  in plane channel which has a 

width l  in direction y  (see Figure 3). Define particle 

coordinates ( , )x y  to moment when impurity particle 

mergers with the airflow. Related motion equations have the 

following form  

= , = , (0) = 0, (0) = 0.x y

dx dy
v v x y

dt dt
 

= , = ( ), (0) = , (0) = 0.
yx

x y x y

mdvmdv
kv k v V v v v

dt dt
− − −  
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Here ,x yv v  are velocities of Stokes particle, k  is friction 

coefficient. The system of motion equations has following solution  

( ) = (1 exp( / )), ( ) = ( (1 exp( / ))),x t vT t T y t V t T t T− − − − −  

( ) = exp( / ), ( ) = (1 exp( / )), = / .x yv t v t T v t V t T T m k− − −  

So ( ) ,x t vT t→ → ∞ . Consequently characteristic time of 

Stokes particle merging with the airflow (characteristic time 

of velocity relaxation of impurity) is T  and a depth of Stokes 

particle penetration is .vT  

 

Figure 3. Injection of impurity into airflow. 

4.2. Cross Diffusion of Injected Particles in Airflow 

Consider now second stage of Stokes particle mixing with 

the airflow. Assume that in a moment (of intermediary 

asymptotic) 0 =t T  Stokes particles have a concentration 

0 ( )c x  in a segment [0, ]l . 

For 0 >t T  we solve diffusion equation for impurity 

concentration ( , ),c x t [0,1],x ∈  < < :T t ∞  

2

2
( , ) = ( , )c x t D c x t

t x

∂ ∂
∂ ∂

 

with diffusion coefficient D , the following boundary 

(neprocitana) conditions  

=0 =( , ) | = ( , ) | = 0, 0,x x lc x t c x t t
x x

∂ ∂ ≥
∂ ∂

 

and initial condition  

0( ,0) = ( ), 0c x c x x l≤ ≤ . 

The initial condition defining by results of first stage is 

n-periodic function: 

0 0 0

1
= ( ), 0 1 , ( ) = ( ), 0 ,

l l
c x c x x l c x q nx x

n n n

   + ≤ ≤ − ≤ ≤   
   

 

where  

4 2
0

=1 =1

( ) = cos 2 , < .k k

k k

x
q x q a k k a

l
π

∞ ∞

+ ∞∑ ∑  

This problem has the following solution by the Fourier 

series method:  

2

0

=1

2 2
( , ) = cos exp .k

k

knx nk
c x t q a Dt

l l

π π∞   
 + −     

∑  

Consequently, characteristic mixing time nT  satisfies the 

relations  

1
12

1
, = .

2
n

T l
T T

k Dn π
 ≈  
 

 

To obtain initial conditions as n -periodic function it is 

convenient to make n  holes for impurity injection and to 

choose injection velocities v  in accordance with the relation 

that a depth of Stokes particle penetration is .vT  

 

Figure 4. Cross diffusion of impurity.  

5. Conclusion 

 It is interesting to mark that suggested scheme of mixing 

time calculation may be used not only for anomalous diffusion 

but also for diffusion described by fractional Brownian motion. 

In this case, it is impossible to use the Fourier series method. 

However, a representation described in Figure 1 allows getting 

over this difficulty. Diffusion models with fractional 

Brownian motion are considered as in physical [7] so in 

informatics applications [12]. Some last results for 

multivariate fractional Levi motion (but without reflecting 

from segment ends) are obtained in [13]. 
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