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Abstract: Based on the method of imagenary sources and imagenary scatterers is the solution of the problem of the sound 

diffraction by pulse signals at ideal (soft) prolate spheroid, put in the plane waveguide with the hard elastic bottom. In the work 

is proved that with such a formulation of problems eliminated possibility of using the method of normal waves because pulses 

are bundies of energy and can therefore only be distributed to the group velocity which is inherent in just the method of 

imaginary sources. Calculations made in the article shoved that imagenary sources with smail numbers experienci8ng the 

effect of total internal reflection, as the result of the reflection coefficient V by the hard elastic bottom is complex and the real 

part of V is close to 1,0 which corresponds V absolutely hard bottom. Found sequences of reflected pulses for the elastic hard 

bottom and the absolutely hard bottom floor confirmed this approach. In the final part of the arti8cle on the basis of the 

received results given by a solution (the method integral equations) is much more complex problem of the diffraction at the 

elastic non-analytical scatterer, put in the plane waveguide witch the hard elastic bottom. 

Keywords: Scatterer, Prolate Spheroid, Imaginary Source, Diffraction, Elastic Hard Bottom, Boundary Conditions,  

Group Velocity, Phase Velocity 

 

1. Introduction 

Will it is known [1] thay the sound signal as a bundle of 

energy propagates with the group velocity. This fact forces us 

to use method of imaginary sources in the study of the tem-

poral characteristics of pulse signals scattered by various 

bodies put in plane wavegu-ide [2 – 7]. While spectral 

characteristics of dealing with continuous harmonic signals 

can be investigated using the method of normal waves [8]. In 

previous syudies of the sound field in plane waveguides 

either a liquid or absolutely hard bottom was considered, in 

this article is first studied the waveguide with a hard elastic 

bottom. 

 

 

 

 

2. Diffraction Pulse Sound Signal on the 

Soft Prolate Spheroid Located in Plane 

Waveguide with the Hard Elastic 

Bottom 

We turn to a familiar problem of the diffraction of pulses 

on spheroial bodies I the pla-ne waveguide [2 – 4, 7], 

retairing the upper boundary condition Dirichlet, waveguide 

di-mensions and scatterer with respect to boundaries, 

replasing only ideal hard lower bounda-ry on the elastic 

isotropic bottom. Physical parameters of the lower medium 

will corres-pond to the isotropic elastic bottom, but in their 

values, they will be very close to parame-ters of transversely-

isotropic rock – a large gray siltstone [9]. The longitudinal 

wave velocity in this material is 4750 m/s, the transverse 

wave velocity – 2811m/s. When used in this case the method 

of imaginary sources need to enter the reflection coefficient V 
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for the each source [10], when displaying sources relative to 

the upper border sources, as before [2 – 7], will change the 

sign on the opposite, which corresponds to a change of phase 

by	π  

 

Figure 1. The mutual disposition of the pulse point-soirces and scatterers in 

the plane waveguide. 

It is known to [10], that the of imaginary sources method 

boundary conditions are not fulfilled strictly on any of 

borders of the waveguide even in the case of ideal boundary 

conditions of Dirichlet and Neumann. For the better 

fulfillment of these conditions in diffraction problems [2 – 7, 

11] were introduced imaginary scatterers by mirroring their 

relatively waveguide boundaries. Likewise conduct 

imaginary scatterers and in our prob-lem and compare the 

sequence of reflected pulses [2, 3, 11] in the case of ideal 

borders and in presence of a hard elastic bottom in the 

waveguide. In [10] shows that the method of imaginary 

sources applicable in the case where the reflection coefficient 

V will be a func-tion of the angle of the incidence of the 

wave from a source relati-ve to the normal to the boundary. 

In our case this angle will be determined by the mutual 

position of the source (real or imaginary) and the scatterers 

(real or imaginary), which falls the wave from the so-urce. 

Since the receiver is combined with a real source Q, the 

sequence of reflected pulses will be determined by the 

quantity and amplitudes of reflected signals (from different 

scat-terers) having the same propagation time from sources to 

scatterers and from scatterers to the point Q. Parameters of 

the waveguide, the position of the real source Q (combined 

with the receiver) and the real scatterer remained unchanged 

compared [2, 3, 11]: L = 1000 m., H = 400 m., the real source 

Q and real scatterer are located at the depth of 200 m., the 

scatterer is the ideal soft prolate spheroid with the semi-axes 

ratio a/b = 10 (a = 0,279 m.) and its axis of a rotation is 

perpendicular to the plane of the figure (see Figure 1). The 

formula for the reflection coefficient 0NV , where N – the 

number of a source, is given in [10]. For the calculatio9nof 

first five of reflected pulses us needed following reflection 

coefficients: 03V  in the direction of the first (real) scatterer 

01, 05V
 
in the direction of the second (imaginary) scatterer 

02, 06V in the direction of same the second scatterer. 

As a result of simple calculations with the help of [10] 

obtain: 03V  = 0,9989 + i 0,0633; 

05V  = 0,9989 + i 0,0633; 06V  = 0,6238 + i 0,7897. All 

three coefficients have turned complex, which mesns the total 

internal reflection at the boundary liquid – hard elastic bot-

tom, therefore all three modules of reflection coefficients are 

equal 1,0 and real parts of first two coefficients are close to 

+1,0, which is typical for the boundary liquid – absolutely 

hard bottom. The resulting sequence of calculations of first 

five reflected pulses is shown in Figure 2. We compare them 

to the sequence in figure 3 for ideal boundaries [2, 3, 11]: 1
st
 

and4
th

 pulsews of Figure. 2 are identical with first and second 

pulses of Figure 3, as for for 2
nd

, 3
rd

 and 5
th
 pulses in Figure 2 

in the case of ideal boundaries and symmetrical location of 

real a source and a scatterer relatively of boundaries of the 

waveguide, they are compensated each reflected pulses, i. e. 

2
nd

, 3
rd

 and 5
th
 pulses (see Figure. 2) show the difference in 

se-quences of reflected pulses when replacing an absolutely 

hard bottom on an elastic hard bottom. 

 

Figure 2. The normalized series of first five reflected impulses in the 

waveguide with the hard elastic bottom. 

A similar pattern is observed for anisotropic bottom, such 

as silicon, in wich the velocity of the quasi-longitudinal wave 

of about 8300 m/s and quasi-transverse wave velocity of 
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about 5700 m/s, with the secjnd quasi-transverse wave do not 

occur because of the problem statement [9]. Because of the 

high velocities of quasi – longitudinal and quasi – transverse 

waves total internal reflection effect at the anisotropic bottom 

manifest itself even more strongly than the isotrohic bottom. 

 

Figure 3. The normalized series of first three reflected impulses with the 

harmonic filling in the point Q . 

3. Diffraction Pulse Sound Signal on 

Non-analytical Scatterer Put in Plane 

Waveguide with Hard Elastic Bottom 

Based on the obtained solution, consider a more general 

problem of the diffraction of the pulsed sound signal on an 

elastic scatterer as a finite cylindrical shell, supplemented 

with two hemispherical shells (figure 4) and placed in the 

waveguide with an elastic hard bottom (figure 5), using the 

method of integral equations [11 – 16]. We note that a similar 

problem can be solved with the help of other methods: the 

boundary element method [15, 17]; T – matrix method [18]; 

the method of a potential [19]; the finite element method 

[20]; the method of Green’s functions [21]. 

The first stage will solve the problem of the diffraction of a 

harmonic wave on a such shell. 

The density of the material of the shell is ρ1, the Lame’s 

coefficients - λ and µ. The shell was filled in the internal 

liquid medium with the density ρ2 and the sound velocity C3 

and it was placad in the external liquid medium with the 

density ρ0 and the sound velocity C0. At the shell falls the 

plane harmonic wave with pressure pi under the angle Θ0 and 

with the wave vector k
�

 

 

Figure 4. The elastic shell in the form of the terminal cylinder with the semi 

– spheres. 

 

Figure 5. The mutual disposition of the impulse point-sources and scatterers 

in the plane waweguide. 

As was shown in [11 - 16 ], the initial equation is integral 

equation, having the sense of the generalized Huygen’s 

principle, for the displacement vector ( )u r
� �

 of the elastic 

shell: 

( ) ( ) ( ) ( ) ( ){ } ( )ˆ; ; , ,

S

u r t r G r r u r n r r dS r r V ′ ′ ′ ′ ′ ′= − ∈ ∑∫∫
�

� � � � � � � � � � �  (1) 

where ( ) ( )ˆt r n T r′ ′ ′=
�
� �

 is the stress vector; 

( ) ( )ˆ ˆn n r n r′ ′ ′ ′ ′≡ =� � �

 is the single vector of the external along 

the relation to S normal; ( )T r ′�  is the stress tensor of the 

isotropic material; ( );G r r′� �  is the displacement Green’s 

tensor; ( );r r′∑
� �

 is the stress Green’s tensor; if r
�

 concerns 

to the point of the surface S, in the left part of the equation 

(12) will stand ( ) 2u r ′� �

. 

The displacement vector ( )u r
� �

, the stress tensor ( )T r
�

, the 

displacement Green’s tensor 

The displacement vector ( )u r
� �

, the stress tensor ( )T r
�

, the 

displacement Green’s tensor ( );G r r′� �  and the stress Green’s 
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tensor ( );r r′Σ � �  were connected between by the following 

correlations [11, 16 ]: 

( ) ( ) ( ) ,T r u r u uλ µ= Ι ∇ + ∇ + ∇� � � � �

                (2) 

where L TΙ = Ι + Ι ; ( ) 2
LΙ = ∇∇ ∇ ; 0L TΙ ⋅ Ι = ; 

( ) 2
T  Ι = − ∇ ∇Ι ∇  , LΙ  and TΙ  are the longitudinal and 

transverse single tensors for the Hamilton’s operator ∇ ; 

( ) ( ) ( ) ( ); ; ; ; ;r r G r r G r r G r rλ µ′ ′ ′ ′ = Ι∇ + ∇ + ∇ ∑
� � � � � � � �

   (3) 

( ) ( ){ ( )
( ) ( ) }

2
2 2

1 2

; 1 4

,

tG r r k g k r r

g k r r g k r r

πρ ω′ ′= Ι − +

 ′ ′ ′+∇ − − − ∇ 

� � � �

� � � �

           (4) 

where k1 and k2 are the wave numbers of the longitudinal and 

transwerse waves in the material of the shell; 

( ) ( )2 2exp 4g k r r ik r r r rπ′ ′ ′− = − −� � � � � �

 is the Green’s 

function. 

The second integral equation presents the Kirchhoff 

integral for the diffracted pressure ( )1p PΣ  in the external 

medium: 

( ) ( ) ( ) ( ){ ( )

( ) ( )} ( )

1 1 0 0

2
0 0 0 1

exp

exp 4 ,

aS

a i

C P p P p Q n ikr r

ikr r un dS p Pρ ω π

Σ Σ ′  = − ∂ ∂ − 

′ − + 

∫∫
��

  (5) 

where ( ) ( ) ( )1 1 1i sp P p P p PΣ = + ; ( )1sp P  is the scattered 

pressure in the point P1; C(P1) is the numerical coefficient, 

equal 2π, if 1 aP S∈  and 4π, if P1 out Sa; Sa is the external 

surface of the shell; Q is the point of the external surface of 

the shell. 

For the pressure ( )2 1p M  in the internal liquid medium in 

the point M1 is got the third integral equation: 

( ) ( ) ( )( ){ ( )

( ) ( )}

1 2 1 2 3 3

2
3 3 0

exp

exp ,

bS

b

C M p M p Q n ikr r

ikr r u n dSρ ω

′ ′  = ∂ ∂ − 

′ −  

∫∫
� �

  (6) 

where Q′  is the point of the inte;rnal surface of the shell; 

( ) 1
1

1

4 , ;

2 ;

b

b

if M out S
C M

if M S

π
π


=  ∈

 

Sb is the internal surface of the shell. 

To the integral equations (1), (5) and (6) are added the 

boundary conditions on the external (Sa) and internal (Sb) 

surfaces of the shell: 

1 – at the both surfaces of the shell the tangent stresses are 

equally null: 

0 ; 0 ; 1, 2 ;
a b

i iS S
iτ τ= = =              (7) 

2 – the normal stress nσ ′  at the external surface of the 

shell is equally the diffracted pressure pΣ, but at the internal 

surface is equally the pressure p2 

2; ;
a b

n nS S
p pσ σ′ ′Σ= =                        (8) 

In the conformity with the conditions (7) and (8) the stress 

vector ( )t r ′
�
�

 in the equation (1) is equal: 

( ) ( ) 2; ;
a bS S

t r p n t r p nΣ′ ′ ′ ′= =
� �
� � � �

              (9) 

3 – the continuity of the normal component of the 

displacement at the both boundaries of the shell: 

( )( )

( )( )

2
0

2
2 2

1 ;

1 .

a

b

n S

n S

u p n

u p n

ρ ω

ρ ω

′ Σ

′

′= ∂ ∂



′= ∂ ∂ 


                 (10) 

The substitution of the integral equations (6), (1) and (7) in 

the boundary conditions (18) – (20) gives the system of 

equations in terms of unknown functions pΣ, p2 and the 

components of the displacement vector u
�

 at the both 

surfaces of the shell. To obtain numerical solution of this 

system the integral equations are replaced the quadrature 

formulas and the grid of the nodal points is chosen at both 

surfaces of the shell as well as it has be done for the ideal non 

– analytical scatterers [ 11, 12]. 

For choosing boundary conditions we will have the 

integrals of the two types: the integrals with the isolated 

special point and the integrals which are considered of the 

sence of the principal meaning. The method of the 

calculation of the second types was described in [11]. 

Thus calculated reflection characteristics of the harmonic 

signal with frequency ν  can determine the spectral 

reflectance function ( )2SS πν  and it can help be applying a 

Fourier transform we obtain a temporary function of the 

reflected pulse ( )S t ′Ψ  [22]: 

( ) ( ) ( )2

0

1
Re 2 2

i t
S St S e d

πνπν πν
π

∞
+′Ψ = ∫               (11) 

Similarly using spectral reflectance characteristics of 

elastic bodies of spheroidal form [11, 23 – 26], we can 

compute sequences of reflected pulses in the waveguide with 

hard elastic bottom and for their. 

4. Conclusions 

As a result of the research we can draw three conclusions: 

1) in studying propagation and diffraction of pulse signals 

in a plane waveguide need to use the method of 

imaginary sources as pulses like bundles of energy 

spread to any direc-tions (including and along the axis 

of the waveguide) with the group velocity does not 

exceed the sound velocity, namely the group velocity 
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based the method of imaginary sources; 

2) replacing the hard elastic bottom on the absolutely hard 

bottom is acceptable to those sources (real and 

imaginary) from which waves in the fall to the hard 

elastic bottom try total internal reflectionж 

3) we have adopted the model of image sources and image 

scatterers is gute acceptable (due to internal reflection), 

at least, for first five calculated reflected pulses in a 

plane wave-guide with hard elastic bottom. 
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