
 

American Journal of Modern Physics 
2017; 6(3): 37-42 

http://www.sciencepublishinggroup.com/j/ajmp 

doi: 10.11648/j.ajmp.20170603.11 

ISSN: 2326-8867 (Print); ISSN: 2326-8891 (Online)  

 

The Test of Entanglement of Polarization States of a  
Semi-Classical Optical Parametric Oscillator 

Gerald Mugaya Lisamadi
1
, Boniface Otieno Ndinya

2
, Joseph Akeyo Omolo

1 

1Department of Physics and Materials Science, Maseno University, Maseno, Kenya 
2Department of Physics, Masinde Muliro University of Science and Technology, Kakamega, Kenya 

Email address: 

geraldmugaya@gmail.com (G. M. Lisamadi), bonifacendinya@gmail.com (B. O. Ndinya), ojakeyo04@yahoo.co.uk (J. A. Omolo) 

To cite this article: 
Gerald Mugaya Lisamadi, Boniface Otieno Ndinya, Joseph Akeyo Omolo. The Test of Entanglement of Polarization States of a Semi-

Classical Optical Parametric Oscillator. American Journal of Modern Physics. Vol. 6, No. 3, 2017, pp. 37-42.  

doi: 10.11648/j.ajmp.20170603.11 

Received: March 29, 2017; Accepted: April 10, 2017; Published: May 8, 2017 

 

Abstract: We study the dynamical continuous variable entanglement in a semi-classical Optical parametric oscillator (OPO). 

The general time evolving photon polarization state vectors arising from exact analytical solutions of Heisenberg’s equations of 

the system are used to obtain the photon polarization Bell state vectors. The reduced density matrices of photon polarization 

Bell state vectors of the semi-classical OPO produce a greater violation of CHSH Bell’s inequality beyond the Cirel’son’s 

inequality. 
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1. Introduction 

Quantum entanglement is a physical phenomenon that 

occurs when pairs or groups of particles are generated or 

interact in such a manner that the quantum state of each 

particle cannot be described independently; instead, a 

quantum state is given for the system as a whole. 

Entanglement has found many applications in the fields of 

quantum computation and quantum information processing 

such as quantum cryptography, quantum dense coding, 

entanglement swapping, quantum lithography and quantum 

teleportation [1]. Quantum teleportation (transfer of quantum 

states between distant locations without an intervening 

medium) has been achieved over long distances [2, 3, 4]. On 

August 16, 2016, China launched the world’s first “quantum 

satellite’’, a communication system incapable of being 

hacked and stretching over a distance of 2000 km [5].  

Continuous variable entanglement was demonstrated for 

the first time in the Optical parametric oscillator (OPO) 

operating below threshold in 1990. Entanglement in the 

above-threshold OPO remained an experimental challenge 

until 2005, when it was first observed by Villar S. and 

Cassemiro N. (2005) [6]. Entanglement features for a full 

quantum treatment of OPO has been studied where time 

evolution equations are solved through writing of the density 

operator equation in the Wigner representation using 

equivalent Langevin equations to obtain analytical results [7]. 

Su and Tan (2006) [8] observed a two-color entanglement 

measured to the above-threshold OPO only. The multipartite 

nature of entanglement was verified by evaluating the van 

Loock-Furusawa criterion for a particular set of entanglement 

witnesses deduced from physical considerations [9]. 

Johansson R. (2014) [10] investigated theoretically the 

conditions under which a multi-mode nano-mechanical 

resonator, operating as a purely mechanical parametric 

oscillator, can be driven into highly non-classical states. 

Quantum entangled states of the system violate Bell 

inequalities with homodyne quadrature measurements. 

Chakrabarti R. and Jenisha J. (2015) [11] studied the 

evolution of a bipartite entangled quasi-bell state in a 

strongly coupled qubit oscillator system in the presence of a 

static bias, and extended it to the ultra-strong coupling 

regime. Adiabatic approximation was used to obtain reduced 

density matrix of the qubit for the strong coupling domain in 

closed form involving linear combinations of the Jacobi theta 

functions. Apart from employing the adiabatic approximation 

no other simplification has been made for deriving the 

reduced density matrix elements. A test of Bell inequality 

using polarization entangled photons from a Spontaneous 
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Parametric down Conversion (SPDC) has shown a violation 

of Bell’s inequality [12]. In the current paper, we use reduced 

density matrices of polarization states of semi-classical OPO 

to test the violation of CHSH Bell’s inequality, under all 

conditions of interaction.  

The paper is organized as follows. In section 2, the 

Hamiltonian of the system is developed and used to obtain 

the time evolution operator of the system. In section 3, the 

time evolving photon polarization Bell states are constructed. 

In section 4, the test of entanglement of polarization states of 

OPO using reduced density matrices and Bell inequalities is 

presented. A conclusion is provided in section 5. 

2. The Time Evolution Operator 

The OPO is an alternative tool for non-linear generation of 

entangled photons where a pump photon is converted into 

two lower energy beams, known as the signal photon and the 

idler photon occurring due to excitation of a material medium 

when struck by an external electromotive force. The signal 

photon is taken to be initially in the horizontal polarization 

state and the idler photon is taken to be initially in the 

vertical polarization state. The photon is therefore in a 

superposition of horizontal and vertical polarization. The 

horizontal polarization state vector represents the basic unit 

vector 0  and the vertical polarization state vector 

represents the basic unit vector 1 according to the definition 

1 0
0 , 1

0 1
H V

   
= = = =   

   
                 (1) 

The two-mode Hamiltonian of semi-classical OPO is 

described by [13] 

( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ+ + + ∗ += + + +ℏ a bH a a b b a b b aω ω α α               (2a) 

where ( )ˆ ˆa a+  is the signal annihilation (creation) operators, 

aω  is the signal frequency, ( )ˆ ˆb b+  is the idler annihilation 

(creation) operators, bω  is the idler frequency and ( )α α ∗ is a 

time-dependent interaction parameter which varies 

harmonically with time in the form of a rotating pump field 

of frequency ( )pω , according to 

( ) ; ( ) ; ( )
∗= = = =

− p pt t t consta nt
i t i te eα α α α α α
ω ω

                                  (2b) 

The dynamics of the semi-classical OPO is described 

through Heisenberg’s equations  

( )ˆˆ ˆˆˆ ˆ, ( )
ˆ+

∂ Η = Η = = +  ∂
ℏ ℏ a

da
i a a t b

dt a
ω α           (3a) 

( )ˆ ˆ
ˆ ˆˆ ˆ, ( )

ˆ
∗

+
∂ Η = Η = = +

  ∂
ℏ ℏ b

db
i b t a b

dt b
α ω           (3b) 

Equations (3a) and (3b) can be expressed in matrix form as 

( )ˆ
ˆ

( )

 
 
  
 

= ∗ℏ ℏ
a

b

tdA
i A

d t t

ω α

α ω
            (4a) 

where Â is the two-component photon pair polarization 

vector defined as  

ˆ
ˆ ˆˆ ˆ ˆ0 1

ˆ

 
= = + = +  
 

a
A a b a H b V

b
               (4b) 

Equation (4a) can be expressed in alternative form as  

( )0

ˆ
ˆ ˆ ˆ ˆ ˆ( ) ( )∗

+ −= Ω + + +ℏ ℏ ab ab z

dA
i S S t S t S A

dt
ω α α      (5a) 

where 

; ,Ω = + = −ab a b ab a bω ω ω ω ω             (5b) 

0

1 0 1 01 1
,

0 1 0 12 2

1ˆ ˆ;
2

=
   
   −   

= =z zS S σ    (5c) 

( ) ( )0 1 0 0
,

0 0 1 0

1 1

2 2

ˆ ˆ   
= = −   + −

   
+ = =x y i

x y
iS S σ σσ σ   (5d) 

and ; , ,i i x y zσ =  are the Pauli spin operators. Equation 

(5a) is solved to obtain the general form of time evolution 

photon polarization vector, expressed as  

ˆ ˆ( ) ( ) (0)= AA t U t A                                 (6a) 

where ( )AU t  is the time evolution operator, 

0
( )

ˆ ˆ ˆ( ) ( )ˆ ˆ + −

=

− ∗− ∆ + + − Ω −  

p p

p

A

z
zU t

i t i t
it S t S t S

i S t i tS
ab

e e
e e e

ω ωα αω   (6b) 

and ∆  is a constant detuning parameter,  

∆ = −ab pω ω                               (6c) 

We substitute for spin operators
0Ŝ , ˆ

zS , Ŝ+  and Ŝ−  (5c-d) 

in (6b) to obtain the final matrix as  

( ) ( )
2 2( ) ( )

( )

( ) ( )
2 2( ) ( )

 − Ω + − Ω + 
 =  
 − Ω − − Ω −∗ ∗ − 

ab p ab p

ab p ab p

i i
t t

t t
U t

A i i
t t

t t

e e

e e

ω ω
µ ν

ω ω
ν µ

  

(7a) 

where 
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( ) cos( ) sin( )
2

∆= − i
t t tµ β β

β
                   (7b) 

( )
( ) sin( )−=

i
p
t

i t
t t

eω
αν β

β
                    (7c) 

2
1 ;

2

∆= + =k kβ α
α              (7d) 

Similarly, if we consider the signal photon represented by 

mode ‘a’ to be initially in the vertical polarization state V

and the idler photon represented by mode ‘b’ to be initially in 

the horizontal polarization state H , and follow steps given 

by equations (2a) to (7d), we obtain the alternative final form 

of time evolution operator as 

( ) ( )
2 2( ) ( )

( )

( ) ( )
2 2( ) ( )

 − Ω − − Ω − ∗ ∗− =  
 − Ω + − Ω +
 
 

ab p ab p

ab p ab p

i i
t t

t t
U t

B i i
t t

t t

e e

e e

ω ω
µ ν

ω ω
ν µ

      (8) 

3. Bell State Vectors 

For a two-particle system where the signal photon is 

denoted by mode ‘a’ is taken to be initially in the horizontal 

polarization state and the idler photon is denoted by mode ‘b’ 

is taken to be initially in the vertical polarization state or vice 

versa. Then the maximum entangled Bell state vector of the 

photon is the superposition of horizontal and vertical 

polarization presented in simple form as [14] 

( ) ( )1 1
0 0 1 1

2 2
± = ± = ±

ab a b a b a b a b
H H V Vφ    (9a) 

( ) ( )1 1
0 1 1 0

2 2
± = ± = ±

ab a b a b a b a b
H V V Hψ   (9b) 

Using equations (1), (7a) and (8) the four possible eigen 

states of the two-particle system in (9a) and (9b) takes the 

form 

( ) ( )
2 2( ) ( ) 0 ( ) 1

− Ω + − Ω −∗= = −
 
 
 

ab p ab p

i i
t t

H U t H t t
Aa

e e
ω ω

µ ν   (10a)

 ( ) ( )
2 2( ) ( ) 0 ( ) 1

− Ω − − Ω +∗= = +
 
 
 

ab p ab p

i i
t t

H U t H t t
Bb

e e
ω ω

µ ν   (10b)

 ( ) ( )
2 2( ) ( ) 0 ( ) 1

− Ω − − Ω +∗= = − +
 
 
 

ab p ab p

i i
t t

V U t V t t
Ba

e e
ω ω

ν µ       (10c) 

( ) ( )
2 2( ) ( ) 0 ( ) 1

− Ω + − Ω −∗= = +
 
 
 

ab p ab p

i i
t t

V U t V t t
Bb

e e
ω ω

ν µ    (10d) 

Using the general time evolving photon polarization state 

vector equations (10a-d) in (9a) and (9b), the four time 

evolution photon polarization Bell state vector reduces to 

22 42 2cos ( ) sin ( )
2

4

2cos( )sin(2 ) sin( )sin ( )
2

2
cos( )sin(2 ) sin( )sin ( )

2

22 42 2cos ( ) sin ( )
24

+

 ∆ + −
 
 

∆− +
− Ω=

∆− +

 ∆ + −
 
 

 
 
 
 
 
 
 
 
 

p p

p p

ab

t t

i i
t t t t

i t

i i
t t t t

t t

e

α
β β

β

α αω β ω β
β β

φ
α αω β ω β
β β

α
β β

β

    (11a) 

2

22
4 2

cos ( ) sin ( )
24

2
sin( )sin(2 ) cos( )sin ( )

2

2sin( )sin(2 ) cos( )sin ( )
2

22
4 ( )2 2

cos ( ) sin ( )
24

−

 ∆ − −
 
 

∆− −
− Ω

=
∆+

 ∆ − − +
 
 

 
 
 
 
 
 
  
 

p p

p p

ab

t t

t t t t
i t

t t t t

t
t t

e

α
β β

β

α αω β ω β
β β

φ
α αω β ω β
β β

α
β β

β

        (11b)
 

2cos( )sin(2 ) sin( )sin ( )
2

22 42 2cos ( ) sin ( )
24

22 42 2cos ( ) sin ( )
24

2cos( )sin(2 ) sin( )sin ( )
2

+

∆− +

 ∆ + −
 

− Ω  =
 ∆ + −
 
 

∆− +

 
 
 
 
 
 
  
 

p p

p p

ab

i i
t t t t

t t

i t

t t

i i
t t t t

e

α αω β ω β
β β

α
β β

β
ψ

α
β β

β

α αω β ω β
β β

    (11c) 

2sin( )sin(2 ) cos( )sin ( )
2

22
42 2

cos ( ) sin ( )
2

4

22 4 ( )2 2
cos ( ) sin ( )

24

2
sin( )sin(2 ) cos( )sin ( )

2

−

∆− −

 ∆ − −
 

− Ω  =
 ∆ − − +
 
 

∆+

 
 
 
 
 
 
  
 

p p

p p

ab

i
t t t t

t t

i t

t
t t

t t t t

e

α αω β ω β
β β

α
β β

β
ψ

α
β β

β

α αω β ω β
β β

  (11d) 

4. Reduced Density of State 

The Clauser–Horne–Shimony-Holt (CHSH) Bell 

inequality defined as  

2 2− ≤ ≤ +S                                    (12) 

is commonly used to test the nature of entanglement of 

photon polarization states[15]. In (12) S represents the 

reduced density matrix for Bell state vectors [16]. 

Entanglement is exhibited by violations of the Bell 

inequality. The larger the violation of the Bell inequality the 

more the entanglement present in the system.  

We determine reduced density matrices by obtaining the 

trace of density matrices under the following conditions of 

interaction: 
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4.1. Resonance 

At resonance, 

>> ∆α                                   (13a) 

and (7d) reduces to 

; 0= =kβ α                        (13b)

 
We use the condition in (13a) and (13b) in polarization 

Bell state vectors (11a-d) to obtain the trace of the density 

matrices under resonance condition as 

( ) 2 2ˆ ( ) 2 2sin ( )sin (2 )
+ + += = −a

ab b pTr t Tr t tρ φ φ ω α  (14a) 

( ) 2 2ˆ ( ) 2 2sin ( )sin (2 )
− − −= = +a

ab b pTr t Tr t tρ φ φ ω α  (14b) 

( ) 2 2ˆ ( ) 2 2sin ( )sin (2 )
+ + += = −b

ba a pTr t Tr t tρ ψ ψ ω α   (14c) 

( ) 2 2ˆ ( ) 2 2sin ( )sin (2 )
− − −= = +b

ba a pTr t Tr t tρ ψ ψ ω α   (14d) 

The maximum and least traces in (14a-14d) at time 1t  and 

2t  are tabulated in table 1. 

Table 1. Maximum and least traces of density matrices for Bell states (14a-14d) under resonance at time 1t  and 2t where n=0, 1, 2…… and 2=pω α . 

Time ( )bTr φ φ+ +  ( )bTr φ φ− −  ( )aTr ψ ψ+ +  ( )aTr ψ ψ− −  

1 =
p

n
t

π
ω

 2 2 2 2 

2
1

2

 = + 
  p

t n
π

ω
 0 4 0 4 

 
According to CHSH Bell inequality (12), the Bell states 

(14a) and (14c) under resonance produce weak entanglement. 

The Bell states (14b) and (14d) produce strong entanglement 

above the Cirel’son’s inequality at the time 2t . 

4.2. Very Weak Interaction 

At very weak interaction  

<< ∆α                                          (15a) 

and (7d) reduces to 

; 1= >>k kβ α             (15b) 

We use the condition in (15a) and (15b) in polarization 

Bell state vectors (11a-d) to obtain the trace of the density 

matrices under very weak interaction condition as 

( ) ( ) ( ) ( ) 2
2 2sin (2 )+ + − − + + − −= = = = −b b a aTr Tr Tr Tr ktφ φ φ φ ψ ψ ψ ψ α                                          (16) 

The maximum and least traces arising from (16) under very weak interaction are tabulated in table 2. 

Table 2. Maximum and least traces of density matrices for Bell states (16) under very weak interaction at time 1t  and 2t where n=0, 1, 2…….. 

Time ( )bTr φ φ+ +
 

( )bTr φ φ− −
 

( )aTr ψ ψ+ +
 

( )aTr ψ ψ− −
 

2
= n

t
k

π
α

 2 2 2 2 

1

2 2

 = + 
 

t n
k

π
α

 0 0 0 0 

 

According to table (2), all the Bell states in (16) under very 

weak interaction produce weak entanglement. 

4.3. Weak Interaction 

At weak interaction, 

< ∆α                                              (17a) 

and (7d) reduces to

 
21 ; 1= + >k kβ α                         (17b) 

We use the condition in (17a) and (17b) in polarization 

Bell state vectors (11a-d) to obtain the trace of the density 

matrices under weak interaction condition as 

( )

( )
ˆ ( )

8 82 22 2 22 sin ( 1 ) sin ( )sin ( 1 )
2 21 ( 1)

2 2
8 8 ( 1) 4 2(2 4 6)2 22 4 4sin ( )sin ( 1 ) sin ( 1

2 2 2( 1) ( 1)

+ + += = − + + +
+ +

+ + + −− + − +
+ +

a
ab b

p

Tr t Tr t k t t k
p

k k

k k
k k

t t k t k
k k

ρ φ φ
αα ω α

α
ω α α

     (18a) 

( ) 2 2 2

2

2 2
4 2 2 4 2

2 2 2 2

2
ˆ ( ) 2 sin ( )sin (2 1 )

(1 )

8 8
sin ( 1 ) sin ( )sin ( 1 )

(1 ) (1 )

− − −= = − +
+

+ + − +
+ +

a
ab b p

p

Tr t Tr t t k
k

k k
t k t t k

k k

ρ φ φ ω α

α ω α
     (18b)
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( )

( )
ˆ ( )

8 82 22 2 22 sin ( 1 ) sin ( )sin ( 1 )
2 21 ( 1)

2 28 8 ( 1) 4 2(2 4 6)2 22 4 4sin ( )sin ( 1 ) sin ( 1
2 2 2( 1) ( 1)

+ + += = − + + +
+ +

+ + + −− + − +
+ +

b
ba a p

Tr t Tr t k t t k
k k

k k
k k

t t k t k
p

k k

ρ ψ ψ
αα ω α

α
ω α α

  (18c)
 

( ) 2 2 2

2

2 2
4 2 2 4 2

2 2 2 2

2
ˆ ( ) 2 sin ( ) sin (2 1 )

(1 )

8 8
sin ( 1 ) sin ( )sin ( 1 )

(1 ) (1 )

− − −= = − +
+

+ + − +
+ +

b
ba a p

p

Tr t Tr t t k
k

k k
t k t t k

k k

ρ ψ ψ ω α

α ω α
  (18d)

 

The maximum and least traces corresponding to (18a-d) under weak interaction are given in table 3.  

Table 3. Maximum and least traces of density matrices for Bell states (18a-18d) under weak interaction at time 1t  and 2t where n=0, 1, 2……. and

21+ = pkα ω . 

Time ( )bTr φ φ+ +
 

( )bTr φ φ− −
 

( )aTr ψ ψ+ +
 

( )aTr ψ ψ− −
 

1
2

1

=
+

n
t

k

π

α
 2 4 2 4 

2
1

2 2

 = + 
 

t n
k

π
α

 < 3 > 1 < 3 > 1 

 
According to CHSH Bell inequality, the Bell states (18a) 

and (18c) under weak interaction produce strong 

entanglement above the Cirel’son’s inequality at the time 2t . 

The Bell states (18b) and (18d) produce strong entanglement 

above the cirel’son’s inequality at the time 1t . The trace 

reduces as the value of k increases i.e. k>1. 

4.4. Medium Strength Interaction 

At medium strength interaction, 

> ∆α                                  (19) 

and (7d) reduces to (17b) at k<1. The trace of the density 

matrices under medium strength interaction condition take 

the form represented in (18a-d). The maximum and least 

traces corresponding to (18a-d) under medium strength 

interaction are given in table 4.  

Table 4. Maximum and least traces of density matrices for Bell states (18a-18d) under medium strength interaction at time 1t  and 2t where n=0, 1, 2 …. and

21+ = pkα ω . 

Time ( )bTr φ φ+ +
 

( )bTr φ φ− −
 

( )aTr ψ ψ+ +
 

( )aTr ψ ψ− −
 

1
2

1

=
+

n
t

k

π

α
 2 4 2 4 

2
1

2 2

 = + 
 

t n
k

π
α

 3 0  3 0 

 

According to table (4), the Bell states in (18a) and (18c) 

under medium strength interaction produce strong 

entanglement above the Cirel’son’s inequality at the time t2. 

The Bell states (18b) and (18d) produce strong entanglement 

above the cirel’son’s inequality at the time t1. The trace 

reduces as the value of k decreases i.e. k<1. 

4.5. Critical (Threshold) Interactions 

At Critical (threshold) interaction,  

= ∆α                                       (20)
 

and (7d) becomes (17b) at k=1/2. The reduced density 

matrices take the same format as those presented in 

equations (18a-d). The maximum and least traces 

corresponding to (18a-d) under critical strength interaction 

are given in table 5. 

Table 5. Maximum and least traces of density matrices for Bell states (18a-d) under critical interaction at time 1t  and 2t where n=0, 1, 2…… and 

21+ = pkα ω . 

Time ( )bTr φ φ+ +
 

( )bTr φ φ− −
 

( )aTr ψ ψ+ +
 

( )aTr ψ ψ− −
 

1
2

1

=
+

n
t

k

π

α
 2 4 2 4 

2
1

2 2

 = + 
 

t n
k

π
α

 2.64 0.72  2.64 0.72 
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According to CHSH Bell inequality, the Bell states (18a) 

and (18c) under critical interaction produce strong 

entanglement at the time t2. The Bell states (18b) and (18d) 

produce strong entanglement above the cirel’son’s inequality 

at the time t1.  

5. Conclusion 

The semi-classical OPO is a good system for 

demonstration of dynamical evolution of entanglement of 

polarization states by use of Bell states whose entanglement 

is tested by use of reduced density matrices in CHSH Bell 

inequality.  

The CHSH Bell inequality is violated under weak 

interaction, medium strength and critical interaction for the 

Bell state vectors (11a) and (11c) hence producing strong 

entanglement. The traces of density matrices under very 

weak interaction for all the four Bell state vectors do not 

violate the CHSH Bell inequality hence producing weak 

entanglement which is dynamic in nature.  

The CHSH Bell inequality is violated to give a higher trace 

of S=4 under resonance, weak interaction, medium strength 

and critical interaction for Bell state vectors (11b) and (11d) 

hence producing a dynamically stronger entanglement 

beyond the Cirel’son’s inequality of S< 2 2 stated for 

quantum theory. This presents the OPO as an important tool 

in quantum optics for possible implementation of quantum 

key communication protocols in quantum mechanics such as 

quantum teleportation, quantum key distribution, and dense 

coding. 
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