
 

American Journal of Modern Physics 
2015; 4(6): 296-303 

Published online January 4, 2016 (http://www.sciencepublishinggroup.com/j/ajmp) 

doi: 10.11648/j.ajmp.20150406.17 

ISSN: 2326-8867 (Print); ISSN: 2326-8891 (Online)  

 

Study of the Zeeman Structure and the Gyromagnetic 
Ratios of the 2p4f and 3p4f Configurations of the Carbon 
and Silicon Atoms 

Galina Pavlovna Anisimova
1
, Olga Aleksandrovna Dolmatova

1
, Anna Petrovna Gorbenko

1
,  

Igor Ratmirovich Krylov
1, *

, Igor Cheslavovich Mashek
1
, Martin Luter Tchoffo

2
,  

Galina Aleksandrovna Tsygankova
1
 

1Physics Department, Saint-Petersburg State University, Saint-Petersburg, Russia 
2Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon 

Email address: 
igor-krylov@yandex.ru (I. R. Krylov), olgadolmatova@gmail.com (O. A. Dolmatova), spbgor@mail.ru (A. P. Gorbenko), 

mtchoffo2000@yahoo.fr (M. L. Tchoffo) 

To cite this article: 
Galina Pavlovna Anisimova, Olga Aleksandrovna Dolmatova, Anna Petrovna Gorbenko, Igor Ratmirovich Krylov, Igor Cheslavovich 

Mashek, Martin Luter Tchoffo, Galina Aleksandrovna Tsygankova. Study of the Zeeman Structure and the Gyromagnetic Ratios of the 2p4f 

and 3p4f Configurations of the Carbon and Silicon Atoms. American Journal of Modern Physics. Vol. 4, No. 6, 2015, pp. 296-303.  

doi: 10.11648/j.ajmp.20150406.17 

 

Abstract: The present article is a continuation of the authors works devoted to the theoretical study of the fine structure 

parameters, and other atom characteristics, for which there are no experimental data except for energies of levels of the fine 

structure. The authors have studied Zeeman structure of the 2p4f and 3p4f configurations and revealed its particular features — 

crossings and anticrossings of the magnetic sublevels. From splittings of levels in the assured linear range, the authors have 

calculated gyromagnetic ratios and compared them with their counterparts in the absence of the field. The study of the Zeeman 

structure is interesting in its own right. Furthermore, through Zeeman splitting in the linear domain of the magnetic field, one 

can determine the gyromagnetic ratios — one of the most important characteristics of the atoms. Calculation of the Zeeman 

structure is correct, if in the absence of the field, during the diagonalisation of the energy operator matrix, one obtains the 

calculated energies, practically coinciding with experimental values (zero energy residuals). To this effect it is necessary to 

know the numerical values of fine structure parameters. Their exact calculation is possible, if in the energy operator matrix one 

takes into account not only the electrostatic interaction and the spin-own orbit interaction, where the majority of authors are 

limited, but also the magnetic interactions, namely: spin-other-orbit, spin-spin, and also the orbit-orbit interactions. 

Consideration of these interactions is very important for the obtaining null residuals in energy. It is known that, by increasing 

the role of the magnetic interactions, a deviation from LS-coupling is observed. This is realize in the studied 2p4f C I and 3p4f 

Si I systems. Authors executed calculations in the jK-coupling approximation taking into account the doublet character of the 

energy spectra of the considered systems. Later the numerical value of fine structure parameters were introduced in the energy 

operator matrix; written in the LK and LS-coupling approximations. This was very useful, as gyromagnetic ratios, calculated by 

intermediate coupling coefficients in different basis, do not always coincide with each other. The comparison of g-factors, 

determined by different bases in the absence of the field, with the gyromagnetic ratios, calculated by Zeeman splitting was 

necessary. 

Keywords: Fine Structure, Zeeman Splitting, Crossings and Anticrossings of Magnetic Components, Gyromagnetic Ratios, 

Energy Operator Matrix 

 

1. Introduction 

For the higher excited 2p4f C I and 3p4f Si I 

configurations, there are no experimental data, except the 

fine structure energy levels [1-3]. Nevertheless, the energies 

are the best experimental material for the theoretical study of 

the fine structure parameters and other characteristics of 

atoms by the semiempirical method. The study of the 
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Zeeman structure is important, in particular, its features — 

the crossings and the anti-crossings of magnetic sublevels, 

and also the determination of the gyromagnetic ratios at all 

levels of the configurations for Zeeman splitting in the linear 

range of magnetic field. The correct study of Zeeman 

structure is possible, if in the absence of the magnetic field, 

at the diagonalization of the energy operator matrix the 

calculated energies are almost coincide with the 

corresponding experimental data (zero energy residuals). The 

high precision calculations are guaranteed by the right 

mathematical description of the energy levels. To this 

purpose it is necessary to take in to account in the energy 

operator matrix, not only the electrostatic interaction and the 

spin – own orbit interaction, as many authors do, but other 

interactions, in particular the spin – other orbit, the spin – 

spin and orbit – orbit interactions. These interactions in the 

npn`f and the np
5
n`f configurations were the object of study 

in our articles [4-8]. 

2. Energy Spectra of the 2p4f and 3p4f 
Configurations 

We consider in the present work the npn’f configurations 

with the same value of the principal quantum number n of the 

f-electron, in order to track how the characteristics of the 

same configurations change with increase of nuclear charge. 

Earlier the Zeeman structure of similar configurations with 

n’=5 were considered in the works: 3p5f Si I [9] and 2p5f C I 

[10]. 

 

Figure 1. Energy spectra of the 2p4f (left) and 3p4f (right) configurations of 

the carbon and silicon atoms. 

The energy spectra of the considered configurations are 

presented on Fig. 1. The classification of the levels of the 

carbon atom is given in the approximations of LK-coupling 

[1] and jK-coupling [2], the silicon atom in the 

approximation of jK-coupling [3]. On the figure the notations 

of the levels in the approximation of LS-coupling are also 

indicated. The LS-coupling approximation is the most 

convenient and compact in the writing. In it is clearly seen, 

the singlet and the triplet levels. Let’s indicate that, the 

numerical calculation of the fine structure parameters was 

effected in jK-coupling approximation with respect to the 

above cited works [2-3]. Later the obtained numerical values 

of the fine structure parameters were introduced in the energy 

operator matrices, written in the LS and LK coupling 

approximations (see below). This gave the possibility to 

compare the classification of levels in different 

approximations. 

In the case of fitting the LS-coupling, the energy spectrum 

is constituted of triplets and singlets, and triplet components 

are close to each other, while the singlet level is significantly 

far from the triplet. From Fig. 1 it is seen that such a situation 

is not realized in the considered systems. In both 

configurations the pairing of levels is clearly seen. In the 

lower part of the spectrum there are F-levels with j1 = ½ (j1 = 

l1 + s1). In the LS-coupling the disposition of the levels of the 

normal triplet must be as follows: 
3
F2 (the lower level), 

followed by higher levels 
3
F3, 

3
F4; 

1
F3 is the upper singlet 

level. In the considered 2p4f and 3p4f configurations, in both 

pairs, the levels changed places. 

On the upper part of the energy spectrum on Fig. 1 there 

are 4 pairs of G and D-levels with j1=3/2. The G and D-levels 

are alternated. In general spectrum the 2p4f configurations of 

carbon and 3p4f of silicon are similar. Let’s notice that, the 

2p4f configuration occupies an energy interval of 116 cm
-1

, 

while the 3p4f configuration occupies 417 cm
-1

, that means 

3.6 times greater than that of carbon. Both configurations are 

isolated from other configurations of the same parity (for 

instance npn’p). In these configurations, there are some 

levels of np4d configuration [11, 12], but this configuration 

has different parity as compared to the considered np4f 

configuration and does not interact with them. 

3. Energy Operator Matrix and the Fine 

Structure Parameters 

The energy operator matrix of npn’f configurations (and 

also np
5
n’f) is obtained in two representations: LSJM (LS-

coupling approximation) and independent momentums by the 

general form formulae from the monograph [13]. In the 

LSJM- representation it is differentiated by the quantum 

number J (the total atom electron moment), in the 

independent moment representation ([13] author’s terms) it is 

differentiated by the magnetic quantum number M. 

Representation of independent momentums is convenient, 

due to the fact that in it the states of two-electron atom (two 

electrons in the outer shells) depend only on individual 

quantum numbers of single electrons. Furthermore, the 

energy operator matrix of np
5
n`f hole configurations (realized 

in rare gasses starting from neon) can be obtained only in 
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representation of independent momentums, by changing in 

the corresponding wave functions the sign of the orbital and 

spin projections of p-electron. Thus, in the p
5
f hole 

configuration one also considers two particles, f-electron and 

p-hole (almost full shell). 

All angular momentums (l1, l2, s1, s2, L, S, J) are 

irreducible tensor operators of first rank [14]. The Wigner–

Ekkart theorem [15], which states that the matrix element is 

the product of phase factor, of reduced matrix element and of 

the Wigner’s 3j-symbol, can be applied to them. As all the 

formulae [13] in the independent momentums are written 

through the orbital and spin unitary operators, then the 

reduced matrix element is equal to unity. That is why all the 

calculation is reduced to calculation of the 3j-symbol, which 

is easier, than the calculation of Wigner’s 9j-symbol in the 

LSJM representation (see details in articles [4-8, 16]). 

The matrix elements, calculated with wave functions of 

independent momentums representation, were transformed 

later to the LSJM-representation with the help of the matrices 

of the coefficients of wave function transformation of one 

representation through the wave functions of the other 

representation [6]. Then it's were compared with the results 

of independent calculations in the LSJM-representation [13]. 

Calculations results for the electron npn`f configuration must 

totally coincide, which was attained in our investigation. 

Table 1. Energy Operator Matrix of the npn`f configurations in LSJM-representation. 

Matrix 
element 

Ci F0 F2 G2
 G4 ξp ξf 

(S1+ 
S2)oo S3

oo S1
so S2

so S2'
so S3

so S4
so S4'

so S1
ss S2

ss S2'
ss S3

ss √ 

3F3
3F3 C1 1 1

5

−
 

3

35
 

1

21

−
 

1

24

−
 

11

24

−
 2 16

5
 

3

2
 3 3

2

−
 

1

4
 

3

7

−
 

5

21
 

3

2
 

3

2

−
 3 3 - 

3F3
1F3 C2 0 0 0 0 1

12
 

11

12

−
 0 0 2

3

−
 

5

3

−
 1 0 0 0 0 0 0 0 3  

3F3
3G3 C3 0 0 0 0 9

56

−
 

9

56
 0 0 0 9

14

−
 

9

14

−
 

225

196

−
 

81

245

−
 

5

49

−
 

9

14
 

5

14

−
 

3

7

−
 

55

49

−
 7  

3F3
3D3 C4 0 0 0 0 2

21

−
 

2

21
 0 0 6

5
 

18

35

−
 

24

35
 

46

49
 

96

1225
 

40

147

−
 

4

35
 

4

35
 

12

35

−
 

12

49
 35  

1F3
1F3 C5 1 1

5

−
 

3

35

−
 

1

21
 0 0 2 16

5

−
 0 0 0 0 0 0 0 0 0 0 - 

1F3
3G3 C6 0 0 0 0 3

28

−
 

3

28

−
 0 0 3

7

−
 

2

7

−
 

1

7

−
 

22

49
 0 0 0 0 0 0 21  

1F3
3D3 C7 0 0 0 0 1

21
 

1

21
 0 0 1

105

−
 

11

105
 

4

35

−
 

18

245
 0 0 0 0 0 0 105  

3G3
3G3 C8 1 1

15
 

9

35

−
 

1

189

−
 

5

8

−
 

15

8

−
 6−  

16

315
 

3

2
 10 3

2
 

75

28

−
 

27

7
 

5

63
 

11

14
 

55

42
 

3

7
 

55

49

−
 - 

3G3
3D3 C9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36

35
 

4

35
 

12

35
 

1004

245

−
 5  

3D3
3D3 C10 1 4

25
 

3

175

−
 

4

21

−
 

1

3

−
 

4

3
 8 352

175

−
 

18

5
 

48

5

−
 

24

5

−
 

92

35

−
 

12

35

−
 

80

21

−
 

4

35
 

16

35
 

48

35
 

96

245

−
 - 

3F4
3F4 C11 1 1

5

−
 

3

35
 

1

21

−
 

1

8
 

11

8
 2 16

5
 

9

2

−
 9−  

9

2
 

3

4

−
 

9

7
 

5

7

−
 

1

2

−
 

1

2
 1−  1−  - 

3F4
3G4 C12 0 0 0 0 1

8

−
 

1

8
 0 0 0 1

2

−
 

1

2

−
 

25

28

−
 

9

35

−
 

5

63

−
 

3

10

−
 

1

6
 

1

5
 

11

21
 15  

3F4
1G4 C13 0 0 0 0 1

4
 

1

4
 0 0 1 2

3
 

1

3
 

22

21
 0 0 0 0 0 0 3  

3G4
3G4 C14 1 1

15
 

9

35

−
 

1

189

−
 

1

8

−
 

3

8

−
 6−  

16

315
 

3

10
 2 3

10
 

15

28

−
 

27

35
 

1

63
 

11

10

−
 

11

6

−
 

3

5

−
 

11

7
 - 

3G4
1G4 C15 0 0 0 0 1

4
 

3

4

−
 0 0 4

5
 

5

3

−
 

1

5

−
 0 0 0 0 0 0 0 5  

1G4
1G4 C16 1 1

15
 

9

35
 

1

189
 0 0 6−  

16

315

−
 0 0 0 0 0 0 0 0 0 0 - 

3F2
3F2 C17 1 1

5

−
 

3

35
 

1

21

−
 

1

6

−
 

11

6

−
 2 16

5
 6 12 6−  1 12

7

−
 

20

21
 

6

5

−
 

6

5
 

12

5

−
 

12

5

−
 - 

3F2
1D2 C18 0 0 0 0 1

3

−
 

1

3

−
 0 0 1

15
 

11

15

−
 

4

5
 

18

35
 0 0 0 0 0 0 3  

3F2
3D2 C19 0 0 0 0 1

3

−
 

1

3
 0 0 21

5
 

9

5

−
 

12

5
 

23

7
 

48

175
 

20

21

−
 

4

5

−
 

4

5

−
 

12

5
 

12

7

−
 2  

1D2
1D2 C20 1 4

25
 

3

175
 

4

21
 0 0 8 352

175
 0 0 0 0 0 0 0 0 0 0 - 

1D2
3D2 C21 0 0 0 0 1

6

−
 

2

3

−
 0 0 1

15

−
 

16

15

−
 

4

5

−
 0 0 0 0 0 0 0 6  

3D2
3D2 C22 1 4

25
 

3

175

−
 

4

21

−
 

1

6
 

2

3

−
 8 352

175

−
 

9

5

−
 

24

5
 

12

5
 

46

35
 

6

35
 

40

21
 

2

5

−
 

8

5

−
 

24

5

−
 

48

35
 - 

3G5
3G5 C23 1 1

15
 

9

35

−
 

1

189

−
 

1

2
 

3

2
 6−  

16

315
 

6

5

−
 8−  

6

5

−
 

15

7
 

108

35

−
 

4

63

−
 

2

5
 

2

3
 

12

55
 

4

7

−
 - 

3D1
3D1 C24 1 4

25
 

3

175

−
 

4

21

−
 

1

2
 2−  8 352

175

−
 

27

5

−
 

72

5
 

36

5
 

138

35
 

18

35
 

40

7
 

2

5
 

8

5
 

24

5
 

48

35

−
 - 
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The energy operator matrix of considered configurations is 

presented in Table 1 in the form of coefficients at radial 

integrals (called later fine structure parameters). Every matrix 

element is a linear function of fine structure parameters with 

the corresponding coefficients. The square root is the 

common factor for all rows of coefficients in nondiagonal 

matrix elements in Table 1. 

Let’s describe the radial integrals. In Table 1, F0, F2 and 

G2, G4 are direct and exchange by Slater’s integrals 

(electrostatic interaction); ξp and ξf are radial integrals of the 

spin - own orbit interaction; S1, S2, S2` are direct radial 

integrals of Marvin Mk-1 spin interactions [13], S3 is the 

Marvin exchange radial integral Nk-1 [13]; S4 and S4` are 

exchange radial integrals Kk, related to Marvin integrals. 

Affiliation Marvin integrals to concrete interactions is 

denoted by the upper indices: so — for spin – other orbit 

interaction, ss — for spin – spin interaction, oo — for orbit – 

orbit interaction. Thus the energy operator matrix is 

constituted of 18 radial integrals, which are the fine structure 

unknown parameters in the semiempirical calculation. They 

are determined numerically from the solution of the system 

of nonlinear equations on the unitary transformation of 

nondiagonal Hermitian matrix to the diagonal form 

1ˆ ˆ−=Ei ikU E U                               (1) 

where iE  is a diagonal matrix (in our case it’s the 

experimental value of the energy on Fig. 1); ikE  is a 

nondiagonal matrix from Table 1 (symmetric matrix elements 

are not written); Û  is a unitary matrix of transformation 

coefficients (below ikα , where i is the row number, k – the 

column number). In other words ikα  are coefficients of 

expansion of wave functions of intermediate (real) couplings 

by wave functions of any vector type of coupling. 

In any vector coupling approximation (LS, LK, jK, jj) the 

energy operator matrix is differentiated by the quantum 

number J. In the systems of 12 levels (in our case npn’f) we 

have one matrix of rank 4 (J = 3), two matrices of rank 3 (J = 

2, 4) and two matrices of first rank (J = 5 and J = 1). 

The number of equations in (1) is determined by the rank 

of the matrix n, and equal to n2. In the analytic form the 

equations are obtained if equation (1) multiply the right side 

by matrix 1Û− , then multiply the two matrices in both sides 

of (1) and equate corresponding elements. The system of 

equations obtained in this manner is sufficiently simple, as it 

is basically constituted of quadratic equations. The number of 

equations in (1) are exactly equal to the number of coupling 

coefficients ikα , which are unknown values as the fine 

structure parameters. That is why the system of quadratic 

equations in (1) has been supplemented by equations of 

normalization and orthogonality of coupling coefficients for 

the correspondence of the number of equations and the 

number of unknowns. Finally by the Newton's iteration 

method the system of 52 nonlinear equations for 52 unknown 

values (18 fine structure parameters and 34 coupling 

coefficients) were solved. The known values are the energy 

levels of the fine structure. 

The Newton’s iteration method requires the null 

approximation. The first null approximations are determined 

from the solution of the system of 5 linear equations by 

Slater’s diagonal sum rule (the trace of matrices) for 5 

fundamental parameters: F0, F2, G2, G4, ξp. Later the numerical 

values of these parameters were put into the matrix elements 

from Table 1 (the other parameters were supposed to be equal 

to zero) and matrices of the above cited rank were 

diagonalized. As a result the calculated energies (eigen values) 

and coupling coefficients ikα  (eigen vectors) were determined. 

Knowing the coupling coefficients and the numerical values of 

elements of diagonal matrix iE  (experimental energies), by 

formula (1) one can determine the numerical values of 

elements of nondiagonal matrix ikE  (in Table 1 designated by 

Ci). Thus the system of 24 linear equations for 18 unknown 

fine structure parameters was obtained. It was solved by least 

square method (LSM). As a result, the zeroth approximations 

for all parameters were determined. The cycle of calculations 

was repeated until the discrepancy for energies became small, 

such that the Newton’s iteration method started to converge. 

Let’s pay attention on the fact, that in every step of the 

calculations, the numerical diagonalization of energy operator 

matrices were executed, that means all the calculations were 

done in the intermediate coupling. 

As mentioned above, the calculation of fine structure 

parameters were executed in the jK-coupling approximation 

with respect to the classification levels [2, 3]. For this the 

purpose so many time verified by two representations of 

energy operator matrix from Table 1, written in the LS-

coupling approximation, was transferred into the jK-coupling 

approximation (and also into the LK-coupling) with the help 

of the corresponding coefficients of transformation of wave 

functions from one representation to another. The 

corresponding formulae were borrowed from [13] and were 

published in our article [17] (formulae (2), (3)). For the npn’f 

configuration the coefficients of transformation LS �  jK 

and LS� LK are presented in Table 2 together with the 

corresponding vector g-factors. The latter were calculated 

with respect to formula: 

2

,

 =∑ LS
i ik k

i k

g gα
                                   (2) 

where ikα  are coefficients from Table 2. The energy 

operator matrix in the jK-coupling approximation is not 

shown. It's easy to obtain from data of Table 1 and 2. 

The fine structure parameters, determined with respect to the 

described technique, are presented in Table 3 in comparison with 

a few data from the work [1] for carbon atom. The table shows 

that the spin-orbit splitting constant ξp of silicon atom is 4 times 

greater than the similar value for carbon atom. All the rest of 

parameters of silicon also increase as compare to carbon. This 

explains the much large energy spectrum range of the 3p4f 

configuration of silicon as compared to the 2p4f configuration of 

carbon atom (see Fig. 1). 
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Table 2. Transformation coefficients of the wave function of the one type coupling through the wave functions of the other type coupling and the corresponding 

gyromagnetic rations for nsn'f configurations. 

LS jK� �  

1 Jj K
�

 3
3F
�

 1
3F
�

 3
3G
�

 3
3D
�

 LKg
�

 

3

1 5

2 2

 
  
�

 
4

3 7
�

 
2

21

−

�

 0 
5

3
�

 
50 13

1.207
63

l sg g+ =
�

3

1 7

2 2

 
  
�

 3

2 7
�

 
1

7
�

 
3

2
�

 0 
33 5

0.821
28

l sg g− =
�

3

3 7

2 2

 
  
�

 
3

2 7
�

 
3

7
�

 
1

2

−

�

 0 
29

0.964
28

l sg g− =
�

 

3

3 5

2 2

 
  
�

 2 5

3 7

−

�

 
15

3 7
�

 0 
2

3
�

 
52 11

1.175
63

l sg g+ =
�

 
3

4F
�

 3
4G
�

 1
4G
�

   

4

1 7

2 2

 
  
�

 1

2
�

 
15

6
�

 
1

3

−

�

  
11

1.084
12

l sg g+ =
�

 

4

3 7

2 2

 
  
�

 3

2
�

 
5

6

−

�

 
1

3
�

  
29 7

1.195
36

l sg g+ =
�

4

3 9

2 2

 
  
�

 0 
2

3
�

 
5

3
�

  
44

1.022
45

l sg g+ =
�

 

 
3

2F
�

 1
2D
�

 3
2D
�

   

2

1 5

2 2

 
  
�

 2

3
�

 
3

3
�

 
2

3
�

  
10

0.889
9

l sg g− =
�

 

2

3 5

2 2

 
  
�

 5

3

−

�

 
2 3

3 5
�

 
2 2

3 5
�

  
52 7

0.844
45

l sg g− =
�

2

3 3

2 2

 
  
�

 0 
2

10
�

 
3

5

−

�

  
9

1.100
10

l sg g+ =
�

 

 

LS-coupling gyromagnetic ratios: 3
3F  = 1.08353, 1

3F  = 1.0, 3
3G  = 0.74942, 3

3D  = 1.33411; 3
4F  = 1.25058, 3

4G  = 1.05012, 1
4G  = 1.0; 3

2F  = 0.66589, 1
2D  

= 1.0, 3
2D  = 1.16705. 

Table 3. The fine-structure parameters of the 2p4f and 3p4f configurations. 

Parameters (cm-1) 2p4f C I 3p4f Si I 

F0 83981.1566 83981.20 [1] 58999.2928 

F2 216.5916 210 [3] 623.43547 

G2 1.3366 7.66561 

G4 0.4849 -2.25355 

ξp 41.2360 42.28 [1] 185.88228 

ξf 0.0442 1.27575 

(S1+S2)
oo -0.00822 -0.00968 

S3
oo 0.004 0.60875 

S1
so 0.0190 0.07126 

S2
so 0.0062 0.09113 

S2'
so -0.0062 -1.00839 

S3
so 0.0127 0.83366 

S4
so 0.0262 2.6655 

S4'
so 0.0297 0.44094 

S1
ss -0.0043 -0.33366 

S2
ss 0.0104 1.24103 

S2'
ss -0.0029 -0.12033 

S3
ss 0.0002 0.06354 

4. Zeeman Splitting 

4.1. The Particularities of Zeeman Structure 

The magnetic field completely removes the degeneracy of 

levels with respect to quantum number M. The energy 

operator matrix is differentiated by M: M = ± 5 is a matrix of 

first rank, М = ± 4 is a matrix of fourth rank, М = ± 3 is a 

matrix of eighth rank, М = ± 2 is a matrix of eleventh rank, М 

= ± 1 and М = 0 are matrices of twelve rank. 

In order to determine the particularities of Zeeman 

splitting (the crossings and the anticrossings of Zeeman 

components) the numerical diagonalisation of all indicated 

submatrices was performed. The most convenient and 

compact in writing is the energy operator matrix in the LSJM 

representation (LS-coupling approximation) — see Table 1 

and the fine structure parameters in Table 3. It’s necessary to 

add to it the elements of the energy operator matrix of 

interaction of the atom with the magnetic field. The 

corresponding operator, and also diagonal and non diagonal 
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matrix elements, was published in our article [17] (see 

formulae (13) – (15) and the comments on them). The results 

of calculations of matrix elements with respect to the cited 

formulae for the npn’f configuration were published in our 

article [9] (Table 2). There is one error. In the column with M 

= 0 on Table 2 [9] one must read: 
3
G5

3
G4 = (2/3) (gl – gs) µ0H 

without 5 in parenthesis. All non diagonal matrix elements of 

similar matrices have the factor (gl – gs). 

 

 

Figure 2. Zeeman splitting of F levels in the 2p4f (upper) and 3p4f (lower) 

configurations of the carbon and silicon atoms. 

The dependences of Zeeman energy sublevels of the 

considered configurations: 2p4f and 3p4f were studied in the 

(1-100) kOe range of the magnetic field and were built 

graphically firstly with a big increment of the field through 10 

Oe. The general view of Zeeman splitting of the considered 

systems is shown on Fig. 2. Later, in the range of crossed 

components with ∆M = ±1, ±2 the position of the minimum 

were fixed at condition Ei – Ek = 0.0001 cm
-1

 (Ei and Ek are the 

energies of crossed components). The results of these studies 

are presented in Table 4 (the first 30 crossings). It is seen that 

in carbon the crossings start earlier as compared to silicon, the 

energy range of 2p4f configuration is much less then that of 

3p4f Si I configuration. Furthermore, the sequence of crossings 

is changing in both configurations. The number of crossings in 

the (1-100) kOe range for 2p4f C I configuration is 104, and 

the same number of crossings for 3p4f Si I configuration is 51. 

Unfortunately, there are no similar experimental data. The 

results of Table 4 are prognosis for future experiments. 

Apart from the crossing of magnetic components in the 

studied configurations, one observes the anticrossing 

sublevels with ∆M = 0. Results for the 1F3 and 3F2 levels are 

presented on Firg.3 and in Table 5. It is known that, the 

Zeeman components of different terms are anticrossing. In 

the LS-coupling approximation 3F2 and 1F3 are different 

terms (triplet and singlet). In the jK-coupling approximation 

the 
2

1 5

2 2

 
  

 and 
3

1 7

2 2

 
 
 

 levels are also different terms. They have 

different intermediate momentums K (see Fig. 1). There are 

anticrossings of other pairs of levels, but they are in very 

great fields. In this article we don’t consider them. 

Table 4. The fields of the crossings for the Zeeman sublevels with ∆M = ± 1, 

± 2. 

2p4f C I Crossing 

sublevels 
 

3p4f Si I Crossing 

sublevels 
 

Upper Lower H, Oe Upper Lower H, Oe 

+1 (3F2) +3 (3F3) 922 +1 (1D2) +3 (3D3) 7227 

0 (3F2) +2 (3F3) 1176 0 (1D2) +2 (3D3) 8309 

+1 (1D2) +3 (3D3) 1275 -2 (3D2) -1 (3D1) 9001 

+2 (3F2) +3 (3F3) 1336 +1 (3F2) +3 (3F3) 9441 

-3 (3F4) -1 (1F3) 1436 -1 (1D2) +1 (3D3) 9575 

0 (1D2) +2 (3D3) 1451 -2 (1D2) 0 (3D3) 11027 

-1 (3F2) +1 (3F3) 1524 +2 (1D2) +3 (3D3) 11317 

-2 (3D2) -1 (3D1) 1570 -1 (3D2) +1 (3D1) 11363 

-2 (3F4) 0 (1F3) 1618 0 (3F2) +2 (3F3) 11869 

-1 (1D2) +1 (3D3) 1653 +2 (3F2) +3 (3F3) 13885 

-1 (3F4) +1 (1F3) 1826 -1 (3F2) +1 (3F3) 15103 

-2 (1D2) 0 (3D3) 1884 +1 (1D2) +2 (3D3) 15682 

-4 (3F4) -3 (1F3) 1966 -4 (3F4) -2 (1F3) 15943 

-2 (3F2) 0 (3F3) 1978 -4 (3G4) -2 (3G3) 16437 

-1 (3D2) +1 (3D1) 2003 -3 (3F4) -1 (1F3) 18029 

+2 (1D2) +3 (3D3) 2015 -3 (3G4) -1 (3G3) 18937 

0 (3F4) +2 (1F3) 2061 -2 (3F2) 0 (3F3) 19187 

-4 (3G4) -2 (3G3) 2159 -2 (3F4) 0 (1F3) 20486 

+1 (3F4) +3 (1F3) 2322 -2 (3G4) 0 (3G3) 21923 

-3 (3G4) -1 (3G3) 2515 0 (1D2) +1 (3D3) 23241 

-3 (3F4) -2 (1F3) 2574 -1 (3F4) +1 (1F3) 23369 

+1 (1D2) +2 (3D3) 2698 -4 (3F4) -3 (1F3) 24203 

-2 (3G4) 0 (3G3) 2950 -4 (3G4) -3 (3G3) 24576 

+2 (1G4) +4 (3G5) 3053 -1 (3G4) +1 (3G3) 25458 

-4 (3G4) -3 (3G3) 3194 0 (3F4) +2 (1F3) 26725 

+1 (1G4) +3 (3G5) 3239 +2 (1G4) +4 (3G5) 28328 

-3 (3G4) -2 (3G3) 3248 0 (3G4) +2 (3G3) 29538 

-1 (3G4) +1 (3G3) 3474 +1 (1G4) +3 (3G5) 30074 

-2 (3F4) -1 (1F3) 3603 +1 (3F4) +3 (1F3) 30603 

-1 (1G4) +1 (3G5) 3959 -3 (3F4) -2 (1F3) 32021 

4.2. The Gyromagnetic Ratios 

Let’s explain, why is it necessary to determine the 
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gyromagnetic ratios with respect to Zeeman splitting. As it 

was said earlier, the calculation of fine structure parameters 

was executed in the jK-coupling approximation. Later the 

numerical values of fine structure parameters from Table 3 

were put in the energy operator matrix in the LK and LS-

coupling approximations and their numerical diagonalisation 

were performed in the absence of the field (H=0). As a result, 

the calculated energies and the intermediate coupling 

coefficients αik were obtained. 

Table 5. Minimal energy intervals and corresponding magnitudes of 

magnetic fields in waists of anticrossings. 

Anticrossing sublevels H, kOe ∆, cm-1 H, kOe ∆, cm-1 

upper lower 2p4f C I 3p4f Si I 
1F3 (M=0) 3F2 (M=0) 221.6 0.20102 355.0 0.16625 
1F3 (M=+1) 3F2 (M=+1) 274.0 0.20405 389.1 0.24405 
1F3 (M=-1) 3F2 (M=-1) 167.0 0.17741 310.0 0.3588 
1F3 (M=+2) 3F2 (M=+2) 305.5 0.19437 404.5 0.87926 
1F3 (M=-2) 3F2 (M=-2) 124.47 0.12448 264.1 0.34424 

With these coefficients by formula (2) the gyromagnetic 

ratios for 10 levels of configuration with respect to all three 

bases: LS, LK, jK, were calculated. It seems that only for two 

levels 
1
G4 and 

3
D2, the g- factor is the same in all three 

considered bases and coincide with their vector counterparts 

in the jK-coupling. 

This tells how close the indicated levels are to the jK-

coupling, in the approximation in which the calculation of 

fine structure parameters are performed. For the rest of the 8 

levels the g-factors are practically the same for two bases; LS 

and LK. For the jK basis, they are different (see Table 7). In 

order to determine which g-factors when H=0 are authentic, 

we calculated them with respect to the Zeeman splitting. 

Such calculation is true only in the linear part of the magnetic 

field. The condition of linearity is: energy intervals between 

magnetic components with M = +1, M = 0 and M = -1, M = 0 

must be the same. The magnetic field H = 300 Oe was 

chosen. Table 6 convincible demonstrates that the indicated 

condition is fulfilled. In order to determine the intermediate 

coupling coefficients and respectively the gyromagnetic 

ratios, it is sufficient to effect the numerical diagonalisation 

of the 12 rank matrix for one value of M, for instance М = +1 

(or M = -1, M = 0). 

Table 6. Demonstration of the linearity of Zeeman sublevels when H= 300 

Oe. 

 2p4f C I 3p4f Si I 

 
∆E (M = +1, 

M = 0) 

∆E (M = -1, 

M = 0) 

∆E (M = +1, 

M = 0) 

∆E (M = -1, 

M = 0) 
3F3 0.01519 0.01506 0.01556 0.01555 
1F3

 0.00998 0.0101 0.01057 0.01058 
3G3

 0.01343 0.0134 0.01277 0.01277 
3D3

 0.01663 0.01667 0.01612 0.01612 
3F4

 0.01162 0.0116 0.01223 0.01222 
3G4

 0.01525 0.01527 0.0158 0.0158 
1G4

 0.01821 0.01817 0.01782 0.01781 
3F2

 0.01425 0.0143 0.01374 0.01375 
1D2

 0.01682 0.01681 0.01681 0.01681 
3D2

 0.01431 0.01432 0.01431 0.01431 
3G5

 0.00718 0.00687 0.00702 0.00696 
3D1

 0.0152 0.01552 0.01533 0.01538 

 

Table 7. The gyromagnetic ratios in three bases LS, LK, jK in the absence of magnetic field and when H = 300 Oe. 

2p4f C I 3p4f Si I  

Intermediate coupling Intermediate coupling Vector coupling 

 H = 0 H = 300 Oe H = 0 H = 300 Oe  

 gLS gLK gjK g gLS gLK gjK g gLS gLK gjK 
3F3 1.081 1.082 1.200 1.080 1.111 1.108 1.183 1.111 1.083 1.048 1.207 
1F3

 0.957 0.956 0.853 0.958 0.912 0.915 0.871 0.912 1.0 1.036 0.821 
3G3

 0.829 0.829 0.932 0.829 0.873 0.871 0.933 0.873 0.749 0.749 0.964 
3D3

 1.299 1.299 1.182 1.299 1.272 1.272 1.180 1.272 1.334 1.334 1.175 
3F4

 1.189 1.189 1.109 1.189 1.151 1.151 1.103 1.151 1.251 1.251 1.083 
3G4

 1.090 1.089 1.170 1.090 1.128 1.127 1.176 1.128 1.050 1.028 1.195 
1G4

 1.022 1.022 1.022 1.022 1.021 1.022 1.022 1.021 1.0 1.022 1.022 
3F2

 0.715 0.715 0.879 0.717 0.755 0.755 0.881 0.755 0.666 0.666 0.889 
1D2

 1.019 1.018 0.854 1.019 0.981 0.978 0.867 0.981 1.0 1.067 0.844 
3D2

 1.099 1.100 1.100 1.096 1.096 1.100 1.100 1.096 1.167 1.100 1.100 
3G5

 1.200464 1.200416 1.200464 1.200463 1.200464 
3D1

 0.49884 0.502473 0.49884 0.498949 0.49884 

 

The results of the calculation are presented in the 

summarized form on Table 7, together with g-factors when H 

= 0 and their vector counterparts for the appreciation of the 

character of coupling in the studied systems. It is observed 

that, when H = 300 Oe the g-factors are practically the same 

with g-factors of LS and LK bases. Unconditionally the 
1
G4 

and 
3
D3 levels belong to jK-coupling (coincidence of g-

factors with respect to all three basis). 

In general the majority of the levels of 2p4f C I 

configurations are near to LK-coupling. That is why the 

authors of the work [1] gave the classification of the levels in 

this approximation LK-coupling. The 3p5f Si I configuration 

has 5 levels (
1
G4, 

3
D2, 

3
G3, 

3
F4, 

3
G4) near to jK-coupling; the 

3
F3, 

3
D3, 

1
D2 levels are near to LK-coupling; the 

1
F3 and 

3
F2 

levels occupy an intermediate position between LK and jK- 

coupling types. That means the considered system as a whole 

is near to jK-coupling. Consequently, the classification of 

levels in this approximation in work [3] is justified. 
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Let’s consider separately the 
3
G5 and 

3
D1 levels with the 

unique value of quantum number J in the considered systems. 

These levels are supposed to be independent of the type of 

coupling, and their g-factors are the same in all types of 

coupling, including the intermediate coupling. In fact it is not 

like that. The 
3
D1 С I level shows a shift from LS-coupling 

already in third sign, the 
3
G5 level is shifted insignificantly 

from LS-coupling (in fifth sign). For the atom of silicon the 
3
D1 level is shifted from LS-coupling in fourth sign; the g-

factor of the 
3
G5 Si I levels are the same for (H = 0) and for 

(H = 300 Oe). 

Thus, the calculations of gyromagnetic ratios with respect 

to Zeeman splitting confirm our conclusion, that if at least 

two g-factors out of three with respect to different basis 

coincide, then they can be considered authentic. The 

coincidence of g-factors for three basis is an ideal variant of 

the closeness of the level to this approximation, in which the 

calculations of the fine structure parameters were done. 
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