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Abstract: By studying the application of the asymptotic iteration method, we found a new numerical results of the 

eigenvalues for non-quasi-exactly solvable periodic potential. In addition to that, the results we get for quasi-exactly solvable 

solution are typical to the results achieved by Qiong-Tao Xie [J. Phys. A: Math. Theor. 44 (2011) 285302]. 
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1. Introduction 

Recently, periodic potential gained considerable interests 

among physicists. The periodic potential is a particularly 

important as it is applied to crystalline solids. The 

Schrödinger equation with a periodic potential is an 

important model in solid state physics [1]. It describes the 

motion of electrons in a crystal with a lattice structure. 

Several studies in periodic potentials have already been 

performed to illustrate Bloch waves and energy bands for a 

spatially periodic potential [2-4]. 

In this paper, we will study model of quasi-exactly 

solvable (QES) periodic potential introduced by Qiong-Tao 

Xie [J. Phys. A: Math. Theor. 44 (2011) 285302]. The 

obtained potential is classes of QES periodic potentials. QES 

periodic potentials are closely related to exact solvability. If 

all the eigenvalues of a quantum mechanical system are 

known together with the corresponding eigenfunctions the 

system is exactly solvable. In contrast a system QES if only a 

finite number (usually the lowest lying ones) of exact 

eigenvalues and eigenfunctions are known. QES periodic 

potentials hold an intermediate place between exactly 

solvable and non-solvable potentials. However, an exactly 

solvable periodic potential is still not found [5]. This 

situation partly leads to a considerable interest in the quasi-

exactly solvable (QES) periodic potentials. In the past 

decades, based on different methods, a number of QES 

singular and non-singular periodic potentials have been 

found [7-9]. 

Razavy potential is an important study of QES non-

singular periodic potential which Schrödinger equation with 

this potential can be reduced to the Heun confluent equation 

[10-14]. Recently, a new type of periodic potential has been 

generated in the photonic lattices [15–16]. This motivates us 

to consider such a new type of periodic potential, for this new 

type of periodic potential can be transformed into the Heun 

general equation. The analytical solution can be constructed 

in terms of the Heun functions. By making use of the 

properties of the Heun functions, it has been shown that for 

special values of the potential parameters, the lowest energy 

levels and associated eigen-functions can be found exactly in 

closed form [17]. 

In this paper, we construct a type of one-dimensional QES 

periodic potential which is introduced by Qiong-Tao Xie [18] 

in a new form in order to calculate the eigenvalues for this 

potential.  

In recent years, a simple technique called the asymptotic 

iteration method (AIM) has taken much attention to obtain 

energy eigenvalues and eigenfunctions of the class of 

differential equations [19–23]. By using this technique, one 

can reproduce exact solutions to many differential equations 

which are important in applications to many problems in 

physics, such as the equations of Hermite, Laguerre, 

Legendre and Bessel. In the case of most solvable potentials, 

the AIM has reproduced the exact spectrum [10] while for 

non exactly solvable potentials, it leads reasonably good 

approximate values [21–23]. The purpose of the present work 

is to apply the AIM to the QES periodic potential which is 

introduced by Qiong-Tao Xie [18]. 

The organization of the paper is as follows: In Sec 2, we 
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present the periodic potential and introduced the eigenvalues 

for QES case. In Sec 3, we briefly introduce the AIM, while 

in Sec. 4 eigenvalues of periodic potential is presented by 

using AIM. In Sec. 5, we conclude our paper and remark our 

results. 

2. QES Periodic Potential 

For one-dimensional systems, the Schrödinger equation in 

atomic units ( 2 1µ= =ℏ ) is given by, 

2

2

( )
( ) ( ) ( )

d x
V x x E x

dx

ψ ψ ψ− + =                        (1) 

where ( )V x  is a periodic potential of the form, 

0 1
2 2 2

0 0

( )
1 cos ( ) [1 cos ( )]

V V
V x

I x I x
= +

+ +
              (2) 

The Schrödinger equation is formally similar to the non-

dimensionalized model equation for the probe beam in the 

one-dimensional photonic lattices, where 0 1,V V  are the 

applied DC  field and 0I  is the peak intensity of the uniform 

photonic lattice. If 0 0I = , the resulting singular potential is 

just a special case of the trigonometric Pöschl–Teller 

potentials [18]. By making the transformation to equation (1), 

it is found that ( )xψ  satisfies the Heun general equation. 

One can obtain a terminated polynomial of degree

, 1, 2,3,...N N =  

Qiong-Tao Xie listed some of the analytical QES 

eigenvalues E in a closed form for the simplest nontrivial 

two cases, 

First case when 11, 0N V= = , 

0 0

0 0

0 0

0 0

2 4, 4

6 12, 16

6 8, 9

2 8, 9

V I E

V I E

V I E

V I E

= + ⇒ =
= + ⇒ =
= + ⇒ =
= + ⇒ =

                        (3) 

Second case when 01, 0N V= = , 

1 0

1 0

3 3, 1

8 8, 1

V I E

V I E

= − − ⇒ =
= − − ⇒ =

                            (4) 

From above equations (3) and (4), it is clear that there is 

a relationship between 0 1,V V and 0I . The QES eigenvalues 

are restricted to the potential parameters 0 1,V V and 0I . This 

works only under certain conditions on the parameters 

0 1,V V  and 0I  of the potential under the above 

consideration, where the obtained numbers of the QES 

eigenvalues are limited. Hence, in this work, the asymptotic 

iteration method is used to calculate the eigenenergies nE  

for the periodic potential (2) without any constraints on the 

parameters of the potential. 

3. Brief Introduction of the Solution 

Method 

The asymptotic iteration method was introduced by [19] to 

obtain exact and approximate solutions of eigenvalues 

equations. The first step in applying this method for solving 

Schrödinger eigenvalues differential equation is to transform 

this equation, with the aid of appropriate asymptotic forms, 

to second-order homogeneous linear differential equation of 

the general form, 

// /
0 0( ) ( ) ( ) ( ) ( ),y x k x y x z x y x= +                   (5) 

where / ( )y x and // ( )y x  are the first and the second 

derivatives with respect to x , 0 ( )k x  and 0 ( )z x are functions 

in ( , )C a b∞ . A key feature of AIM is to denote the invariant 

structure of the right-hand side of (5) under further 

differentiation. Indeed, if we differentiate (5) with respect to 
x , we find that, 

/ // /
1 1( ) ( ) ( ) ( ) ( ),y x k x y x z x y x= +                  (6) 

where, 

/ 2
1 00 0

/
1 0 00

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k x k x z x k x

z x z x z x k x

= + +

= +
                  (7) 

Meanwhile, the second derivative of (5) yields to, 

(4) /
2 2( ) ( ) ( ) ( ) ( ),y x k x y x z x y x= +                    (8) 

for which, 

/
2 1 11 0

/
2 0 10

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k x k x z x k x k x

z x z x z x k x

= + +

= +
                   (9) 

To find a general solution to this equation, it can be 

iterated up ( 1)thj + and to ( 2)thj +  derivatives, 

1,2,3,...j = . Thus, one obtains, 

( 1) /
1 1

( 2) /

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( )

j
j j

j
j j

y x k x y x z x y x

y x k x y x z x y x

+
− −

+

= +

= +
          (10) 

respectively, where, 

/
11 0 1

/
0 11

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j jj j

j jj

k x k x z x k x k x

z x z x z x k x

−− −

−−

= + +

= +
              (11) 

which are called as the recurrence relation of the Eq. (5). The 

ratio of the ( 2)thj + and ( 1)thj + derivatives can be expressed 

as, 
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Now, we introduce the asymptotic aspect of the method. If 

we have, for sufficiently large j , 

1

1

( ) ( )
( )

( ) ( )

j j

j j

z x z x
x

k x k x
φ−

−
= =                           (13) 

with a quantization condition, 

1 1

( ) ( )
( )

( ) ( )

j j
j

j j

k x z x
x

k x z x− −
∆ =                        (14) 

Thus, Eq. (12) can be reduced to, 

1

1

( )
ln( ( ))

( )

jj

j

k xd
y x

dx k x

+

−
=                        (15) 

which yields to, 

( )
1( ) exp( ) ( ) exp[ { ( ) ( )} ]1 1 1 0( )1

k xjjy x C dx C k x x k x dxjk xj
φ+ = = +∫ ∫−

−
                                       (16) 

where 1C  is the integration constant, and the right-hand side 

of Eq. (16) follows from Eq. (13) and the definition of ( )xφ . 

Substituting Eq. (16) into Eq. (15), we obtain a first-order 

differential equation, 

/
1 0( ) ( ) ( ) exp[ { ( ) ( )} ]y x x y x C x k x dxφ φ+ = +∫           (17) 

which, in turn, yields the general solution to Eq. (5), 

2 1 0( ) exp( ( ) ) [ (exp[ { ( ) 2 ( )} ])]y x x dx C C k x x dxφ φ= − + +∫ ∫ ∫   (18) 

For a given potential, the procedure constructed first to 

convert the Schrödinger equation into the form of equation 

(5). Then, 0 ( )k x  and 0 ( )z x are determined, while ( )jk x  

and ( )jz x  are calculated via the recurrence relations given 

by equation (11). The energy eigenvalues are then obtained 

by imposing the condition shown in Eq. (14) if the problem is 

exactly solvable. If not, for a specific principal quantum 

number j , we choose a suitable 0x  point, generally 

determined as the maximum value of the asymptotic wave 

function or the minimum value of the potential. The 

approximate energy eigenvalues are determined from the 

roots of the quantization condition (14). We now present the 

application of the method to the periodic potential introduced 

by Qiong-Tao Xie [18]. 

4. Application 

In [18], the author introduces periodic potentials (2) and 

shows that, when the parameters 0I , V0 and V1 in the 

periodic potentials satisfy a certain condition, some of the 

Bloch waves and associated energies can be found exactly 

and in closed form at either the center or the edge of the first 

Brillouin zone. Two fundamental sets of solutions have been 

constructed to calculate all the Blochwaves and energy 

bands. 

In this work, we rewrite the periodic potentials (2) in a 

new form, 

2
0

( )
[1 cos ( )]

V
V x

I x

ξ
σ=

+
                        (19) 

where 0,1ξ = , 1, 2σ = . This new form enables us to follow 

the result obtained by Qiong-Tao Xie [18]. By applying the 

AIM we show that the potential (19) can be used to calculate 

the eigenvalues of the potentials (2).  

In most applications of AIM, the Schrödinger eigenvalues 

differential equation (1) must be transferred into the form of 

equation (5). By making this transformation, one should 

apply possible change of coordinate if it is necessary and 

then performing a change to the wave function in the form 

( ) ( ) ( )x g x y xψ =  where the function ( )g x is the asymptotic 

behavior of the system, and the function ( )y x is obtained in 

the polynomial form by using equation (19). The wave 

function is to be substituted into equation (1) to obtain the 

second-order homogeneous linear differential equation as in 

equation (5). 

In the recent work, we transform the equation (1) to the 

form of equation (5) without defining the form of a wave 

function. Instead of this technique, we transform the 

Schrödinger equation (1) to an amenable form for AIM by 

using the change of variables as: 

cos( )r x=                                      (20) 

If we make this change of variables to equation (1) with 

( )V x  as in (20), this will transform equation (1) into the 

form of equation (5) as 

// /
0 0( ) ( ) ( ) ( ) ( ),y r k r y r z r y r= +                (21) 

where, 

0 2
( )

1

r
k r

r
= −

−
                             (22) 

and, 
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0 2 2 2
0

( )
( 1) (1 ) 1

V E
z r

r I r r

ξ
σ= − +

− + −
                 (23) 

with the help of equation (11), it is possible now to compute 

the sequences ( )jk r  and ( )jz r , 1, 2,3....j =  In order to 

calculate the eigenvalues , 0,1,2....nE n = , 
we need to iterate 

the expansion, 

1 1( ) ( ) ( ) ( ) ( )j j j j jr k r z r z r k rφ − −= −               (24) 

For each iteration, the expansion depends on two 

variables, E and r. The calculated eigenvalues En by the 

means of the condition ( ) 0rφ =  should, however, be 

independent of selecting r . Selecting r  is observed to be 

critical only to the speed of the convergence to the 

eigenvalues nE , as well as for the stability of the process. 

In our work, it has been observed that best value of r must 

be equals to zero. Therefore, at the end of the iterations, we 

substitute 0r = . In order to improve the energy eigenvalues, 

the iteration number has to be increased until the 

convergence for nE  takes place.  

We present the numerical eigenvalues determined by AIM 

in Table 1. The AIM results are presented up to 10 digits. 

Table 1. The eigenvalues nE  of the potential (19) with 0
1

0, 1,
4

Iξ σ= = = −  

and for different parameter 0V . 

state 0 02 4= +V I  0 06 8= +V I  0 06 12= +V I  

0 4 7.366419531 11.77902951 
1 5.319088249 9 13.87476085 
2 8.096536427 11.65839645 16 
3 13.05017052 16.53444561 21.20105685 
4 20.04452446 23.51612084 28.15229365 

The eigenvalues in Table 1 are obtained for several 

different values of the parameter 0V  while 0
1

4
I

−= . In each 

case the results include QES and non- QES eigenvalues. The 

QES eigenvalues are consistent with Qiong-Tao Xie results, 

while the non-QES eigenvalues are considered as new 

results. It is interesting to note that for V0=2I0+4, the QES 

eigenvalues are the ground state, while for 0 06 8V I= +  and 

0 06 12V I= +  the QES eigenvalues are the first excited state 

and the second excited state. 

Table 2. The eigenvalues nE  of the potential (19) with 0
2

1, 2,
10

Iξ σ= = = −  

and for different parameter 0V . 

state 1 03 3= − −V I  1 08 8= − −V I  
0 -3.074942011 -8.429993592 

1 -2.370002998 -8.049950370 

2 1 -3.811729591 
3 5.988044213 1 

4 12.98504990 7.976878537 

In table 2, the eigenvalues for two different values of the 

parameter 1V  and for 0
1

4
I = −  are presented, the results for 

QES eigenvalues are identical like the results in [18]. The 

non-QES eigenvalues that we gained also are considered new 

results. 

In Table 3, we present the results for 0 02 4V I= + , and for 

three values of 0I . One can note that the QES eigenvalues are 

fixed and do not depend on changes for the 0I  values, while 

the non-QES eigenvalues depend on the values of 0I . 

Table 3. The eigenvalues nE  of the potential (19) with 

0 00, 1, 2 4V Iξ σ= = = +  and for different parameter 0I . 

state 0
1

5
= −I  0

1

5
=I  0

1

3
=I  

0 4 4 4 

1 5.242017667 4.829953673 4.742542287 

2 8.058085957 8.038778834 8.096536427 

3 13.02966616 13.01788162 13.04341627 

4 20.02669531 20.01779047 20.04452446 

In Table 4, we present our new results where the AIM is 

valid for arbitrarily values of parameters 0I  and 0V , we 

present results for non-QES eigenenergies.  

Table 4. The eigenvalues nE  of the potential (19) with 1, 2,ξ σ= =  and for 

different parameter 0 1,I V . 

state 0 1
1 29

,
4 4

= = −I V  0 1
1

, 3
2

= =I V  0 1
1 19

,
2 2

= =I V  

0 -6.041761114 1.960715439 5.776439758 

1 -4.235833646 2.618661149 6.042908383 
2 -1.720175852 6.168109178 11.18683632 

3 5.189626653 11.03670714 15.46003216 

4 10.17793782 18.04903621 22.54085543 

5. Conclusion 

We have applied the AIM for obtaining the eigenvalues 

nE  for the periodic potential which is introduced by Qiong-

Tao Xie [18] over the full range of parameters 0I  and 0V . 

Our results are in comply with those of Qiong-Tao Xie [18] 

as a QES case. The accuracy of the results for higher excited 

state (non-QES case) can be increased if the number of 

iterations is increased. This is not valid for infinity, but, in 

our experiments we reached values of convergence where the 

values are not changes even if we increase the iterations. We 

hope that the new results presented in this paper attracts the 

interest of scientists active in this field, and will lead to 

further researches and applications. 
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