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Abstract: The thermodynamics property of finite heavy mass nuclei, with the number of protons greater than the number of 

neutron is investigated. The core of the nucleus contains the neutron-proton pair that interacts harmonically; the excess 

neutron(s) reside(s) on the surface of the nucleus and introduce the anharmonic effect. The total energy is evaluated using 

ladder operator method and the quantum mechanical statistical expression of energy. The total energy, heat capacity and 

entropy are found to depend on the occupation number of states and the number of excess neutrons. At temperature near 

absolute zero the specific heat and entropy are lowest because a decreases in temperature leads to a decrease in particle 

interaction and energy. 
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1. Introduction 

There are two kinds of nucleons (neutron (n) and proton 

(p)), which in principle can form four distinct type of 

correlated (cooper) pairs, nn, pp and np, each with the net 

orbital momentum of zero and thus strongly correlated in 

space. The np pair can either be isoscalar (T=O, S-1) or 

isovector (T=1, S=0).   Generally, it is believed that the 

neutron-proton (np) pairing is important in finite nuclei with 

roughly equal number of neutrons and protons. Important 

insight on the np pairing correlation has been achieved in 

recent years in the content of exactly solvable models that 

include the various pairing correlation. The standard 

technique of treating this correlation is through the Barden 

Cooper Schrieffer (BCS) approximation that includes the pn 

pairing field in addition to the nn and pp fields [1-3]. The 

possibilities of transition from the BCS pairing to a Bose-

Einstein condensation (BEC) in asymmetric nuclear matter at 

low density have elicited interest in the role of np pairing. 

For example, an analysis of triplet 
3
S1 pairing in low density 

symmetric and asymmetric nuclear matter, show that as the 

system is diluted the BCS state with large cooper pair 

overlaps into BEC of tightly bound np pair [4].  BEC is 

purely a quantum statistical phase transition characterized by 

a macroscopic occupation in the ground state below some 

critical temperature TC [5]. The observation of BEC in 

ultracold trapped alkali gases has created a wave of renewed 

interest in theoretical and experimental investigation of this 

phenomenon. For example BEC of the ideal and the weakly 

interacting cold alkali gases confined by anisotropic 

harmonic oscillator potentials has been investigated by Xue-

Xi Yi et al [6], to obtain the explicit expression for the 

condensation temperature, the internal energy and the 

specific heat. The transition point was shifted toward lower 

temperature because the trapped potentials and the specific 

heat below the transition point is no longer proportional to 

T
3/2. Sudip, K. H. et al [7] using a correlated many body 

method and  realistic van der Waals potential  studied 

measures of BEC  like the specific heat, transition 

temperature and the condensate fraction of the interacting 

Bose gas trapped in an anharmonic potential.  The 

anharmonic trap offers a more favorable condition to achieve 

BEC experimentally. 

The pairing correlation in finite molecules can be analyzed 

via the interacting boson model (IBM), where neutrons and 

protons np pair up and act as a single particle with boson 

properties with integral spin of 0, 2 or 4. The interaction of 

the np pair can be approximated as an oscillator in a 

harmonic potential. In cases where the number of neutrons 

exceeds the number of proton, the interaction between np 

pair and unpaired neutrons introduces a small anharmonic 

effect. The thermodynamic functions of a system of 
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interacting bosons in the weak interaction approximation and 

in the neighborhood of the condensation line have been 

studied by the method of quantum field theory [8]. The many 

body perturbation theory has been used to calculate the total 

energy, binding energy per nucleon, specific heat and 

transition temperature of finite heavy nuclei in which the 

number of neutron is greater than the number of protons [9, 

10]. Khanna, K. M., et al, 2010 [11] considered a heavy 

nuclei composed of Z protons and N neutrons, such that N>Z, 

the core of the nucleus is composed of Z np pair and the N-Z 

unpaired neutron resides in the surface of the nuclei. The np 

in the core of the nucleus interacts harmonically, while the 

interaction between the unpaired neutrons and the np pair 

leads to the anharmonicities in the np pair interaction. The 

anharmonic interaction is approximated by the potential 

3 4ˆ ˆ ˆf x xα λ= +                                    (1) 

where α  and λ  are perturbation parameters. The total 

energy of the heavy nuclei is the sum the energy of Z np pair 

harmonic oscillators and N-Z anharmonic oscillators 

obtained using perturbation theory to second order. A thermal 

excitation factor ( )exp E
Tκ

∆− , where E ω∆ = ℏ  and κ the 

Boltzmann constant, was added to the perturbed energy to 

introduce temperature dependence. The resulting expression 

was used to determine the transition temperature, specific eat 

and entropy of the heavy nuclei. A similar work by Sakwa, 

T.W, et al, 2013 [12], obtained the ground state properties of 

trapped atomic boson-fermion mixture at near absolute zero 

temperature Kelvin using second quantization technique. The 

energy, specific heat and the entropy of the boson-boson, 

boson-fermion, and fermion-fermion interactions system 

were established and analyzed. The total energy of the 

system was found to increase with increase in occupation 

number of the system and the entropy decreases with 

temperatures.  

This work aims at evaluating the thermodynamic 

properties of a system with heavy finite nuclei, such that 

N>Z. The anharmonic potential for the N-Z excess electrons 

is give by (1). The energy of the anharmonic term is obtained 

using the quantum mechanical statistical average of an 

observable f̂ in n-dimensional vector space as 

ˆ ˆ
n

n

f n f nρ= ∑                            (2a) 

where the density operator 

( )expnρ β= − ∆                                (2b) 

n ω∆ = ℏ is equally spaced single particle energy of the 

harmonic potential, 1
T

β κ=  and the normalization constant is 

defined as  [13] 

1n

n

ρ =∑               (2c) 

where n=0, 1, 2, 3...is the occupation number. Then in (2a) 

the temperature dependence of perturbation energy is 

explicitly defined. The total energy which is the sum of the 

energy of the Z np pair harmonic oscillator and the quantum 

statistical mechanic energy of the N-Z neutrons obtained 

using (2a), is used to obtain the transition temperature, 

specific heat and entropy of the heavy nuclei.  We investigate 

the role of the excess (N-Z) neutrons residing on the surface 

of the nuclei play in determining the thermodynamic 

property of the nuclear system and study the dependence of 

the temperature and the occupation number of states on 

specific heat and entropy for selected heavy nuclei.  

2. Theoretical Formulation 

2.1. Operator Method for the Harmonic Oscillator 

The quantum mechanical behavior of vibrating heavy 

nuclei in an atom that acts as a harmonic oscillator with 

frequency ,ω  is described by the Schrödinger one 

dimension stationary state equation [13-15] 

( ) ( ) ( )
22 2

2

22 2 x

n

n n n

d x
x x E x

dx

φ µω φ φ
µ

− + =ℏ
                 (3a) 

where 

n p

n p

m m

m m
µ =

+       (3b) 

is the neutron proton reduced mass. The eigenfunctions 

that are solutions to the Schrodinger equation (3b) are  

( )
1

24

2 2

1 1
exp

22 !
xn n

n

x x
x H

n
φ

πγ γ γ
     −=     

     
 (3c) 

where γ µ ω= ℏ  and ( )n
xH γ  are Hermite polynomials. The 

eigenvalues of the Harmonic oscillator are 

1

2xn xE n ω = + 
 

ℏ    (3d) 

If the normalized eigenfunctions for the oscillator 
( )

xn xφ
 

in an n-dimensional vector space is denoted by eigenstates
x

n , the representation of the eigenvalue spectrum, xnE
 for 

the oscillator, can be obtained by defining the lowering and 

raising operator, 

ˆ
ˆ ;

2

ˆ
ˆ

2

x
x

x
x

p
a x i

p
a x i

µω
µ

µω
µ

+

 = + 
 

 = − 
 

ℏ

ℏ

                       (4a) 

which satisfy the relation [14] 

1 ; 1 1x x x x x x x xa n n n a n n n
+= − = + +                  (4b) 

From equation (4a), the position and momentum operator are 

defined as 

( )

( )

ˆ ;
2

ˆ
2

x x

x x x

x a a

p i a a

µω

µω

+

+

= +

= −

ℏ

ℏ

                     (4c) 
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Using equation (4c) the quantum mechanical anharmonic 

operator (1) becomes 

( ) ( )
3 2

2
3 4ˆ

2 2
x x x xf a a a aα λ

µω µω
+ +   

= + + +   
   

ℏ ℏ
             (4d) 

Substitute equation (4d) in (2a), the potential of the form 
3

x̂α  vanishes, due to the symmetry of the problem and the 

perturbation, the quadratic term of the form 4x̂λ  as a 

nontrivial first-order effect [14, 16], resulting in 

2
2

2 2

3 1ˆ
2 2

x x x xn f n n n
λ
µ ω

 = + + 
 

ℏ
                      (4e) 

The energy of the anharmonic term becomes  

2
2

2 2

3 1
exp

2 2x

x

x
n x x

n

n
E n n

T

λ ω
κµ ω

  − ′ = + +   
  

∑
ℏ ℏ

                 (4f) 

Using equations (3d) and (4f), the total energy for the 

finite nuclei composed of Z np pair that interacts 

harmonically and the (N-Z) unpaired neutron is expressed as 

( ) ( )0

x x x x

x

n n n n

n

E ZE N Z E′= + − =∑E                       (5a) 

where 

( )2

2

2 2

31 1
exp

2 2 2x

x
n x x x

N Z n
Z n n n

T

λ ωω κµ ω
−    − = + + + +          

ℏ ℏ
ℏE        (5b) 

and 0,1, 2, 3xn = …… .is the occupation number.  

The important properties of the heavy nuclei in a harmonic 

trap is normally considered using a three dimensional 

oscillator potential approximated with the quadratic form 

( ) ( )2 2 2 2 2 2 21

2 2
x y zV Kr x y z

µ ω ω ω= = + +r               (6a) 

where xω , yω  and zω  are oscillator frequencies in the x, y 

and z directions. The investigation of the three dimensional o

scillator starts as  application of non-relativistic quantum mec

hanics for identical one-dimension particles in a harmonic po

tential as outlined in equations (3a-5b). Individual equations 

for the one dimensional particles in the y and z direction are 

obtained by replacing x with y and z in equations (3a-5b). Th

e resulting many-body Hamiltonian is the sum of single parti

cle Hamiltonian whose eigenfunctions and eigenvalues have 

the form  

( ) ( ) ( ) ( ), ,
x y z x y zn n n n n nx y z x y zφ φ φΦ =   (6 b) 

and 

1 1 1

2 2 2x y zn n n x x y y z zE n n nω ω ω     = + + + + +     
     

ℏ ℏ ℏ  (6 c) 

respectively. The three dimensional oscillator are labeled by t

hree quantum numbers { }, ,
x y z

n n n  each of which can take an

y values between zero and infinity.  When all the three quant

um numbers are equal to 0, we have the ground state with en

ergy 000
3

2
E ω= ℏ , changing the quantum numbers from 0 to 1 re

sult in six excited states with energy 100 010 001
5

2
E E E ω= = = ℏ .  In

 a similar way we can find six states with energy 7
2

ωℏ , ten 

states with energy 9
2

ωℏ , and so on.  The degeneracy arises 

because the Hamiltonian for the three-dimensional oscillator 

has rotational and other symmetries.  

2.2. Heat capacity, Transition Temperature and Entropy 

The relation between the internal energy and the heat 

capacity is  

( )2

2

2 2 2

3 1
exp

2 2

xn x x
x x x

d N Z n n
C n n

TdT T

λ ω ω
κµ ω κ

−    − = = + +        

ℏ ℏ ℏE
          (7a) 

after substituting (5b). The transition temperature CT  is 

obtained under the condition 

0
2

C

x x
C

T T

dC n
T

dT

ω
κ=

  = ⇒ = 
 

ℏ

                   (7b) 

Using (7a), the entropy ( )S T  of the system becomes  

( ) ( )2

2

2

3 1 1
exp

2 2
x

x x x

x

N ZdQ dT n
S T C n n

TT T n T

λ κ ωµ κµω ω
−    − = = = + + +        

∫ ∫
ℏ ℏ

ℏ
  (7c) 

The perturbation potentials in (1) has the dimensions of 

energy, then the parameter γ  in (5b), (7a) and (7c) can be 

approximated as 4

0a
ωγ = ℏ , where 

1
13 3

0 1.3 10a A cm−= ×  (A mass 

number) is the scattering length and angular frequency 
22 16 10 sω −= ×  [11].  In equations (5b), (7a) and (7c), the 

Boltzmann constant 23 11.38 10 JKκ − −= × , reduced Planck 

constant 341.055 10 Js−= ×ℏ , and neutron-proton reduced mass
258.369 10 gµ −= × . The mass number A, atomic number Z and 

neutron number N for arbitrary selected elements is 

presented in table 3.1  

Table 3.1. Values for A, Z, N and N-Z for selected elements with heavy mass 

nuclei 

Element A Z N N-Z 

Zinc 64 30 34 4 

Ruthenium 101 44 57 13 

Samarium 150 62 88 26 

The mass number and neutron proton difference for isotopes 

of 64,66,68Zn , is presented in table 3.2 

Table 3.2. Values for A, Z, N and N-Z for 64,66,68Zn  

Element A Z N N-Z 

Zinc 64 30 34 4 

Zinc 66 30 36 6 

Zinc 68 30 38 6 

3. Results and Discussion 

The plot of the internal energy (5b) of the nuclei in table 

3.1 against occupation number of states at absolute zero 

temperature is given in figure 3.1.  
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Figure 3.1. The total energy of the nuclei against the occupation number of 

states at absolute zero temperature, dash dotted (64Zn), dashing large (101Ru) 
and dashing tiny (150Sm). 

The variation between the total energy the occupation 

number state was found to increase linearly with the increase 

in the mass number nuclei. The gradient corresponding to 

each nucleus is approximately 0.4, 0.3 and 0.2 for 150Sm,   
101Ru and 64Zn respectively. Then the total energy of the 

nuclei largely depends on the mass number and the 

occupation number of particles. Around the ground state, n=0 

the energies of the nuclei were approximately equal. 

Figure 3.2 shows the plot of for the specific heat (7a) of 

the nuclei in table 3.1 against temperature at occupation 

number nx=1. 

 

Figure 3.2. The heat capacity against temperature for occupation number 

nx=1 , dash dotted (64Zn), dashing large (101Ru) and dashing tiny (150Sm). 

The three elements  64Zn, 101Ru and 150Sm  have transition 

temperature of about 0.4 K corresponding to the occupation 

of particle state nx=1. However the maximum values of the 

heat capacity increases with the increase in the neutron-

proton difference. As the temperature of the nuclei cools to 

near the absolute zero temperature the heat capacity of the 

three nuclei decreases rapidly as energy is being released to 

the surrounding by the nuclei as it cools.  

The plot for the entropy (7c) of the nuclei in table 3.1 

against temperature at occupation number of state nx=1 is 

given in figure 3.3. 

 

Figure 3.3. The entropy of the nuclei versus temperature for occupation 
number of state nx=1, dash dotted (64Zn), dashing large (101Ru) and dashing 

tiny (150Sm).
 

The entropy of the nuclei increases is lowest up to the 

temperature 0.4K, where it rises to a maximum at about 1.5 

K, followed by decrease with increase in temperature. Below 

0.4 K. the energy of the nuclei decreases, resulting in reduced 

interaction for the particles in the nuclei.  

The plot of the heat capacity (7a) of 
64

Zn against 

temperature for nx=1, 2, 3 is given in figure 3.4 

 

Figure 3.4. The heat capacity against temperature for 64Zn,  , dash dotted 

(nx=3), dashing large (nx=2) and dashing tiny (nx=1) 

The low value of heat capacity around the absolute zero 

temperature is an indication that as the nuclei is cooled to 

and releases energy to the surrounding. It is noted that the 

heat capacity increase with increase in the occupation 

number. The transition temperature for occupation number 

nx=1, nx=2 and nx=3 is approximately equal to 0.4 K, 0.7 K 

and 11 K respectively. Then the transition temperature of the 

nuclei depends on the occupation number as in (7b). 

Figure 3.5 shows the plot for the heat capacity (7a) for the 

isotopes of 64,66,68Zn  in table 3.2 against temperature for 

occupation number 1xn = .  

0 5 10 15 20

0

2

4

6

8

Occupation number of states

E
ne

rg
y
J

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

500

1000

1500

Temperature K

H
ea

t
ca

p
ac

it
y
J

kg


0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

5.1027

1.1026

1.51026

2.1026

2.51026

Temperature K

E
n

tr
o
p

y
J

K


0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

100

200

300

400

500

Temperature K

H
ea

t
ca

p
ac

it
y
J

kg




244  Boniface Otieno Ndinya and Alex Okello:  Thermodynamics Properties of a System with Finite Heavy Mass Nuclei 

 

 

Figure 3.5. The heat capacity against temperature for occupation number 

nx=1, dash dotted (64Zn), dashing large (66Zn) and dashing tiny (68Zn). 

Figure 3.5 shows the peak value of the heat capacity for 

the isotopes of 
64,68,68

Zn increases with the increase in 

neutron-proton difference as already outlined in figure 3.2. 

4. Conclusion 

In the article the weak interaction of heavy finite nuclei 

composed of Z np pair interacts harmonically and the N-Z 

excess neutrons that introduce the anharmonicities is 

considered. The energy total energy of the nuclei is the sum 

of the harmonic component and that of the anharmonic part 

evaluated the using the expression for the quantum 

mechanical statistical average of an operator f̂ . The latter 

introduces the dependence on temperature and occupation 

number of states. The total energy, heat capacity and entropy 

for arbitrary selected elements of
64

30 Zn , 
101

44 Ru  and 
150

62 Sm  with 

different number of excess neutrons were evaluated. It was 

noted that 
150

62 Sm  with the highest number of excess neutrons 

had the highest values of total energy, heat capacity and 

entropy. The main reason being the excess neutrons stay on 

the surface of the nuclear resulting in perturbation of the core 

which leads to increases the perturbation energy and entropy. 

Similar result was obtained for the heat capacity of the 

isotopes of 64,66,68Zn. The heat capacity and entropy of the 

nuclei were lowest near absolute zero, because a decrease in 

temperature leads to a reduced particle interaction with a 

decrease in energy. The heat capacity curve had a Gaussian 

shape with the transition temperature dependent on the 

occupation number. Similar results have been obtained by 

Khanna K .M, 2010 [11] where the temperature dependence 

is introduced to the perturbation energy by multiplying it by 

a thermal excitation factor that does not contain occupation 

number of states. 
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