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calculated by this formula: 

݃ ൌ ௜௞ߙ
ଶ ݃௞

௅ௌ                 (5) 

Here αik are transformation coefficients from the Table 1 
(i is the row number, k the column number); ݃௅ௌ are the 
LS-coupling gyromagnetic rations, calculated [5,6] with 
respect to formula:  

݃௅ௌ ൌ
௃ሺ௃ାଵሻା௅ሺ௅ାଵሻିௌሺௌାଵሻ
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௃ሺ௃ାଵሻାௌሺௌାଵሻି௅ሺ௅ାଵሻ

ଶ௃ሺ௃ାଵሻ
݃௦  (6) 

Their analytical expressions and their numerical values 
are given at the end of the Table 1. 

As the transformation coefficients from the Table 1 are 
squared (5), their signs are not important in the transition 
from one representation to the other. This is why the 
gyromagnetic ratios of the levels 3I6 and 1I6 are the same in 
LK, jK, jj coupling types. The two other levels 3I7 and 3I5 
are unique in the configuration with indicated values of J; 
their g-factors are supposed to be independent of the type 
of coupling and are equal to the corresponding LS-coupling 
an analogue. Below, we will see (by during the calculation 
of the g-factors with using the Zeeman splitting levels), 
how this is verified in the real situations (the intermediate 
coupling). 

3. Energy Operator Matrix and the 
Method of Calculation of 
Fine-Structure Parameters 

The energy operator matrix is the basis of the numerical 
calculation of the fine-structure parameters. Independent 
results are presented in [7] for calculations with respect to 
the spin-other orbit, the spin-spin and the orbit-orbit 
interactions. Let’s bring the complete energy operator 
matrix of nsin` configurations in the form in which it is use 
for the numerical calculation of the fine-structure 
parameters by semi-empirical methods: 
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Here F0 and G6 are the direct and the exchange Slater 
radial integrals respectively (the angular coefficient 1/13 

for radial integral G6 in expressions (7) are omitted in order 
to reduce writing); ξ2 is the radial integral of the spin-other 
orbit interaction of the i-electron; S2 is the direct radial 
Marvin integral [7], united by the spin-spin and the 
spin-other orbit interactions (the sign «*» in the matrix 
element С5 means that S2 belongs only to spin-other orbit 
interaction); S4 is the exchange radial integral Kk [3], 
corresponding to spin-other orbit interaction and related to 
Marvin integral. Let’s note that in the present paper the 
exchange part of energy operator of spin-other orbit 
interaction is described by the radial integral Kk, which is 
related to the radial integral  K `k in [7] in the following 
manner [3]: 

௞ܭ ൌ െ2݇ሺ݇ ൅ 1ሻܭ`௞           (8) 

The parameter of summation k in (8) takes the values [3]: 

݇ ൌ |݈ଵ െ ݈ଶ|, |݈ଵ െ ݈ଶ| ൅ 2,… , ݈ଵ ൅ ݈ଶ,   (9) 

That means for si configuration: k = 6, so Kk = – 84K `k. 
This was taking in to account in the angular coefficient in 
S4 integral (our notation for the radial integral Kk). 

The radial integrals in (7) are the unknown fine-structure 
parameters. From (7), it is seen that the fine-structure 
parameters are 5 and the 4 levels in the configuration. For 
this reason, the following set of equations was used in the 
numerical determination of the fine structure: 

1ሻ Сଶ െ ଶߝ ൌ 0;  

2ሻ Сଷ െ ଷߝ ൌ 0;  

3ሻ Сଵ ൅ Сସ െ ሺߝଵ ൅ ସሻߝ ൌ 0;  

4ሻ СଵСସ െ Сହ
ଶ െ ସߝଵߝ ൌ 0; (10) 

5ሻ ߙଵଵሺСଵ െ ଵሻߝ ൅ ଵଶСହߙ ൌ 0;  

6ሻ ߙଵଵСହ െ ଵଶሺСଵߙ െ ସሻߝ ൌ 0;  

7ሻ ߙଵଵଶ ൅ ଵଶߙ
ଶ ൌ 1  

Here εi are the fine structure experimental energy levels 
increase in number with respect to [2]. Сi is the energy 
operator matrix (7), divided by J – two matrices of first 
rank (J = 7, J = 5, equations 1) and 2)) and one matrix of 
second rank with J = 6 (equation 3) and 4)). Equations 5) 
and 6) are the result of the unitary transformation of the 
nondiagonal Hermitian second rank matrix to the diagonal 
form: 

|௜ߝ| ൌ  ௞௜               (11)ߙ|௜ܥ|௜௞ߙ

Some additional unknowns appear in these equations; the 
unitary transformation coefficients α11 and α12 (the 
condition of their orthogonality was taken into account in 
equations 5) and 6)). The last equation in the system (10) is 
the normalization condition of coupling coefficients. 

The system of equations (3 linear and 4 quadratic) for 7 
unknown values (5 parameters and 2 coupling coefficients) 
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was solve by Newton’s iteration method, which required 
the zero approximation. The first zero approximations were 
obtained from the resolution of the linear system of 
equations (the matrix spur, or the Slater’s rule of diagonal 
sums) for the basis parameters F0, G6, ξ2. The rest of 
parameters were supposed to be equal to zero. Further with 
these numerical values of the parameters, the 
diagonalization of the second rank matrix was done, from 
where the calculated energies (eigen values) and coupling 
coefficients (eigen vectors) were obtained. Knowing the 
latter from (11) one determines the numerical values of the 
elements of second rank no diagonal matrices С1, С4, С5. 
The numerical values of elements of the first rank matrix 
were added to them. We obtained 5 linear equations for 5 
fine-structure parameters as the approximations to the 
resolution of the system of equations (10). At each step of 
the calculations, the numerical diagonalization of the 
corresponding energy operator matrices was done and the 
cycle repeated until the different between the calculated 
and the experimental energies decreased practically to zero. 
This permits further to study the Zeeman structure and its 
particularity. 

4. Results of the Numerical Calculation 
and Discussion 

The fine-structure parameters of helium 1sni (n = 7 – 10) 
configurations are presented in the Table 2. During the 
calculation, the relative energies (intervals energies) rather 
than the absolute energies were used. The ground state 
energy of 3I6 was set equal to zero. The absolute energy 
levels of 3I6, which are added to the values of the parameter 
F0, shown in the table for the determination of the absolute 
energies of the rest of the level configurations, are given at 
the end of the Table 2. The using of relative energies is more 
convenient as compared to the absolute values because 
higher orders are excluded and the difficulty in the solution 
of the system of equations (10) is considerably reduced. All 
the solutions were obtained when the difference between the 
calculated and the experimental energies was (10-10 – 10-13) 
cm-1.  

Table 2. The fine-structure parameters (Т*10-5cm-1) of the configurations 
1sni (n = 7 − 10) of the helium atom 

Parameters 1s7i 1s8i 1s9i 1s10i 

F0 69.02421 46.24070 32.47615 23.67514 

G6 13.38073 8.96385 6.29540 4.58928 

ζi -36.91836 -24.73223 -17.37000 -12.66271 

S2 9.69720 6.49626 4.56240 3.32597 

S4 -96.78650 -64.83851 -45.53705 -33.19637 

Note: Absolute energies of the low levels in inverse centimeters [2]: 
196071.428891148 (1s7i), 196596.251052062 (1s8i), 196956.067465189 
(1s9i), 197213.442016 (1s10i) 

From the Table 2 it’s seen that, with increasing principal 
quantum number n of i-electron the variation of all 
fine-structure parameters is harmonic, which indirectly 
testifies their viability. The constant ξ2 (ξi) is negative, as it 
must be for the reverse triplet. It is also seen that, in the 
considered configurations the role of magnetic interactions 
(parameters ξ2, S2, S4) increases as compared to 
electrostatic interactions. This is explained by the fact that 
there is recess from the LS-coupling (see Fig.1 and (1)). As 
it is significant, one shows the intermediate coupling 
coefficients and the gyromagnetic rations. They are 
presented in the Table 3 (ࢍ) together with their vector 
analogs (ࡿࡸࢍand ࡷࡸࢍ). In the Table 4 the tendency of their 
variation with respect to all the rest of the lower 1snl (l = 1 
– 5) Helium configurations is observed.  

Table 3. Expansion coefficients of wave functions in terms of the 
LS-coupling scheme and the gyromagnetic ratios of the 1sni Helium 
configurations. 

Configur
ation 

3I6 (α11) 
1I6 (α12) ࢍ (3I6) ࢍ (1I6) 

1s7i 0.8234315962 -0.56741555 1.0161813 1.0076835 

1s8i 0.8234294703 -0.567418635 1.0161812 1.0076836 

1s9i 0.8234261112 -0.5674235097 1.0161810 1.0076837 

1s10i 0.8234246509 -0.5674256288 1.01618098 1.0076838 

݃௅ௌ(3I6) = 1.023685, ݃௅௄(I[
ଵଷ

ଶ
]6)=1.011015, 

݃௅ௌ(1I6) = 1.0, ݃௅௄(I[
ଵଵ

ଶ
]6)=1.012850  

Table 4. Comparison of the intermediate coupling coefficients and the 
gyromagnetic rations in the lower 1snl (l = 1 – 5) Helium atom 
configurations 

 α11 α12 ࢍ (3LJ) ࢍ (3LJ) 

1s2p 0.99999997 -2.451·10-4 1.50115997 (3P1) 1.00000003(1P1) 

1s3d 0.9999769 -6.798·10-3 1.1670456 (3D2) 1.00000772(1D2) 

1s4f 0.879548 -0.475810 1.064617 (3F3) 1.018910(1F3) 

1s5g 0.859054 -0.511886 1.036984 (3G4) 1.013132(1G4) 

1s6h  0.839430 -0.543468 1.023543 (3H5) 1.009868(1H5) 

݃௅ௌ(3P1) = 1.50116; ݃௅ௌ(3D2) = 1.1670533; ݃௅ௌ(3F3) = 1.0835266; 
݃௅ௌ(3G4) = 1.050116; ݃௅ௌ(3H5) = 1.0334106; ݃௅ௌ(1LJ) = ௟݃ = 1.0 
Note. The results of the table are our semi-empirical calculation (the 
précised non-earlier published data). 

From the Table 4, it’s seen that for the 1s2p configuration, 
the coupling coefficients on the main diagonal are near 
unity. That is why the numerical values of the g-factors in 
the intermediate coupling coincide practically with the 
LS-coupling values (presented at the end of the Table 4). 
For the 1s3d configuration the coupling coefficients on the 
main diagonal are less as compared to the 1s2p 
configuration, but also near unity, and the corresponding 
g-factors coincides practically with analogous LS-coupling. 
This testifies that the 1snp and the 1snd configurations are 
near the LS- coupling. Starting from 1snf configurations, 
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the coupling coefficients on the main diagonal are 
considerably different from unity, the gyromagnetic 
relations also show the regress from the LS-coupling. With 
increasing second electron orbital momentum l2, the 
coupling coefficients on the main diagonal decrease, that 
means regress from the LS-coupling. The situation is 
similar for the considered upper 1sni configuration (see the 
Table 3). 
From the Table 3 it follows that, with increasing quantum 

number n of i-electron the coupling coefficients and the 
gyromagnetic ratios remain stable. The comparison of the   
g-factors calculated in the intermediate coupling with their 
vector analogs (݃௅ௌ and ݃௅௄) show, that in the considered 
systems, the intermediate coupling between  the LS and 
LK- types of vector coupling is realized, near to LK- 
coupling. That is why the spectral energies (see Fig.1 and 
(1)) are presented as quartet levels with approximately the 
same distance between them. This can be explained by the 
fact that, in the 1snp and 1snd configurations the 
disposition of the levels in the reverse triplet is correct, 
namely 3LJ+1 (the lower), 3LJ (the middle), 3LJ-1 (the upper 
level of the triplet). The singlet level 1LJ is considerably far 
from the triplet system. Here the 3LJ and 1LJ levels interact. 
They are responsible for the intermediate coupling (see up 
the second rank energy operator non diagonal matrix (7)). 
Furthermore the 3LJ level is at the middle of the triplet, 
while in the 1snl (l ≥ 3) configurations the correct 
disposition of the triplet levels is violated, the lower level 
becomes 3LJ, the middle - 3LJ+1, the upper 3LJ-1. The singlet 
level 1LJ approaches the triplet. Not only does the triplet 
middle level interact with the singlet upper level, but also 
does the triplet system lower level interact with the singlet 
upper level. 

5. Zeeman Splitting of the Levels 

It is known, that in the magnetic field, the degeneracy in 
the magnetic quantum number M is removed [5,6] and the 
energy operator matrix is separated into matrices related to 
M. In the considered configurations, М = ±7 (for the first 
rank), М = ±6 (for the third rank), all the rest of the 
matrices with М = ±5, ±4, ± 3, ± 2, ± 1 and 0 are of rank 
four. Let’s write in the general form, the energy operator 
fourth rank matrix taking in to account the atom’s 
interaction with the magnetic field (the corresponding 
elements are denoted by *). It has the form: 

 3I6 
3I7 

3I5 
1I5  

  ሚ6 C1 + * * * C5ܫ3
 ሚ7 * C2 + * 0 0 (12)ܫ3
ሚ5 * 0 C3ܫ3 + * 0  
  * + ሚ5 C5 0 0 C4ܫ1

The third rank matrix (М = ±6) is obtained by deleting 

the third row and the third column in (12). The first rank 

matrix has one element 3ܫሚ7
3I7 = С2 + *. 

The energy operator of atom interaction with the magnetic 
field has the form [5,6]: 

ܹ ൌ μ଴݃(13)                ܪܬ 

The role of radial integral in (13) is played by the Bohr 

magneton μ଴ ൌ 4.6686437 ∗ 10ିହሺ
௖௠షభ

ை௘
ሻ [8]. 

The operator matrix elements in (13) are calculated with 
the use of formulae (see also [6]): 

| ௜ܹ௜| ൌ ቈ
ܬሺܬ ൅ 1ሻ ൅ ܮሺܮ ൅ 1ሻ െ ܵሺܵ ൅ 1ሻ

ܬሺܬ2 ൅ 1ሻ ௟݃ ൅ 

൅
ܬሺܬ ൅ 1ሻ ൅ ܵሺܵ ൅ 1ሻ െ ܮሺܮ ൅ 1ሻ

ܬሺܬ2 ൅ 1ሻ
݃௦቉ ⨯ 

⨯ μ଴(14)     ܯܪ 

They are different from zero in the conditions: ΔJ = ΔS = 
ΔL = 0. The expression in the brackets in (14) is the 
gyromagnetic ratio divided into the orbital and spin parts. 
The values ௟݃ 	 and ݃௦ in most of the literature are different. 
In this paper the values used are: ௟݃ ൌ 1.0, ݃௦ ൌ 2.00232. 

The nondiagonal matrix elements have the form: 

ห ௜ܹ௝ห ൌ ට
ሺ௃ି௅ାௌାଵሻሺ௃ା௅ିௌାଵሻሺ௃ା௅ାௌାଶሻሺ௅ାௌି௃ሻ

ସሺ௃ାଵሻమሺଶ௃ାଵሻሺଶ௃ାଷሻ
⨯ 

⨯ ሾሺܬ ൅ 1ሻଶ െ ଶሿܯ
భ
మ ⨯ ሺ݃௟ െ ݃௦ሻμ଴(15)      ܪ 

ห ௜ܹ௝ห ് 0		in the conditions ΔJ = ± 1, ΔS = ΔL = 0; 
J = Jmin. 
We obtained formulae (14) and (15) earlier with wave 

functions of the uncoupled moments representation with 
further transfer to the LSJM representation for the npn`p 
configurations. They are true for all the rest of the two- 
electron configurations. The results of calculation through 
formulae (4) and (15) are presented in the Table 5. If in 
expressions (14) and (15) one puts ௟݃ ൌ 1, ݃௦ ൌ 2, as it 
was done in [6], then our results coincide completely with 
the matrix elements in [6] with some reserves: in the 
nondiagonal matrix elements in [6], there appears a factor 
ሺ ௟݃ െ ݃௦ሻ, that means the square root is taken with the 
minus sign (in [6] the sign of the square root is not 
indicated). 

Let’s note that, in the LSJM representation (LS-coupling 
approximation) the energy operator matrix (12) is more 
compact as compared to matrices in the uncoupled 
moments representation, since in it one uses the same 
“basis” elements Ci for any value of the quantum magnetic 
number M. The dependence of M (the * elements in 
formula (12)) is determined according to formulae (14) and 
(15), see the Table 5. 
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Table 5. Energy operator matrix elements for atom interaction with the magnetic field 

Matrix 
element 

М = ±7 М = ±6 М = ±5 М = ±4 М = ±3 М = ±2 М = ±1 М = 0 

3I7
3I7 

േሺ6 ௟݃ ൅
݃௦) 

േ
଺

଻
ሺ6 ௟݃ ൅
݃௦) 

േ
ହ

଻
ሺ6 ௟݃ ൅
݃௦) 

േ
ସ

଻
ሺ6 ௟݃ ൅
݃௦) 

േ
ଷ

଻
ሺ6 ௟݃ ൅
݃௦) 

േ
ଶ

଻
ሺ6 ௟݃ ൅
݃௦) 

േ
ଵ

଻
ሺ6 ௟݃ ൅
݃௦) 

0 

3I6
3I6  

േ
ଵ

଻
ሺ41 ௟݃ ൅
݃௦) 

േ
ହ

ସଶ
ሺ41 ௟݃ ൅
݃௦) 

േ
ଶ

ଶଵ
ሺ41 ௟݃ ൅
݃௦) 

േ
ଵ

ଵସ
ሺ41 ௟݃ ൅
݃௦) 

േ
ଵ

ଶଵ
ሺ41 ௟݃ ൅
݃௦) 

േ
ଵ

ସଶ
ሺ41 ௟݃ ൅
݃௦) 

0  

3I5
3I5   

േ
ହ

଺
ሺ7 ௟݃ െ
݃௦) 

േ
ଶ

ଷ
ሺ7 ௟݃ െ
݃௦) 

േ
ଵ

ଶ
ሺ7 ௟݃ െ
݃௦) 

േ
ଵ

ଷ
ሺ7 ௟݃ െ
݃௦) 

േ
ଵ

଺
ሺ7 ௟݃ െ
݃௦) 

0  

1I6
1I6  േ6 ௟݃ േ5 ௟݃ േ4 ௟݃ േ3 ௟݃ േ2 ௟݃ േ ௟݃  0 ⨯ μ଴ܪ

3I7
3I6  √଺

଻
ሺ ௟݃ െ ݃௦) 

ଵଶ

଻√ଵଷ
ሺ ௟݃ െ ݃௦) 

ଷ√ଶଶ

଻√ଵଷ
ሺ ௟݃ െ ݃௦) 

ସ√ଵହ

଻√ଵଷ
ሺ ௟݃ െ ݃௦) 

ଷ√ଷ଴

଻√ଵଷ
ሺ ௟݃ െ ݃௦) 

ଵଶ√ଶ

଻√ଵଷ
ሺ ௟݃ െ ݃௦) 

√଺

√ଵଷ
ሺ ௟݃ െ

݃௦) 

3I6
3I5   √଻଻

଺√ଵଷ
ሺ ௟݃ െ ݃௦) 

√ଷହ

ଷ√ଵଷ
ሺ ௟݃ െ ݃௦) 

√ଶଵ

ଶ√ଵଷ
ሺ ௟݃ െ ݃௦) 

ଶ√ଵସ

ଷ√ଵଷ
ሺ ௟݃ െ ݃௦) 

଻√ହ

଺√ଵଷ
ሺ ௟݃ െ ݃௦) 

√଻

√ଵଷ
ሺ ௟݃ െ

݃௦) 
 

Zero energy residuals (the obtained in this work energy 
levels are almost coincide with corresponding experimental 
quantities [2]) permits the investigation the Zeeman splitting 
and its particularity – the crossings and the anticrossings of 
magnetic components as a prognostic for the future 
experiments in this domain. Furthermore, it is interesting to 
determine with the help of the Zeeman splitting the g-factors 
for all four levels of the considered configurations and 
appreciate the character of the coupling in them. 

Gyromagnetic ratios can be calculated from Zeeman 
splittings only in a linear range, in which the spacings 
between positive and negative values of M and M = 0 are the 
same. The linear range is established as follows: At certain 
points of the magnetic field, the numerical diagonalization 
of energy operator matrices (12) is provided for the values of 
the quantum magnetic number М = +1, 0, −1. In this 
condition the distance (ΔЕ) between the magnetic 
components with positive and negative values of М with 
respect to the component with М = 0 must be the same. As 
an example, for the 1s7i configuration, the Table 6 shows 
results of the diagonalization of the energy operator matrix 
(12) for the values М = +1, 0, −1 when Н = 0.05 Oe (the 
linear range is presented in the Table 7). For comparison in 
the Table 6 the same results for Н = 0 are presented (the 
upper part of the table). It is seen that, when Н = 0 the energy 
levels of the fine structure (the first column) coincide with 
the experimental equivalents [2]. Expansion the coefficients 
of wave function in terms of the LS-coupling scheme on the 
main diagonal are equal to unity precisely for 3I7 and 3I5 
levels. This shows the independence of these levels of the 
type of coupling, and the corresponding g-factors are equal 
to their LS-coupling analogues (see the lower part of the 
Table 1).The 3I6 and 1I6 levels with the same value of J = 6 
have exactly the same coupling coefficients on the main 
diagonal with the corresponding gyromagnetic ratios as in 
the Table 3. 

From the Table 6 it is also seen that when the magnetic 
field is switched on (М = +1, 0, −1), the coupling 
coefficients on the main diagonal for the 3I7 and 3I5 levels are 
close to, but not equal to unity. In the corresponding rows the 
nondiagonal elements (near zero) appear, and the matrix of 
coefficients is no more quasi-diagonal, as in the case of Н = 

0. Comparing the difference of energies of Zeeman 
components ΔЕ (М = +1, 0) and ΔЕ (М = −1, 0) for all the 
four configuration levels, we see that they are the same. All 
what is said is true for all the rest of the considered 1s8i, 1s9i, 
1s10i configurations. For them tables like table 6 are not 
presented because they are bulky. 

Table 6. Calculated energies and intermediate coupling coefficients of 
Helium 1s7i configuration in the magnetic field 

H=0 

E, cm-1 3I6 
3I7 

3I5 
1I6 ࢍ 

196071.428891148 0.823432 0 0 -0.567416 1.01618125 

196071.429352355 0 1.0000 0 0 1.14318857 

196071.429772608 0 0 1.0000 0 0.832946667 

196071.430106489 0.567416 0 0 0.823432 1.00768351 

M = +1 

E, cm-1 3I6 
3I7 

3I5 
1I6 

196071.428893514 0.823417 0.0028069 0.00158219 -0.567430 

196071.429355026 -0.00163931 0.9999954 -6.687·10-6 0.00256787 

196071.429774552 0.000327751 -1.157·10-6 0.999995 0.00326396 

196071.430108845 0.567434 -0.00118424 -0.00287358 0.823413 

M = 0 

E, cm-1 3I6 
3I7 

3I5 
1I6 

196071.428891142 0.823429 0.00283789 0.00160386 -0.567410 

196071.429352358 -0.00165819 0.9999953 -6.678·10-6 0.00259506 

196071.429772607 0.000334914 -1.363·10-6 0.999994 0.00331263 

196071.430106493 0.567417 -0.00119598 -0.00291776 0.823425 

M = -1 

E, cm-1 3I6 
3I7 

3I5 
1I6 

196071.428888770 0.823441 0.0028106 0.0015807 -0.567392 

196071.429349689 -0.00164307 0.9999954 -6.623·10-6 0.00256902 

196071.429770663 0.000332712 -1.227·10-6 0.999995 0.00326866 

196071.430104141 0.567399 -0.00118318 -0.00288033 0.823437 
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of Helium atom configurations in the experimental domain, 
were obtained. 
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