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1. Introduction 

Group theory studies the groups in mathematics. A group 

in mathematics is both an algebraic and an abstract struc-

ture. As an abstract structure a group is a set of elements. 

The set of elements must satisfy the following four axioms, 

which are called “group axioms”, with a law of composi-

tion or multiplication to be a group. (1) Closure: the prod-

uct of any two elements of the set with the law of composi-

tion, must be one of the elements in the set, that is, the 

result of the multiplication is itself an element which has to 

appear in the set. (2) Unit element: the set must include a 

unit element such that the product of any element in the set 

with the unit element according to the law of composition 

of set leaves the element unchanged, for example, for any 

element a, should be ae=ea=a where e is the unit element of 

the set. (3) Inverse element: a inverse element must exist 

for every element in the set and the set has to include all 

inverse elements, for example, for any element a, ���� ����� � � where ��� is the inverse element of a. (4) Asso-

ciative law: the set must exhibit the associative law, for 

example, for any three elements a, b, and c, a(bc)=(ab)c has 

to be provided. Furthermore, if all elements in the group 

commute, that is, for any two elements ab=ba, then the 

group is called an Abelian group. 

There exist a lot of applications of the group theory in 

physics. One of important application area is solid state 

physics. The crystals in solid state physics are divided into 

thirty two classes according to their point groups or sym-

metry groups. Although the point groups are often used in 

the solid state physics and involved in many solid state 

physics textbooks [1-15], realizing them is hard because the 

imagination of successive applications of the symmetry 

operations is complicated. The aim of this paper is to pro-

vide a better understanding of the point groups used in 

solid state physics. But we have restricted the paper to the 

cubic point group Oh. We have worked the other cubic 

point groups O, T, Th, and Td as well, however, we have 

made them the topics of another paper unpublished yet. 

2. Symmetry elements of Oh 

In crystal physics, a symmetry element is a symmetry 

operation that converts the crystal structure into itself. A 

symmetry group is a group which consists of symmetry 

operations. A point group is also a symmetry group but its 

elements leave one point of the crystal unchanged. 

Symmetry group Oh and one of the subgroups of permu-

tation group P (8) are isomorphic groups. We can learn and 

investigate the point group Oh using the isomorphism be-

tween these groups. Using the isomorphism between Oh 

and the subgroup of P (8) enables us to define every sym-

metry element of Oh. To do this, first let us point the cor-

ners of a cube with the digits from one to eight. Fig. 1 

shows such a cube. Three twofold axes (C2), eight threefold 

axes (C3), and six fourfold axes (C4) are also shown in this 

figure. To avoid confusion, we mark the symmetry axes, C2, 

C3, C4, with the digits parenthetically in Fig. 1. Now, let us 

define the symmetry elements which leave the cube un-

changed. 
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Figure 1. Illustration of two-fold (C2), three-fold (C3), and four-fold (C4) 

axes for a cube. 

We match every symmetry operation (or symmetry ele-

ment) in the group Oh with an element in P (8). The first 

symmetry element is naturally identity element, e in Table 

1 and its counterpart is the element of �1234567812345678� in P (8). 

The second symmetry element a in Table 1, is a proper 

rotation through 120°  about C3 (1) axis in Fig. 1 and its 

counterpart is element of �1234567814587632� in the group P (8). 

However, we can use briefer symbols for simplicity. That is 

why we can use symbols (12345678) and (14587632) to 

denote the elements e and a, respectively. For a better un-

derstanding the symmetry operations which will be defined, 

for example, we have demonstrated the effect of the opera-

tion a on a cube in Fig. 2. The symbols of counterparts in P 

(8) and definitions of all symmetry elements which are the 

proper rotations through 120° about C3 axes in Fig. 1 are 

given in Table 1. They are elements a, b, c, d, f, g, h, and i 

in Table 1. The symbols j, k, and l in Table 1 represent the 

elements which are the proper rotations through 180° about 

C2 (1) (or x), C2 (2) (or y), and C2 (3) (or z) axes in Fig. 1, 

respectively. As to the elements m, n, o, p, r, and s in Table 

1, they are the proper rotations through 90° about C4 (1) 

(or x), C4 (2) (or -x), C4 (3) (or y), C4 (4) (or -y), C4 (5) 

(or z), and C4 (6) (or -z) axes in Fig. 1, respectively. Fig. 3 

shows different six symmetry axes ���  (1, 2, ..., 6). The 

symmetry elements which are the proper rotations through 180° about these axes are represented symbols t, u, v, w, y, 

and z in Table 1. 

 

Figure 2. Illustration of symmetry element a. 

 

Figure 3. Illustration of two-fold ��� axes. 

Table 1. Symmetry elements of point group Oh and their permutation counterparts and matrix representations. 

Symbol  
Permutation 

counterpart 

Matrix representa-

tion 
Definition Symbol  

Permutation 

counterpart 

Matrix representa-

tion 
Definition 

e �12345678� �1 0 00 1 00 0 1� Identity element I �65872143� ��1 0 00 �1 00 0 �1� 
Inversion through the origin 

(point O or centre of the cube). 

a �14587632� �0 0 11 0 00 1 0� 

Proper rotation through 120°  about C3 (1) axis 

(fig.1). 

a* �67234185� � 0 0 �1�1 0 00 �1 0 � 
Inversion after the symmetry 

element (or operation) a (fig.1). 

b �72185436� � 0 �1 00 0 1�1 0 0� 

Proper rotation through 120°  about C3 (2) axis 

(fig.1). 

b* �45632781� �0 1 00 0 �11 0 0 � 
Inversion after the symmetry 

element (or operation) b (fig.1). 

c �76321458� �0 0 �11 0 00 �1 0 � 

Proper rotation through 120°  about C3 (3) axis 

(fig.1). 

c* �41856723� � 0 0 1�1 0 00 1 0� 
Inversion after the symmetry 

element (or operation) c (fig.1). 

d �36541872� �0 �1 00 0 �11 0 0 � 

Proper rotation through 120°  about C3 (4) axis 

(fig.1). 

d* �81276345� � 0 1 00 0 1�1 0 0� 
Inversion after the symmetry 

element (or operation) d (fig.1). 

f �18723654� �0 1 00 0 11 0 0� 

Proper rotation through 120°  about C3 (5) axis 

(fig.1). 

f* �63458127� � 0 �1 00 0 �1�1 0 0 � 
Inversion after the symmetry 

element (or operation) f (fig.1). 

g �32765814� � 0 0 �1�1 0 00 1 0 � 

Proper rotation through 120°  about C3 (6) axis 

(fig.1). 

g* �85412367� �0 0 11 0 00 �1 0� 
Inversion after the symmetry 

element (or operation) g (fig.1). 

h �54367218� � 0 1 00 0 �1�1 0 0 � 

The proper rotation 

through 120°  about C3

(7) axis (fig.1). 

h* �27814563� �0 �1 00 0 11 0 0� 
Inversion after the symmetry 

element (or operation) h (fig.1). 

i �58143276� � 0 0 1�1 0 00 �1 0� 

Proper rotation through 120°  about C3 (8) axis 

(fig.1). 

i* �23678541� �0 0 �11 0 00 1 0 � 
Inversion after the symmetry 

element (or operation) i (fig.1). 

j �56781234� �1 0 00 �1 00 0 �1� 
Proper rotation through 180°  about C2 (1) (x) 

j* �43218765� �1 0 00 �1 00 0 1� 
Inversion after the symmetry 

element (or operation) k or reflec-
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axis (fig.1). tion through the plane σh (1) 

(fig.4). 

k �78563412� ��1 0 00 1 00 0 �1� 

Proper rotation through 180°  about C2 (2) (y) 

axis (fig.1). 

k* �87654321� �1 0 00 1 00 0 �1� 

Inversion after the symmetry 

element (or operation) l or reflec-

tion through the plane σh (2) 

(fig.4) 

l �34127856� ��1 0 00 �1 00 0 1� 

Proper rotation through 180°  about C2 (3) (z) 

axis (fig.1). 

l* �21436587� ��1 0 00 1 00 0 1� 

Inversion after the symmetry 

element (or operation) j or reflec-

tion through the plane σh (3) 

(fig.4). 

m �43658721� �1 0 00 0 �10 1 0 � 

Proper rotation through 90° about C4 (1) (x) axis 

(fig.1). 

m* �78123456� ��1 0 00 0 10 �1 0� 
Inversion after the symmetry 

element (or operation) m (fig.1). 

n �87214365� �1 0 00 0 10 �1 0� 

Proper rotation through 90°  about C4 (2) (-x) 

axis (fig.1). 

n* �34567812� ��1 0 00 0 �10 1 0 � 
Inversion after the symmetry 

element (or operation) n (fig.1). 

o �81456327� � 0 0 10 1 0�1 0 0� 

The proper rotation 

through 90°  about C4

(3) (y) axis (fig.1). 

o* �36721854� �0 0 �10 �1 01 0 0 � 
Inversion after the symmetry 

element (or operation) o (fig.1). 

p �27634581� �0 0 �10 1 01 0 0 � 

Proper rotation through 90°  about C4 (4) (-y) 

axis (fig.1). 

p* �54187236� � 0 0 10 �1 0�1 0 0� 
Inversion after the symmetry 

element (or operation) p (fig.1). 

r �23418567� �0 �1 01 0 00 0 1� 

Proper rotation through 90° about C4 (5) (z) axis 

(fig.1). 

r* �58763214� � 0 1 0�1 0 00 0 �1� 
Inversion after the symmetry 

element (or operation) r (fig.1). 

s �41236785� � 0 1 0�1 0 00 0 1� 

Proper rotation through 90°  about C4 (6) (-z) 

axis (fig.1). 

s* �76581432� �0 �1 01 0 00 0 �1� 
Inversion after the symmetry 

element (or operation) s (fig.1.) 

t �65432187� ��1 0 00 0 �10 �1 0 � 

The proper rotation 

through 180°  about C�′
(1) axis (fig.3). 

t* �56341278� �1 0 00 0 �10 �1 0 � 

Inversion after the symmetry 

element (or operation) u or reflec-

tion through the plane σd (3487) 

(fig.5). 

u �21876543� ��1 0 00 0 10 1 0� 

Proper rotation through 180°  about C�′  (2) axis 

(fig.3). 

u* �12785634� �1 0 00 0 10 1 0� 

Inversion after the symmetry 

element (or operation) t or reflec-

tion through the plane σd (1256) 

(fig.5). 

v �63278145� � 0 0 �10 �1 0�1 0 0 � 

Proper rotation through 180°  about C�′  (3) axis 

(fig.3). 

v* �72365418� � 0 0 �10 1 0�1 0 0 � 

Inversion after the symmetry 

element (or operation) w or 

reflection through the plane σd 

(2358) (fig.5). 

w �45812763� �0 0 10 �1 01 0 0� 

Proper rotation through 180°  about C�′  (4) axis 

(fig.3). 

w* �18543672� �0 0 10 1 01 0 0� 

Inversion after the symmetry 

element (or operation) v or reflec-

tion through the plane σd (1467) 

(fig.5). 

y �85672341� �0 1 01 0 00 0 �1� 

Proper rotation through 180°  about C�′  (5) axis 

(fig.3). 

y* �32145876� � 0 �1 0�1 0 00 0 1� 

Inversion after the symmetry 

element (or operation) y or reflec-

tion through the plane σd (2457) 

(fig.5). 

z �67854123� � 0 �1 0�1 0 00 0 �1� 

Proper rotation through 180°  about C�′  (6) axis 

(fig.3). 

z* �14327658� �0 1 01 0 00 0 1� 

Inversion after the symmetry 

element (or operation) z or reflec-

tion through the plane σd (1368) 

(fig.5). 

        

So far we have totally defined twenty four symmetry 

elements. Next one is the inversion, I, through the origin 

(or the centre of cube). The inversion converts the vector r 

to the vector –r and its permutation counterpart in P (8) is 

the element of (65872143). Each inversion performed after 

implementing the elements a, b, c, d, f, g, h, and i, gene-

rates new symmetry elements which are a*, b*, c*, d*, f*, 

g*, h*, and i* in Table 1, respectively. For example element 

a* is the inversion after the symmetry operation (or element) 

a, and its permutation counterpart in P (8) is the element of 

(67234185). Fig. 4 represents three reflection planes, σhs. 

Next symmetry element is the reflection through the plane 

σh (1) in Fig. 4 and the symbol of this element is j*, and its 

permutation counterpart is (43218765) in Table 1. This 

symmetry operation is actually equivalent to the symmetry 

operation which is the inversion after the symmetry opera-

tion k. Similarly, the symmetry elements k* and l* in Table 

1 are the reflections through the planes σh (2) and σh (3) in 

Fig. 4, respectively, and they are equivalent to the inver-

sions after the symmetry operations l and j, respectively. 

The elements m*, n*, o*, p*, r*, and s* in Table 1 represent 

the inversions after the symmetry operations m, n, o, p, r, 

and s, respectively. Fig. 5 shows different reflection planes, 

σds. The symmetry operation which is the reflection 

through the plane σd (3487) in Fig. 5 or the inversion after 

symmetry operation u is represented with symbol t* in 
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Table 1. While symmetry element u* is the reflection 

through the plane σd (1256) in Fig. 5 or the inversion after 

symmetry operation t, symmetry element v* is the reflec-

tion through the plane σd (2358) in Fig. 5 or the inversion 

after symmetry operation w. Symmetry elements w* and y* 

are the reflections through the planes σd (1467) and σd 

(2457) in Fig. 5, respectively, or the inversions after sym-

metry operations v and y, respectively. And finally, the 

reflection through the plane σd (1368) in Fig. 5 or inversion 

after symmetry operation z is represented with symbol z* 

in Table 1. Therefore we have totally defined all symmetry 

operations (or symmetry elements) of point group Oh, 

which leave the cube unchanged. 

 

Figure 4. Illustration of reflection planes, σh, perpendicular to a principal 

axis of symmetry. 

 

Figure 5. Illustration of reflection planes, σd, contain a principal axis of 

symmetry and bisect the angle between two two-fold axes perpendicular to 

the principal axis. 

3. Matrix Representations 

Seeing geometrically the results of successive applica-

tions of the symmetry operations is pretty hard. To over-

come this difficulty we can find a matrix representation for 

every symmetry elements. The matrix representations ena-

ble us to perform the complicated and successive symmetry 

operations easily. The matrices form a group as well and 

they obey the same law of multiplication of the symmetry 

group itself. To explain finding the matrix which is corres-

ponds to a symmetry element in the group, for example, let 

us find the matrix which is the representation of element a 

in Table 1 using Fig. 6. The coordinates of corners of the 

cube are given in this figure. The corners of cube replace 

after symmetry operation a, as follows: 1→1, 2→4, 3→5, 

4→8, 5→7, 6→6, 7→3, and 8→2. The matrix A which 

creates this change in the coordinates of corners should be 

in the form 

 

Figure 6. Illustration of the coordinates of corners of cube. 

� � ���� ��� ������ ��� ������ ��� ���
�. 

To determine the coefficients ���  we need nine equations 

which contain the coefficients ���  themselves. The systems 

of equation � � �  �, � � �  !, � � �  " give the equations 

we need; where A is the matrix corresponds to the symme-

try element a,  �,  �,  �,  !, and  " are the coordinates of the 

corners 1, 2, 3, 4, and 5, respectively. Therefore we obtain 

the equations, 

��� # ��� # ��� � 1, ��� # ��� # ��� � 1, ��� # ��� #��� � 1 

���� # ��� # ��� � 1, ���� # ��� # ��� � �1, ���� #��� # ��� � 1 

���� � ��� # ��� � 1, ���� � ��� # ��� � �1, ���� ���� # ��� � �1 

from the systems of equation above. Solving these equa-

tions together we find the coefficients ��� , therefore, the A 

becomes 

� � �0 0 11 0 00 1 0�. 

We can similarly find the matrix representations of all 

symmetry elements which are given in Table 1. 
The multiplication table of symmetry group Oh, obtained 

using the permutation counterparts or matrix representa-

tions of all symmetry elements of symmetry group Oh, is 

given in Table 2. To obtain multiplication of any two ele-

ments in the group one can use the permutation counter-

parts of the elements, for example, 

�$ � �1234567814587632� �1234567872185436� � �1234567834127856� � %, 
or use the matrix representations of them, 

�& � �0 0 11 0 00 1 0� � 0 �1 00 0 1�1 0 0� � ��1 0 00 �1 00 0 1� � %. 
Using Table 2 one easily can prove that the set of forty 

eight elements provide the group axioms. Every row or 
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column in the multiplication table in Table 2 contains every 

element once. Hence, the first group axiom, the closure, is 

provided. The second axiom, the existence of unit element 

is already provided. Third axiom, the existence of inverse 

of every element, can be seen in the multiplication table. If 

we go to the right along the row of any element in the mul-

tiplication table, we really reach the unit element. If we go 

up from here we can reach the inverse element for element 

under consideration. Using the multiplication table, it can 

be easily shown that the fourth axiom, the associative law, 

is provided. 

Table 2. Multiplication table of point group Oh. 

 e a b c d f g h i j k l m n o p r s t u v w y z I a* b* c* d* f* g* h* i* j* k* l* m* n* o* p* r* s* t* u* v* w* y* z* 

e e a b c d f g h i j k l m n o p r s t u v w y z I a* b* c* d* f* g* h* i* j* k* l* m* n* o* p* r* s* t* u* v* w* y* z* 

a a f l d j e h k b c g i y r u m w o z s t n p v a* f* k* d* l* I h* j* b* g* i* c* y* r* t* m* v* o* s* z* n* u* p* w* 

b b k g l a c e i j h d f o v z r u n w p s y t m b* j* g* k* a* c* I i* l* d* f* h* o* w* z* r* t* n* p* v* y* s* u* m* 

c c b j h l k d e f a i g r y n t v p s z m u o w c* b* l* h* k* j* d* I f* i* g* a* r* y* n* u* w* p* z* s* t* m* o* v* 

d d l c k i g j a e f b h w p r z t m o v y s u n d* k* c* j* i* g* l* a* I b* h* f* v* p* r* z* u* m* w* o* s* y* t* n* 

f f e i j c a k g l d h b p w s y n u v o z r m t f* I i* l* c* a* j* g* k* h* b* d* p* v* s* y* n* t* o* w* r* z* m* u* 

g g d e f k l b j h i a c z s m u p v y r n t w o g* d* I f* j* k* b* l* h* a* c* i* z* s* m* t* p* w* r* y* u* n* v* o* 

h h j a e g i l c k b f d v o y s m t p w r z n u h* l* a* I g* i* k* c* j* f* d* b* w* o* y* s* m* u* v* p* z* r* n* t* 

i i h k b e j f l d g c a s z t n o w r y u m v p i* h* j* b* I l* f* k* d* c* a* g* s* z* u* n* o* v* y* r* m* t* w* p* 

j j i d g b h c f a e l k n m w v z y u t p o s r l* i* d* g* b* h* c* f* a* k* j* I n* m* v* w* z* y* u* t* o* p* s* r* 

k k c f a h b i d g l e j t u p o y z m n w v r s j* c* f* a* h* b* i* d* g* I l* k* u* t* p* o* y* z* n* m* w* v* r* s* 

l l g h i f d a b c k j e u t v w s r n m o p z y k* g* h* i* f* d* a* b* c* l* I j* t* u* w* v* s* r* m* n* p* o* z* y* 

m m w r p z s v y o n u t j e a g d h k l c i f b m* v* r* p* z* s* w* y* o* t* u* n* l* I a* g* d* h* k* j* i* c* f* b* 

n n o z v r y p s w m t u e j i c b f l k g a h d n* o* z* w* r* y* p* s* v* u* t* m* I l* i* c* b* f* j* k* a* g* h* d* 

o o y u r m n s t z v p w h b k e a i d f l j c g o* y* t* r* m* n* s* u* z* p* v* w* h* b* j* I a* i* f* d* l* k* c* g* 

p p r n y t u z m s w o v d f e k c g h b j l a i p* r* n* y* u* t* z* m* s* o* w* v* d* f* I j* c* g* b* h* k* l* a* i* 

r r u v t w p m o n y z s a c b d l e i g h f k j r* t* w* u* v* p* m* o* n* z* s* y* a* c* b* d* k* I g* i* f* h* j* l* 

s s m o n p w u v t z y r g i h f e l c a b d j k s* m* o* n* p* v* t* w* u* y* r* z* g* i* h* f* I k* a* c* d* b* l* j* 

t t v y o s z w r p u n m l k c i h d e j a g b f u* w* y* o* s* z* v* r* p* n* m* t* k* j* c* i* h* d* l* I g* a* b* f* 

u u p s w y r o z v t m n k l g a f b j e i c d h t* p* s* v* y* r* o* z* w* m* n* u* j* k* g* a* f* b* I l* c* i* d* h* 

v v z m s u t r n y o w p b h j l g c f d e k i a w* z* m* s* t* u* r* n* y* v* p* o* b* h* l* k* g* c* d* f* j* I i* a* 

w w s t z n m y u r p v o f d l j i a b h k e g c v* s* u* z* n* m* y* t* r* w* o* p* f* d* k* l* i* a* h* b* I j* g* c* 

y y n w m v o t p u r s z c a f h j k g i d b e l y* n* v* m* w* o* u* p* t* s* z* r* c* a* f* h* l* j* i* g* b* d* I k* 

z z t p u o v n w m s r y i g d b k j a c f h l e z* u* p* t* o* w* n* v* m* r* y* s* i* g* d* b* j* l* c* a* h* f* k* I 

I I a* b* c* d* f* g* h* i* l* j* k* m* n* o* p* r* s* u* t* w* v* y* z* e a b c d f g h i k l j m n o p r s u t w v y z 

a* a* f* k* d* l* I h* j* b* c* g* i* y* r* t* m* v* o* z* s* u* n* p* w* a f l d j e h k b g i c y r u m w o s z n t p v 

b* b* j* g* k* a* c* I i* l* h* d* f* o* w* z* r* t* n* v* p* s* y* u* m* b k g l a c e i j d f h o v z r u n p w y s t m 

c* c* b* l* h* k* j* d* I f* a* i* g* r* y* n* u* w* p* s* z* m* t* o* v* c b j h l k d e f i g a r y n t v p z s u m o w 

d* d* k* c* j* i* g* l* a* I f* b* h* v* p* r* z* u* m* o* w* y* s* t* n* d l c k i g j a e b h f w p r z t m v o s y u n 

f* f* I i* l* c* a* j* g* k* d* h* b* p* v* s* y* n* t* w* o* z* r* m* u* f e i j c a k g l h b d p w s y n u o v r z m t 

g* g* d* I f* j* k* b* l* h* i* a* c* z* s* m* t* p* w* y* r* n* u* v* o* g d e f k l b j h a c i z s m u p v r y t n w o 

h* h* l* a* I g* i* k* c* j* b* f* d* w* o* y* s* m* u* p* v* r* z* n* t* h j a e g i l c k f d b v o y s m t w p z r n u 

i* i* h* j* b* I l* f* k* d* g* c* a* s* z* u* n* o* v* r* y* t* m* w* p* i h k b e j f l d c a g s z t n o w y r m u v p 

j* j* c* f* a* h* b* i* d* g* k* I l* u* t* p* o* y* z* m* n* v* w* r* s* k c f a h b i d g e j l t u p o y z n m v w r s 

k* k* g* h* i* f* d* a* b* c* j* l* I t* u* w* v* s* r* n* m* o* p* z* y* l g h i f d a b c j e k u t v w s r m n p o z y 

l* l* i* d* g* b* h* c* f* a* I k* j* n* m* v* w* z* y* t* u* p* o* s* r* j i d g b h c f a l k e n m w v z y t u o p s r 

m* m* v* r* p* z* s* w* y* o* n* t* u* l* I a* g* d* h* j* k* c* i* f* b* m w r p z s v y o u t n j e a g d h l k i c f b 

n* n* o* z* w* r* y* p* s* v* m* u* t* I l* i* c* b* f* k* j* g* a* h* d* n o z v r y p s w t u m e j i c b f k l a g h d 

o* o* y* t* r* m* n* s* u* z* w* p* v* h* b* j* I a* i* d* f* k* l* c* g* o y u r m n s t z p w v h b k e a i f d j l c g 

p* p* r* n* y* u* t* z* m* s* v* o* w* d* f* I j* c* g* h* b* l* k* a* i* p r n y t u z m s o v w d f e k c g b h l j a i 

r* r* t* w* u* v* p* m* o* n* y* z* s* a* c* b* d* k* I i* g* h* f* j* l* r u v t w p m o n z s y a c b d l e g i f h k j 

s* s* m* o* n* p* v* t* w* u* z* y* r* g* i* h* f* I k* c* a* b* d* l* j* s m o n p w u v t y r z g i h f e l a c d b j k 

t* t* p* s* v* y* r* o* z* w* u* m* n* j* k* g* a* f* b* l* I i* c* d* h* u p s w y r o z v m n t k l g a f b e j c i d h 

u* u* w* y* o* s* z* v* r* p* t* n* m* k* j* c* i* h* d* I l* a* g* b* f* t v y o s z w r p n m u l k c i h d j e g a b f 

v* v* s* u* z* n* m* y* t* r* p* w* o* f* d* k* l* i* a* b* h* j* I g* c* w s t z n m y u r v o p f d l j i a h b e k g c 

w* w* z* m* s* t* u* r* n* y* o* v* p* b* h* l* k* g* c* f* d* I j* i* a* v z m s u t r n y w p o b h j l g c d f k e i a 

y* y* n* v* m* w* o* u* p* t* r* s* z* c* a* f* h* l* j* g* i* d* b* I k* y n w m v o t p u s z r c a f h j k i g b d e l 

z* z* u* p* t* o* w* n* v* m* s* r* y* i* g* d* b* j* l* a* c* f* h* k* I z t p u o v n w m r y s i g d b k j c a h f l e 

4. Classes 

Now let us determine the orders of elements and all classes in the group. The order of any element a in a given 
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group is determined using the relation 

�' � �. 

The smallest value of n in the relation above is the order 

of element a. For example, for element �( in Table 1 we 

can show using Table 2 that 

�() � �(!�(�( � �(!* � �(��(* � �(�+ � �(��(+ ��(�� � �(�(� � �(*( � �. 

Then, the order of element �( becomes six. The obtained 

orders of elements in symmetry group Oh using the relation 

above are given in Table 3. 

Table 3. Orders of all elements in point group Oh. 

Order Symmetry elements 

1 e 

2 j, k, l, j*, k*, l*,t, u, v, w, y, z, I, t*, u*, v*, w*, y*, z* 

3 a, b, c, d, f, g, h, i 

4 m, n, o, p, r, s, m*, n*, o*, p*, r*, s* 

6 a*, b*, c*, d*, f*, g*, h*, i* 

To find the classes in a given group we use the conjuga-

tion. If a, b, and c are three arbitrary elements in the group, 

and if the elements a and b satisfy the condition 

� � ,$,��, 

then the element a conjugate to the element b, or vice 

versa, since 

$ � ,���,, 

the element b conjugate to the element a as well. An ar-

bitrary element in a given group and all elements which 

obtained from this element by conjugation form a class for 

the group. All elements which belong to same class have 

the same order. Thus Table 3 can give a prior idea about the 

answer of question that which elements can be form same 

class? For example, let us use the relation of conjugation 

for the element j. If we use the element j and all elements in 

group Oh instead of b and c in the relation, respectively, 

�-��� � ---�� � .-.�� � %-%�� � /-/�� � 0-0�� �1-1�� � 2-2�� � +-+�� � -(--(�� � .(-.(�� � %(-%(�� �/(-/(�� � 0(-0(�� � 1(-1(�� � 2(-2(�� � -, 

�-��� � ,-,�� � 3-3�� � 4-4�� �  - �� � 5-5�� �6-6�� � 7-7�� � �(-�(�� � ,(-,(�� � 3(-3(�� �4(-4(�� �  (- (�� � 5(-5(�� � 6(-6(�� � 7(-7(�� � ., 

$-$�� � 8-8�� � *-*�� � 9-9�� � :-:�� � ;-;�� �<-<�� � =-=�� � $(-$(�� � 8(-8(�� � *(-*(�� �9(-9(�� � :(-:(�� � ;(-;(�� � <(-<(�� � =(-=(�� � %, 
then we get the elements j, k, and l. Thus we see that the 

elements j, k, and l form a class. The obtained all other 

classes for the symmetry group Oh, using the definitions of 

conjugation and class, are presented in Table 4. 

Table 4. All classes in point group Oh. 

 Symmetry elements 

Class 1: e e 

Class 2: 3C� j, k, l 

Class 3: 3σ> j(, k(, l( 

Class 4: 6C�′  t, u, v, w, y, z 

Class 5: I I 

Class 6: 6σB t*, u*, v*, w*, y*, z* 

Class 7: 8C� a, b, c, d, f, g, h, i 

Class 8: 6C! m, n, o, p, r, s 

Class 9: 6S! m*, n*, o*, p*, r*, s* 

Class 10: 8S) a*, b*, c*, d*, f*, g*, h*, i* 

5. Subgroups 

Let a be any element in a given group. The set elements �, �, ��, ��, �'�� is called the period of element a, where n 

is the order of a. The period forms an Abelian subgroup. 

Let us now find the periods of elements in group Oh. For 

example, the order of element �( is six, therefore, the pe-

riod of �( becomes 

D�, �(, �(�, �(�, �(!, �("F � G�, +, �, �(, *, *(H 

which is an Abelian subgroup of group Oh. The obtained 

all Abelian subgroups for group Oh, using the definition of 

the period of an element, are given below: 

G�H, G�, -H, G�, .H, G�, %H, G�, 1H, G�, 2H, G�, <H, G�, =H, G�, 6H, G�, 7H, G�, +H, G�, -(H, G�, .(H, G�, %(H, G�, 1(H, G�, 2(H, G�, <(H, G�, =(H, G�, 6(H, G�, 7(H, G�, �, *H, G�, $, 3H, G�, ,, 9H, G�, 8, 4H, G�, -, /, 0H, G�, ., :, ;H, G�, %,  , 5H, G�, -, /(, 0(H, G�, ., :(, ;(H, G�, %,  (, 5(H, G�, +, �, �(, *, *(H, G�, +, $, $(, 3, 3(H G�, +, ,, ,(, 9, 9(H, G�, +, 8, 8(, 4, 4(H. 

In group theory, there is no any theorem which can give 

us the number of subgroups for a given finite group. Even 

so, we can construct some subgroups according to one (or 

more) element (or elements). For example, let us construct 

a subgroup according to elements e, a, and b in Table 1. We 

have now a set of elements: G�, �, $H. However, we see that 

this set is not a subgroup because it does not contain the 

inverse elements of a and b. So, we should add the ele-

ments f and g, the inverses of a and b, to this set. We have a 

new set G�, �, $, *, 3H. This new set cannot be a subgroup as 

well because its order is not a divisor of the order of group 

Oh (the order of a group is its number of elements and the 

order of a subgroup has to be a divisor of the order of the 

group). Furthermore, it does not satisfy the closure axiom. 

Therefore, we see that it has to include the elements c, d, h, 
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i, k, l. Namely, the set should be G�, �, $, ,, 8, *, 3, 9, 4, ., %H. 

But the set is not a subgroup yet because it is not close with 

respect to the law of multiplication. The order of this set is 

also not a divisor of the order of group Oh. We easily see 

that the set must contain element j as well in order to satis-

fy the first group axiom, the closure. The set of G�, �, $, ,, 8, *, 3, 9, 4, -, ., %H is now a subgroup of group Oh. 

It can easily be shown that the set satisfies four group 

axioms, that is, it is a subgroup of group Oh. Some sub-

groups of group Oh, which are obtained using the same 

method above according to the set of elements G�, �(, 7(H, G�, $(, 6(H, G�, ,(, <(H, G�, 8(, =(H, G�, �, /H, G�, �, �(H, and G�, �, /(H, respectively, are given below: 

G�, �, *, 1, <, 7, +, �(, *(, 2(, =(, 7(H, G�, $, 3, 1, =, 6, +, $(, 3(, 2(, <(, 6(H, G�, ,, 9, 2, =, 7, +, ,(, 9(, 1(, <(, 7(H, G�, 8, 4, 2, <, 6, +, 8(, 4(, 1(, =(, 6(H, 

G�, �, $, ,, 8, *, 3, 9, 4, -, ., %, /, 0, :, ;,  , 5, 1, 2, <, =, 6, 7H, �, �, $, ,, 8, *, 3, 9, 4, -, ., %, /(, 0(, :(,  (, 5(, 1(, 2(, <(, =(, 6(, 7(, �, �, $, ,, 8, *, 3, 9, 4, -, ., %, +, �(, $(, ,(, 8(, *(, 3(, 9(, 4(, -(, .(, %(. 

The subgroups of 

G�, �, $, ,, 8, *, 3, 9, 4, -, ., %, /, 0, :, ;,  , 5, 1, 2, <, =, 6, 7H 

and 

G�, �, $, ,, 8, *, 3, 9, 4, -, ., %, +, �(, $(, ,(, 8(, *(, 3(, 9(, 4(, -(, .(, %(H 

correspond to the point groups O and Th, respectively. 

6. Conclusions 

We have clearly defined all elements of point group Oh 

using appropriate figures. Then we have found the matrix 

representations for every element. We have formed the 

multiplication table for point group Oh using the matrix 

representations and the permutation counterparts for every 

element. Furthermore, we have determined the order and 

period of every element, then, we have found all classes. 

Finally, we have found all Abelian subgroups and some 

other subgroups of Oh. 
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