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Abstract: COVID-19 is currently a perilous disease that has an incubation period of between 4 and 6 days. The United States 
Disease Control and Prevention Centers posited that in certain cases, coronaviruses are zoonotic, which means that they have 
been responsible for moving from animals to humans. The outbreak of the new coronavirus (COVID-19) disease has had an 
enormous impact globally. The World Health Organization (WHO) has put in place various safety measures that will help 
alleviate the spread of the epidemic. This paper presents an SEIRD epidemic model with government policy to predict the spread 
of COVID-19. Through mathematical analysis, the essence of the model is investigated. The basic reproductive number of the 
envisaged model is computed and decides whether or not the disease is present in the population. Disease-free and symptomatic 
equilibria are studied for their existence and stability via the Lyapunov function. It is established from our numerical simulations 
that the introduction of government policy helps to alleviate the spread of the disease, where the basic reproductive number takes 
part in sustaining their stability. In the prediction of infected and death cases that were very similar to real-life data, it was 
established that the model was effective. 

Keywords: COVID-19, SEIRD, Basic Reproduction Number, Disease-free Equilibrium, Routh-Herwitz Criterion,  
Global Stability, Lyapunov Function, LaSalle’s Invariance Principle 

 

1. Introduction 

Infectious diseases affect human lives immensely and 
millions of people have been killed by many infectious 
diseases. Controlling infectious disease over the years, 
was a difficult issue [1]. Many of the infectious conditions 
in nature have been revealed in hosts for a time before 
hosts become infectious [2]. COVID-19 as an infectious 
viral disease is first reported in the winter month of 
December 2019 in a city called Wuhan in Hubei Province 
of China [3]. 2019-nCov is an epidemic disease caused by 
a novel virus, which is engendering a global emergency 
and requires a mathematical model to simulate its spread 
taking into consideration its notorious distinct 

characteristics. Thus, it would be expedient to develop a 
mathematical model which will predict the spread of the 
virus. 

Modelling and simulation are significant decision tools that 
is used in controlling human and animal diseases [4-7]. 
Though, since each disease shows its peculiar biological 
features, various models have been adopted to each distinct 
instance in order to tackle actual situations [8, 9]. In the paper 
of Roosa et. al [10], the authors presented three 
phenomenological models which confirmed with outbreaks of 
other forms of infectious diseases other than COVID-19. 
Several works [11, 12], proposed the SEIR models with some 
variations with stochastic modules. 
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2. The SEIRD Model 

2.1. Description of the SEIRD Model 

The proposed SEIRD model is a compartmental model used 
in modelling epidemics like the deadly disease, nCOV-19. The 
susceptible group over time moves into the exposed 
(pre-infection) compartment with infection rate, .β  
Individuals in the exposed group with a rate at which the 
infected persons become infectious ε  move into the 
infectious compartment. The infectious persons may or may 
not recover at rates r  and d  respectively. Individuals who 
may recover after treatment joins the susceptible compartment 
since there is no vaccine for the disease. 

 

Figure 1. The schematic illustration of the SEIRD model. 

Assumption of the SEIRD model includes the following: 
short, i.e. the population is constant and there are deaths 

caused by the disease and; 
random mixing, in other words, we assume that people 

behave like air particles and can be expected to contact people 
far away. 

2.2. Creating the SEIRD Model 

Creating the equation that labels the susceptible group 
becomes infected at rate .β  Thus, the change of population 
of the susceptible group is equal to the negative product of the 
susceptible, ( )S t  and infectious, ( )I t  with time, .t  

( ) ( ) .
dS

S t I t
dt

β= −               (1) 

This is incomplete because there is a possibility that a new 
child will be born or a foreigner travelling into the country at 
rate a N  and there is µ  as natural death in the compartment. 
The above equation now becomes 

( ) ( ) ( )  .
dS

N S t I t S t
dt

β µ= − −         (2) 

This completes the equation that labels the transformation 
in the population of the susceptible group with time. 

The equation that defines the exposed group begins by 
adding what was just removed from the susceptible group, 

( ) ( )S t I tβ  

( ) ( ) ( ) ( )  ,
dE

S t I t E t E t
dt

β µ ε= − −       (3) 

where ε  is the extent whereby an affected person becomes 
infectious per unit time and µ  is the natural death rate. 

Individuals that are exposed then join the infectious 
compartment, that is 

( )  .
dI

E t
dt

ε=                   (4) 

This group is reduced in two ways. People can either 
recover or die with the virus or disease. Both options remove 
people from this group. 

( ) ( ) ( ) ( )  .
dI

E t I t rI t dI t
dt

ε µ= − − −        (5) 

The population of the recovery group is increased by those 
that are recovering from the infection. That is, 

( ) ( )  .
dR

rI t R t
dt

µ= −                (6) 

The equation of the death compartment is obtained by 
removing the expired individuals from the infectious group. 
This is shown in the equation below; 

( )  .
dD

dI t
dt

=                       (7) 

Hence, the model 

( )

( )

 

  

  

  

 

dS
N SI S

dt

dE
SI E

dt

dI
E r d I

dt

dR
rI R

dt

dD
dI

dt

β µ

β µ ε

ε µ

µ

= − −

= − +

= − + +

= −

=

              (8) 

( ) ( ) ( ) ( ) ( ) ,T t S t E t I t R t= + + +             (9) 

where T  is the total population at time t , N  is the rate of 
recruitment, β  is the rate of infection, µ  is the natural rate 
of death, ε  is the rate at which a person who is infected 
becomes prone to infections for each unit of time, r  is the 
rate of recovery of an infected individual per unit time and d  
is the disease-related death. In this manuscript, we assume a 
function ,Γ  as a policy adopted by the government to 
alleviate the spread of the epidemic. The policy function is 
defined by the piecewise function below; 

( )
, if 0    

.
, if   

I I I p
t

I I p

γ

δ

 ≤ ≤
Γ = 

>
          (10) 

The death compartment, D  do not appear in equation (11), 
so system (8) can be reduced to the system below 
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( )

( )

  

  

  ( )

  

dS
N SI S

dt

dE
SI E

dt

dI
E r d I t

dt

dR
rI R

dt

β µ

β µ ε

ε µ

µ

= − −

= − +

= − + + − Γ

= −

        (11) 

From system (11), 

( ) ( ) ( ) ( )'
T N T r d I Tµ µ= − − + − Γ ≤           (12) 

( )T Nµ ≤                          (13) 

.
N

T µ≤                            (14) 

Then the ( )lim sup   
N

T
n µ≤

→∞
. Therefore, the reasonable 

region of the reduced system (11) is 

( ) 4, , ,    :  ,   0,   0,   0,   0 .
N

S E I R T S E I R
µ

  Ψ = ∈ ≤ > ≥ ≥ ≥ +
  

R   (15) 

The reduced system (11) is considered to be mathematically 
and epidemiologically reasonable in .Ψ  We use the concept 

of the next generation matrix to determine the basic 
reproductive number [1]. The reduced system (11) always 

maintains a disease-free equilibrium   ,0,0,0 .0
N

X
µ

 
=   

 
 Near 

this disease-free equilibrium, I  has to be less than I p
 so the 

reduced system becomes 

( )

( )

  

dS
N SI S

dt

dE
SI E

dt

dI
E r d I

dt

dD
rI R

dt

β µ

β µ ε

ε µ

µ

= − −

= − +

= − + +

= −

               (16) 

2.3. The Basic Reproduction Number 

An outbreak can be seen as the predicted amount of cases 
explicitly associated with a particular situation in a population 
where all the other individuals are prone to infection [13]. In 
epidemiology, the basic reproduction number, or basic 
reproductive number is denoted by denoted 0R

 [14]. 0R  is 

not a biological constant for the pathogen, because other 
variables including environmental conditions and the nature 
of the infected population are also disturbed. Moreover, some 
driving factors that influence 0R  are: 

the infectivity duration of the patients concerned; 
the virus’ infectiousness and; 

the number of vulnerable persons in the population with 
whom the affected patients are connected. 

It is also important to know that 0R  values are usually 

estimated from mathematical models (in this case the SEIRD 
model). The basic reproduction number 0R  does not by itself 

give an estimate of how fast an infection spreads in the 
population. It is evident in many infection models [12, 15], 

10R >  whenever the infection spreads throughout the 

population, but not if 1.0R <  

Mathematically, the basic reproduction number 0R  Can be 

calculated using the following equation: Let ( )  , ,
T

X E I S= . 

System (16) can be seen as 

( ) ( ) ( )'
    ,X t F X V X= −               (17) 

where 

( ) ( )
( )
( )

        

    0 ,      

  0  

ESI

F X V X E r d I

N SI S

µ εβ
ε µ

β µ

 + 
  

= = − + + +  
    − + +   

.     (18) 

The Jacobian matrix of both ( ) ( ) and F X V X  at 0X  

(disease-free equilibrium) are respectively, 

( ) ( ) 00
  ,     0 00 0 1 2

VF
DF X DV X

J J

  
= =      

   
,       (19) 

where  and F V  are 2 2×  matrices defined as follows 

( ) ( )0 0    and    ,    
F X V Xi i

F V
X Xj j

   ∂ ∂
   = =
   ∂ ∂   

        (20) 

where   1, 2;     1, 2.i j= =  

From the above, 
0 01    and    ,

20 0

N
C

F V
C

β
µ

ε

 
  

= =     −  
 

 

where  and .1 2C C r dµ ε µ= + = + +  
V  is a non-singular M  matrix. Therefore, it is invertible 

such that 1
  1 2 2

0 0

N N

C C CFV

εβ β
µ µ

 
 − =  
 
 

 is the next generation matrix 

of system (11). The spectral radius of 1
FV

−  is given by 

( )1   
1 2

N
FV

C C

εβ
ρ

µ
− = .              (21) 

Hence, the basic reproduction number of system (11) is 

( )( ) .0 1 2

N N
R

C C r d

εβ εβ
µ µ µ ε µ

= =
+ + +         (22) 

3. Equilibria 

This section discusses the equilibria of system (16). At the 
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disease-free equilibria, ,0,0,00
N

X
µ

 
=   
 

 often occur only if 

I I p≤ . Also, to determine the endemic equilibria of (11), we 

set the system of equations to 0 as shown 

( )
( ) ( )

0

0

0

0

N SI S

SI E

E r d t

rI R

β µ

β µ ε

ε µ

µ

− − =

− + =

− + + − Γ =

− =

              (23) 

The above system (23) reduces to 

( )
( )

0

0

0

0

N SI S

SI E

E r d

rI R

β µ

β µ ε

ε µ

µ

− − =

− + =

− + + =

− =

             (24) 

if 0 I I p≤ ≤ . When I I p> , then system (23) turn out to be 

( )
( )

0

0

0

0

N SI S

SI E

E r d

rI R

β µ

β µ ε

ε µ δ

µ

− − =

− + =

− + + − =

− =

               (25) 

System (24) has a disease-free equilibrium (i.e. 0I = ). We 
solve (24) to determine the endemic equilibria. From the third 
equation of system (24), 

( )
.

r d
E I

µ
ε

+ +
=                  (26) 

Substituting the result in the second equation of (24) and 
solving for ,S  we have 

( ) ( )

( )( )
.

r d
SI I

r d
S

µ
β µ ε

ε
µ ε µ

βε

+ +
= +

+ + +
=

               (27) 

Substitution into the first equation of the system in question 
yields 

( )( )

( )1 .0

N
I

r d

I R

ε µ
µ ε µ β

µ
β

= −
+ + +

= −
              (28) 

Now, solving for R , 

( )1 .0
r

R R
β

= −                      (29) 

Back substituting, E  becomes 

( ) ( )1 .0
r d

E R
µ µ

ε β
+ +

= −              (30) 

Proposition 1. The system has a distinct disease-free 0X . If 

1,0R >  the system also has a unique endemic equilibrium 

( )* * * * *, , , ,X S E I R=  where 

( )( )

( ) ( )

( )
( )

*

* 10

*
10

*
1 .0

r d
S

r d
E R

I R

r
R R

µ ε µ
βε

µ µ
βε

µ
β

β

+ + +
=

+ +
= −

= −

= −

                   (31) 

4. Stability of the Equilibria 

This particular section investigates the stability of the 
equilibria. 

4.1. Local Stability 

We shall first consider local stability. To do so, we find the 
Jacobian of system (23). The Jacobian is shown: 

( )
( )

0 0

0
.

0 0

0 0

I S

I S
J

r d

r

β µ β
β µ ε β

ε µ
µ

 − − −
 

− + =  − + +
 
 − 

      (32) 

The disease-free equilibrium’s local stability is obtained by 
evaluating the Jacobian at 0X : 

( )
( )

0 0

0 0
.

0 0

0 0

S

S
J

r d

r

µ β
µ ε β
ε µ

µ

 − −
 

− + =  − + +
 
 − 

        (33) 

By subtracting λ  from the main diagonal, we solve the 

characteristic equation ( ) 00J X Iλ− = . The characteristic 

equation has two equal roots of µ− . The equation below is 
solved to find the remaining two roots: 

( )
( ) 0.

S

r d

µ ε λ β
ε µ λ

− + +
=

− + + +
           (34) 

Finding the determinant leads to 

( ) ( ) 0.
N

r dµ ε λ µ λ βε
µ

+ + + + + − =            (35) 

It is so obvious to see that the equation contains one real 
root if 10R > , and two complex conjugate roots with real part 
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when 10R <  [15]. This result leads to a proposition. 

Proposition 2. If 10R < , the disease-free equilibrium 

10X <  is then locally asymptotically stable. 

The stability of the endemic equilibrium *
,X  is gotten 

from evaluation of the Jacobian at endemic equilibrium [15]. 
The characteristic equation is shown: 

( )
( )

( )

0 0

0
0.

0 0

0 0

I S

I S

r d

r

β µ λ β
β µ ε λ β

ε µ λ
µ λ

− − − −
− + +

=
− + + +

− +

  (36) 

The above characteristic equation has µ−  as a root. The 
rest of the roots can be found by the characteristic equation 
below 

( )
( )

0

 = 0.

0

I S

I S

r d

β µ λ β
β µ ε λ β

ε µ λ

− − − −
− + +

− + + +
     (37) 

After the expansion of the determinant and simplifying, we 
have 

( )** .I r d Sβ µ λ µ ε λ µ λ β ε µ λ     + + + + + + + = +     
   (38) 

We conclude by Routh-Herwitz criteria [12], that, the 

eigenvalues of ( )*J X  are all negative when 10R > . 

4.2. Global Stability R0>1 

Theorem 1: If 10R > , the endemic equilibrium is then 

asymptotically stable globally in Ψ . 
Proof: Consider (8) and 10R > , such that the associated 

unique endemic equilibrium *
X  of the SEIRD model exist. 

The global stability of *
X  is investigated via the Lyapunov 

function: 

* * * * * *ln ln ln .
* * *

S E I
V S S S E E E I I I

S E I

     
     = − − + − − + − −    

    
 (39) 

We take the derivatives of the function V  as shown 

* * *
1 1 1 .

dV dS dE dIS E I

dt dt dt dtS E I

     
     = − + − + −
     
     

     (40) 

Substituting the derivatives , ,
dS dE dI

dt dt dt

 
 
 

 from (16) into 

(40), 

*
* *

* *
* * .1 1 1 2

dV S N
N SI S S I S

dt S

E SI QI E
SI C E E C Q E QC I QI C

E I

β µ β µ

β εβ ε

 
 = − − − + + +
 
 

   
   − − + + − − +
   
   

    (41) 

At the steady-state, 

* * *
N S I Sβ µ− + .               (42) 

Substituting (42) into (41) yields: 

* * * * *
* * * * *

* *
* * .1 1 1 2

dV S S I S S
S I S SI S S I S

dt S S

E SI QI E
SI C E E C Q E QC I QI C

E I

β µβ µ β µ β µ

β εβ ε

 
 = + − − − − + + +
 
 

   
   − − + + − − +
   
   

 (43) 

After simplifying we get: 

2 2* * *
* * * * *

* *
* * .1 1 1 2

dV S I S
S I S S S I S

dt S S

E SI QI E
C E E C Q E QC I QI C

E I

β µβ µ µ β µ

β εε

 
 = + − − − + + + 
 
 

   
   − − + + − − +
   
   

 (44) 

Grouping the terms with infected class without the ( )*  

from (44) and equating to 0, we obtain 

*
01 2S I C E Q E QC Iβ ε− + − = .       (45) 

A little perturbation of the steady-state from (16) and (45) 
yields: 

* * * *
2,   ,   .1 * *2

S S I C I
Q C

C E E

β β
ε= = =          (46) 

Substituting (46) into (44) and performing algebraic 
calculation results in: 

2 2* * *
* * * *

* *2 *
* * * *.

*

dV S I S
S I S S S

dt S S

E SI I ES
S I S I

E IE

β µ
β µ µ µ

β ββ β

= + − − − + −

+ − +

   (47) 

Factorization of (45) gives: 

* * * ** * *
2 3 .

* *
dV S S S I E SE I

S S I
dt S S ES IE

µ β
   
   = − − + − − −
   
   

  (48) 

Because the arithmetic mean exceeds the geometric mean, 
the inequality in (48) holds: 

* * * *
2 0,   3 0.

* *
S S S I E SE I

S S ES IE

   
   − − ≤ − − − ≤
   
   

     (49) 

This implies 0
dV

dt
≤  for 10R > . Therefore, V  is a 

Lyapunov function in Ψ  and by the LaSalle’s invariance 
principle [12], every solution to equation (16) approaches the 

associated unique endemic equilibria *
X , of the SEIRD 

model as t → ∞  for which 10R > . 
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5. Results and Discussion 

With the SEIRD model, we can predict the outcome of a 
decision in different situations. Our numerical simulations 
were done with MATLAB 2018a. The predictions are based 
on a decision taken by the government to alleviate the spread 
of the virus. We simulate the model by using the parameters 
from the recent data of worldometer, 2020 which can be 
obtained from http://www.worldometers.info/coronavirus 
[16]. 

 

(a) Prediction before policy 

 

(b) Prediction after policy 

Figure 2. A numerical solution to the SEIRD model before and after the 

interventional policy by the government of the United States of America. 

Per the data as at June 13, 2020, the recruitment rate ( )N  of 

the United States is 3.30906997 08,e +  9.4980e-10,β =  µ  is 
assumed to be 0 , 0.1923,ε =  0.0340,d =  0.1429,r =  

( ) 330, 906, 20 89 ,S =  ( )0 2,5.E =  ( )0 105,I =  ( ) 841 60 , 93R =  and 

( )0 6.D =  Figure 2 shows the graphical illustration of the 

SEIRD model for the next 365 days as at June 13, 2020. We 
compare the predictions of the spread of the pandemic before 

and after the government’s policy. 

Table 1. Prediction of the Last Five Days Before Government Policy. 

Day Susc. Exp. Infec. Rec. Death 

361 20126624 7.0 43.5 211390541 100221142 
362 20126623 6.5 40.4 211390544 100221143 
363 20126622 6.1 37.54 211390547 100221145 
364 20126621 5.64 34.9 211390549 100221146 
365 20126621 5.2 32.4 211390552 100221147 

Table 2. Prediction of the Last Five Days After Government Policy. 

Day Susc. Exp. Infec. Rec. Death 

361 123765716 31470 84738 141095656 66760777 
362 123760819 30419 81903 141101607 66763610 
363 123756085 29403 79161 141107360 66766348 
364 123751511 28420 76512 141112920 66768994 
365 123747090 27469 73953 141118293 66771552 

Data about the outbreak of COVID-19 in the United States 
was obtained from worldometer. The spread of the outbreak 
was studied with the SEIRD model from June 13, 2020 to June 
12, 2021 (a period of one year). 

Table 1 and Table 2 show the last five days (i.e. 361-365) of 
the predicted data. From Table 1, the number of the 
susceptible population decreases steadily as the death 
population increases very rapid without the government’s 
interventional policy (i.e. social distancing, wearing of nose 
mask, frequently washing of hands with soap under running 
water, etc.). Table 2 also describes the decline of the number 
of deaths and a rise in the number of susceptible after the 
introduction of the interventional policy by the government. 
This depicts that the spread of the disease will diminish in the 
next 365 days after the introduction of the policy rendering the 
model effective. 

6. Conclusion 

In this manuscript, a simple SEIRD epidemic model was 
proposed and analyzed with an intervention of government 
policy to simulate and predict the spread of the coronavirus 
pandemic. This model was theoretically studied to examine 
the global stability of the equilibria by the use of Lyapunov 
function. Each time the associated reproduction number is less 
than one ( )10R <  or greater than one ( )1 ,0R >  the disease-free 

and endemic equilibria respectively were seen to be globally 
asymptotic. 

There is an indication that, for the endemic equilibrium, the 
disease will linger in the population if it is not controlled in the 
population. Future research will explore on vaccinated models 
for treating COVID-19. 
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