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Abstract: This investigation is concerned with the determination of the dynamic buckling load of a Pre — Statically loaded
imperfect elastic cubic model structure that is later struck by a dynamically slowly varying explicitly time - dependent load
which is infinitely differentiable and has right hand derivatives of all orders at the initial time. Our initial pre—occupation is the
determination of a uniformly valid asymptotic expression of the maximum displacement by means of multi—timing regular
perturbation procedures. This is finally followed by a determination of the dynamic buckling load of the structure. The result
shows, among other things, that the dynamic buckling load depends on the first derivative of the load function evaluated at the
initial time. Besides, the dynamic buckling load is related to the static buckling load and this relationship is independent of the
imperfection parameter. The result is, in the final analysis, particularized to cases of a step load with or without a pre—load. All
results are asymptotic in nature and so, are valid as the small parameters approach zero.

Keywords: Nonlinear, Slowly Varying, Infinitely Differentiable, Explicitly Time Dependent, Pre — Statically Loaded

1. Introduction

Mathematical investigations into slowly varying time—
dependent conditions appear to have originated from the
study of Kudiak [1] when he investigated asymptotic
solutions of nonlinear second order differential equations
with variable coefficients. Later studies on the subject matter
include [2-5], among others. Characteristically, none of these
studies was made in the landscape of dynamic buckling.
Mention is here made of other similar studies like [6-8].

For long in the immediate past, most dynamic buckling
investigations were considered devoid of any pre—static
load. However, in 1983, Simitses [9] introduced the
concept of static pre—loading and further expatiated on it
in [10]. Other investigations on the subject matter include
[11, 12]. However while most of the earlier investigations

on the subject used numerical approach as in [8-10],
Ozoigbo and Ette [13], on the other hand, adopted a purely
analytical approach by way of perturbation procedures in
asymptotic expansions of the variables. Dynamic buckling
of structures has been investigated by many researchers
including [14-17], among others but the analytical
approach adopted here is similar to that in the study of
Ozoigbo and Ette [13].

The loading system suggested here is such that the
structure investigated is first subjected to a nondimensional
per-static load of magnitude A, ,0<A, <1, but before the

structure could buckle statically, it is next trapped by a

dynamically slowly varying load Af (5 { ) where 0 <A <1,
|£(87)| <1, #>0 and £(0)=1, 0<0<.
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We demand that f (5f ) be explicitly time - dependent,

continuous, monotone—decreasing and infinitely differentiable
with right hand derivatives of all orders at 7 =0

2. Formulation of the Problem

The elastic cubic model structure (Fig.l) considered in

the work was first studied by [17, 18] and has continued to
serve as a generalized mathematical model of most physical
elastic structures encountered in actual engineering practice.

It consists of, (Fig.l) two rigid rods each of length L ,
arranged as in the Figure. The arrangement is struck by a
time dependent horizontal load P (T ) applied shortly after

initial time 7 =0. A mass M is attached at the meeting
point of the rods while the ensuing vertical motion is
restrained by a string whose rigidity follows a cubic law.
From the side of the spring, the mass is affected by the

(0<4?<1)

The nondimensional equation (without pre—static load) is

5 ofn
d 5(t)+(1_/]f(5;))g_bg3 :,12;’(5?) , >0 (2

22

dt
dé&(0)
0) = - =0
¢(0) = —
Here, b>0 serves as the imperfection sensitivity

parameter while A is the amplitude of the load f (5f ) In

our case, we are to determine the value of A, namely Ay,
called the dynamic buckling load which is needed to
dynamically buckle the structure under the explicitly time

dependent but slowly varying load f (5 3 ) assuming that the

structure had earlier been struck by the pre—load A, . As in
Budiansky [18], we define the dynamic buckling load A, as

the largest load parameter for the response of the system to
remain bounded and is determined [13, 18-20] by the
condition.

dA
d—fa-o (3)

0(&): (1-2)&" = 4 : 0(&*): (1-4))

etc.
From, Eq. (6) we get

etc.

3
. . X X
reaction force given by Fy :KL(L_b(Lj } ,b>0, K>0.

were, — is the additional displacement from equilibrium

position. As in the Figure, % is the initial displacement
serving as the initial imperfection. We let the angle € be
small and characterized by Cos@ =1, Sinf = 8. By letting
O be the tension on each arm of the rod, it becomes clear
that Q Cos@ = P(T).

Eventually, the equation of motion is

M%(%)+KL(1—%P(T))%—bKL(%]S =2P(T) [)L(J (1)

The following nondimensional parameters
adopted:

arc now

A= —O:f(di) , (P(0)=0),

where ¢, is the maximum displacement. Our initial pre—
occupation is thus to first determine a uniformly valid
asymptotic expansion for &, subsequent upon which the
condition Eq. (3) will be evoked to determine the dynamic
buckling load Ap .

3. Pre-Loading Stage [Static Analysis]

At this stage, we let & be the displacement and
f (Jf) =1. As there is no time dependence, we get the

relevant equation at this stage as
(1-40)& =64 =X 4)

Using asymptotics, we get
&= 8¢ )
i=l

Then, substituting Eq. (5) in Eq. (4) and equating the
coefficients of orders of & , we get

_ (1)3
)=y 0(53): (1-4) &) = (f’fO/]) _ (6)
0
(1)3
0 : 553): bey : L @)
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While we do not expect static buckling at this stage, we can nevertheless still determine the static buckling load Ag at this

stage by letting A, in Egs. (4) - (7) to be tentatively written as A .
Therefore (4) becomes

(1-2)& -b& = A¢ @®)
As in [18, 19], the condition for static buckling is
dA
- = O 9
it ©)

This gives
(1-45)-3b&5 = 0

where, Ag and &g are the values of A and ¢, respectively at static buckling.
This gives
(1 —As )

-2
Eos = 5 os= (1=4) (10)

By evaluating Eq. (8) at static buckling using Eq. (9), we get
3 3 1_
(1-25)2 = Eﬁ(b)z g (11)

We can however still use asymptotic and perturbation procedures to obtain the same result Eq. (11) in the following
alternative way.

Here, we let
— 3
- 1 bf(l)
_ 3 — — D%
= ¢¢é tc + ... ) c = , Cy = (12)
50 15 35 1 (1_/1) 3 (1_/1)
The process, as in Amazigo and Ette [20], Ozoigbo et. al
[16] is to first reverse the series Eq. (12) such that 5 _ _ 2 e
¢ =Sos (d1+d3<z(2)5) NG c_l (16)
3

E=d§+d &+ .. (13)

e On simplification, we obtain
By substituting in Eq. (12) for & from Eq. (10), and

equating the coefficients of powers of &, we quickly find (1_ A )% _3 J3 (b)% as (17)
that 2

and this authenticates Eq. (11) that was earlier derived. This
dy=— 5 dy=—— (14)  second alternative method will be used in the remaining part
of this investigation.

The process in Eq. (9) is now initiated using Eq. (13) to

yield. 4. Imposition of Slowly Varying Dynamic
4 +3dyE% =0 Load on Pre - Static Load (Dynamic
Analysis)
This yield R
We still let & (t) be the displacement strictly due to
d ; . )
C%S =—j ; os = ;—1 (15) f(5l) and equally let C(t) be the net displacement at
3 ]

imposition of the two loads. Thus, at imposition of the two

On determining Eq. (13) at static buckling, we get loads, we have
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C(f) = & +{(f) (18) At imposition of the two loads, we then get
d*c(i A ~ o
dfg )+(1_/‘0)<‘0 +(1‘/]f(51 ))5—1?(50 +<‘)3 = ¢ +/1f(5t)£

The equation to be solved is the difference Eq. (19) - Eq. (3) and this gives

dzdgzgf)_'_(l_/]f(df))f—b[gﬁ +3{0{(§+{0)J :/]g?f(d_f) ) P>0
=200 s0)=1 s o)<

5. Perturbation and Asymptotic Analysis

Let,
. dt A\
r=df d—;:(l—/lf(a't))z
Further let
f:7+%{@(r)22+@(r)23+. Y E(D)=n(n) s @0)=0. =23, ..

Then, we have

dé(i) _on or dt on o dr  on dr

di ot or di ot dr di  Or di

1 _ _
= (1=A0) 20 Ha () Erad ()E+ . . Y v,
where,
r _ d ) _ i
=20y = 0,=2)
dzf(f) 72 3 2 2 1 2
= (1A H () ()E . f e+ e2(1-A0){ed (1) €
— 1 — —
wd (N8 + . n +20(=A1 20 w20{af () +ad ()E+ . Ja .,
1 _ -
~SAf (1-Af) 2 &, +5{ag(r){2+ag(r)53+ ),
On substituting Egs. (23) and (24) into Eq. (20) and simplifying, we get
1 72 73 2 o 2 =
,7,tt+m{a£ (T)Qr +aé (T)Ct + .. } ’7,tt+(1_Af)’7,rr+(l_/1f)% aé(r){

v ()8 + . Nn+—22n -2 L (1) (E+ . N,
) (-anye A }

5Af' o " z2 z3 b 3

_ (1—Af)§l7’”+(1—ﬂf){aé (e }{”Jr”_(l—/lf),7

3 o -

+mb{0’7(’7+{0)—mA.f(T){

(19)

(20)

1)

(22)

(23)

24

(25)

(26)
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Now let,
E(f) =n(tr) = 22/7” (t,1)&'07

where #j on 7'/ in Eq. (27) represents indices and not powers.

Then, substituting Eq. (27) into Eq. (26) and equating the coefficients of powers of & J, we get

7\ . 0 0 1
O(E) c 0+ (1—/1f(r))/1f(r) 0B(r)
o) : 7', +n"=-—2 7, +— AL pe
(1-21)2 2(1-41)2
o B R e
(1-Af)2 2(1-11)2 (1-47)
3 0 0o 2 0, b (10)) ___30__] ) [ 000\ [ £0)
oAe) e =t i ) -y ) ()
3 31 3_ 2 n __ 3b 10\2 11 3b M\ 1
o(&%s) : 4= (I_M);wz(f)n ’ (I_M.)(n )7 (1_/”.){(50 |7
+2<((1)/7(11)/711:|_(1_2/1],)(‘&(7'),71,0” - 1’730” + A7 3,73?_(1_1/]]{)0'6( ) 1,01
(1-2f)2 2(1=Af)2
73 52 . 32 32 __ 2 12 3b 10 10,412 11 2 _ 3b
o(8e) : n%+i”= (I_M);@(T)ﬂ,t,+ i=ar) {/7 0 +(n )} =7)

X[fél)(ﬂ(“))z+f7(1°)f7”<‘§1)+ él)(ﬂ(”))z}— EpY (0T T A

etc.
The initial conditions which are evaluated at (0, 0) , are

,71'1(0’0):0, i=1,23, . . . = j=123,

@7

(28)

29

(30)

(€2))

(32)

(33)

(34

(35)

(36)

(37

(€1
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(&) 7%(0,0) +(1-2)2{ @ (0)72 (0, 0) +27) (0, 0} =0 (39)

etc.
We note that terms of order & ¥ are not included because such terms varnish automatically on simplification
The solution of Eq. (28) is

0" (t,1) = ayy(7)cost+ B, ()sint + B(7) (40)
A
@, (0) = - B(0) BT Bo(0) = 0 (41)
On substituting Eq. (41) into Eq. (29), we get
114_11_21_/]~—l Vo + Af o it
n.,+n = ( f) 2{alosmt ,Blocost} —3{ ay, sint ,Blocost} (42)
2(1=Af)2

To ensure a uniformly valid solution in ¢, we equate to zero in Eq. (42), the coefficients of cos? and sin¢ and respectively
get

The solution of Eq. (43), is
Bule) =0 ) =~ 5(0) 155 @
1-Af
It easily follows that
n" =ay, (r)cost +B(1) (45)
The solution of the remaining equation in Eq. (42) is
0" (t.7) = ay, (r)cost + B, (7)sint (46)

5(0)/(0)(4-4)
4/1(1—)|)§

a;(0)=0 ; B,(0) =

We next, substitute into Eq. (30) and get

1 I
0", +n"*=2(1=-Af) 2 { a;sint = B cost } + /]—f3 {-aysint+ 5, cost} -

){al"ocost+B"(T)} (47)
2(1-Af)2

(1-Af

To ensure a uniformly valid solution in #, we equate to zero in Eq. (47), the coefficients of cos? and sinf and respectively
get

B - Af'By aj . oal- Affay
4(1-1f) 2(1_”)% 4(1-11) (48)

On solving Eq. (48) we get

n
ayy

2(1—Af)%

B(0)£'(0)(4-4)

ds ; ,811(0)= - S
4(1=Af)a

Bu() =(1-1)* |8, (0)- )
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Similarly, we get
a,(r) =0
Thus, we get
n'' = B, (r)sint
The solution of the remaining equation in Eq. (47) is

B"(r)

77 (17) = @ (r)oost + B (rJsine = s
R IR ACR

After substituting for terms on the right hand side of Eq. (31) and simplifying, we get

1

b 3 1
’7%2: +n* = 2(1—/1f) 2 (T)0’10 COSH-W {33 +(EBO'120J+3(ZO'130 +"1032JC(’St

3b
(1-Af)

2
+%Ba120 cos 2t +i0'130 cos St} —[—]l:{(gl) { (BZ +%a120j +2Bay,cost + %alzo cos Zt} +({él)) (0'10 cost+ B) }

1

700.0) = 0 5 7% (0.0)+(1-1)" 2 (4(0) 7" (0.0)) = o

To ensure a uniformly valid solution in ¢ we equate to zero in Eq. (53) the coefficient of cos? and get

w130 2 2 o 4]

where,

We can further write Eq. (55) as

2
b (0)=B*(0)R, +B(0)R, ; R, =- 15bé . R3=_3(25(§1)+({£1))].

The remaining equation in Eq. (53) is re—arranged as

30

’73,0n+’7 = ;(r)+n(r)cos2t+r(r)cos3t .

70(0.0) = 0 5 7% (0,0)+(1-4)"2 (@4(0) 7 (0.0)) = 0

where,

(50)

(51

(52)

(53)

(54)

.(55)

(56)

(57)

(58)

(59)
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and where,

5b8°(0) 3bB*(0 .
”(O):_z(l—(/l))_ (1—/(1)){233(0)5()+ 1 (

e&))z} ;rz(o):jﬁ_(j)){H ;‘Eg)}

(60)

Meanwhile, the following will be needed later

B, (17, 38(0 o 2 ea) 8| [ a0 (8
SR () ”Hg : J_3{{%{55>[350)_14A 7 0) +3[WJ+B(0) - 6D
rg(o):—% ; Rs :[[H%J—{/l +%g§1) (1—/1)}: ; 13(0) :—%. (62)
The solution of Eq. (57) is
n* (t, T) = ay (T)cost+,330 (T)Sint+r1 (T)—%r2 (T) cosZt—ér3 (T)cosSt. (63)
am(o)=—(lf’A)[%(‘”—4BZ(o)sé‘> —33(0)(550)2] L Bu(0)=0. (64)

On substituting into Eq. (23), we get

31 31 -1 3b 2 O ay
. +n =2(1—/]f) zo.é(r)ﬂllsint+ -|| B +-10 +ZBa'locost+%cos2t

(1-21)2
X[, sint — ﬁ[{aﬁoﬂu sin2t + 2B, sint} fél) n fél)ﬁll sint}+ 0 —2/1f) b (1)@ cost
! 2 3 Af (2 ' ©
=2(1-41) 2 {—a’é’o sint + 3y cost +=rj (T)sin 2t +—r3"(1')sin3t} +—f3{—r2 (r)sin2z
: 2(1-Af)2 3
. 3 . 1 " .
=y, sint + Byjost +§r3 (T)sm3t} + (1=47) (1)@ sint

1
7'(0.0) = 0 1 % (0.0)+(1-) (et (0)7')(0.0)+7” (0.0)) = 0
To ensure a uniformly valid solution in ¢, we equate to zero in Eq.(65), the coefficients of cos? and sin¢ to get respectively

,_ AfBe . day . , Af'a
BTHEAN T L S aean ) (66)

where,

(67)
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We shall later need the value of &b (0) which can easily be evaluated from Eq. (54) to be

3/'(0)

“R; R=B(0)(16-44)-88(0)& (1-1)
16(1-A)2

a(0)= -

In a similar way, the value of #; (0) gives, from Eq. (67)

w8(0)(O01-2)| # (0 + 500 | 150 [ 28 () | (a0

Meanwhile, the solution to Eq. (66) is

T T

Bu(r) = (1-4f) 4

0(1-Af) 4 0
The remaining equation in Eq. (65) is now gathered to read

'+t =, (r)sin2t +75 (7)sin3t .

1

7'(0,0) = 0 ; 7)o, 0)+(1—/1)7{a12(0)/7{1,(0, 0)+7% (0, o)} =0
where,

2
Qi

}+ 4r2'(1') _4f'r2(1')

(1_/1)% 4(1-2) (1-2) (1-2) r'(0)

J—@} -l = (-0 a0+ Ja(0-40 )

3b 3b
Ty (T) = {Balolgn + }_ ( {0'1013115(51

4 1-Af)

_3baiohB 374(1) _ 3Af'1(7)
5(7)= 4(1-2) 1 b
4(1=Af)2 16(1-Af)2
Thus, solving Eq. (71), we get
7 (1.7) = ay (1) cost+,831(r)sint—%r4(r) sin2t—%r5(1')sin3t .

ay(0) =0 ;5 B, 20

Later, we shall have cause to use O’ (0) which we now evaluate from Eq. (66) as

Af'(0)a;(0) je ay (0) =h (0)- bAf'(0)| 65B°(0)

a3, (0) =h (0) + 4(1-1) 4(1-2)| 32

So far, we write the summary as

l](l,T):g?(l710+5l711+52l712+ o )+<?3(,730+5,731+52,732+ o )+

6. Maximum Displacement

Following, Eq. (24), the condition for maximum displacement ¢, is

3(1-Af)z 3(1-Af)2

~482(0) & —3B(0)(

1))2]_

1
4 ds

|

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)
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1

n.+ (-2 {0 Erad (VE+ . . nra,] =0 )

We let ta , t, 1, and T, be the critical values of 7, £, 7 and T respectively at the maximum displacement and let us
assume the following series..

i = (EO+6E01+62f02+...)+§(Elo+5ill+62?12+...)+§2 (2o + 1, +52222+...)+.. . (78)
1, = (to+6tm+52102+...)+<?(110+6t11 +52t12+...)+<?2 (tyy + Oty +0°1, +)+ (79)
= (o+0t + 0+ )+ E (5 + 0%, + 07, 4. )+ E2 5y + 01 40Ty + . )+ (80)

= Ji, —5{( +3iy, +0%, + .. .)+?(210+5f11+52212+ . .)+?2(f20+5221+52222 .

SR |

We shall now expand the relevant terms of Eq. (77) as follows:

3/71,0; (ta’ra) = ?[’71,0; (t0,0)+{ (5%1 +52t02 + .. -)"‘c?z (fzo +0ty, +52t22 + .. -)}’71,0z +5{ (fo

_ 82
+3ty + Oty + . . )+ E (g +Oty ¥ty + )}/710 + .. ﬂ (52
(. 0)
1 1 1
(1-21) "2 &n", =5§{(1—/1 ) 27 +(1=2) 20 { Oty + 8ty + (12 + 013, )+ . .}
_ 1
+5{£0+5201+ . .+$2(£20+5£21)}[(1—/\f) 2/7},0] + ... o (83)
'’ (i)
1 1
(A7) 2 8o =(-2) 2 8ot |+
En=8 [’73,2(2050)"‘{5%1"'52’02"' - -}/73,011"'5{;0"'5?01"'- : }’733} (0
_ - 1 1 1
POl =L, (=00 P =] (-2) S et (o) (=)
' (84)

xb (0)7'° Oty +. . .} +0 ((1 A7) 2 a(r ),7{3](;0+5;m ) .
()
(1=A7) 2 (1) £ = (1-2) "2 a4 (0) 5 E"

+ ...

(.0)

where the left hand sides of these expansions are evaluated at (ta ,Ta) while the expansions on the right hand sides are

evaluated at (to ,0)

By substituting all these expansions into Eq. (77) and equating the coefficients (f o’ ) we get the following:
0(F) 1% = 0. (59)

_ Lo
0(é8) = n'+(1=2)"27" +in' + 10", = 0 (86)
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- _L
O(&) « o'+ +(1-2) 2k (0)7' = 0 - (87)
From the O}? =0, we get
6 = 11 (88)

where we have used the least non - trivial value of ¢,
It also follows that

1 1 . "10)(1+A
by =~ T[Ol,lt+(1_/])2’71,0t+to’71,0ﬂ} - L() ;o =0, (89)
1t 4A(1-2)2

To determine the maximum displacement €, , we evaluate Eq. (76) at the critical values of the variables, using Eq. (79) — Eq.
(81) and get

Nt1a) = 1= & [n“)+5(t01f7‘,‘1+fof7‘,°r+/7“)+ : "]‘(; 0)+?3[tzof7‘,°,+/73°+5{ to /'y
’ (90)

+ ...

()

It is obvious that, on evaluation, most of the terms in Eq. (90), will varnish. There are however certain terms such as fo , T

10 0 L2, .10 11 30 5 130 , 30
Tl i Yool 1 Flolaoll v T lofl s Yol Y T }"‘ . }

etc. in Eq. (90) which are yet to be determined and which we shall next determine from the second of Eq. (22) and get
dr AR | D A T VRN R w21 REA S VA I PR
E—(l—/lf(a'z)y _Hl—g(mj{f (0)oi+ s (0)(7) v f (0)(7) }—g(mj {£(0)si
. on
1 " " m
+5f (0)( ) +— f } }

0 70:(1_/1)%;0_1( A j{f’(o)o’fﬂrf"(0)52f3 "(0)8°f 4} 1( A { OEE
2\1-1 2 6 2 5
)
6

2 92)
S0 }
Therefore,
_ 1, _ L Af(0)d _ 1,
t =(1-A7)2 ; ty = (1-A)2 |ty — ———L— ot 1-A)2 ¢, . 93
= (1=2)214 o = (1-1) [01 2(1-4) 0 = (1-1)24 93)
Similarly, we get
_ Ll Af(0)dty
L = (1=-A)2 | t,, ———==—]. 94
o = (1-4) {21 2(1-1) (94)
Now, to determine ‘ o and by, we next evaluate the first of Eq. (23), using third of Eq. (53), at the critical values to get
t,= 1, +ab (0)5,E7 +ak (0)7, 67+ . . . (95)

On substituting for ¢, , 1, and fa , and equating the relevant coefficients, we get
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o) : 1y=%= (1-A)2h = 7 0 = —"—
(1) (1-4) AR (%)
o7 = o Ao)ig | f(0)(1=4) . _ s(0)(1=4)  Ar(0)ig
o e (O e SRS o

0(32) Doty = f_zo +&fz(0)fo = (1—A)% A20+w3(0)f0 ooy = _@(0)20(1—/\)_%+(dz(0)t0- (98)

After evaluating terms in Eq. (90) the only non—varnishing terms are as

— 7| pnlo 5A 10 o z3 20 o 2 10 2 430 . ) )
,7(1 CCI:” + ta’?,r+ :| (t0,0)+£ |:/7 + (t20,7,r+t0,7,r):| (ta,0)+ . (99)
On simplifying Eq. (99), we get
- , 48°B°(0)b ,
n, = 2B(0)&(1+af (0)A11)+?/(1))[(1+A30)+5f (0) 4y . (100)

where,

()

m(1+A) _(5&))2_3 3¢ _( 0 )2 o (1=A) [ (1+2)B(0) a3y (0) . B*(0) 3R,
1= 8(1_/1)2 5 Az _43(0) 2 ZB(O) B2 (0) e 4B3(0)|: 4(1—/1) f'(O) +(1_/1){R4 +T %H.(IOI)

and where a3 (0) and ;zo are as in Egs. (75) and. (98) respectively.

7. Dynamic Buckling Load

For the purpose of determining the dynamic buckling load A, , we rewrite Eq. (100) simply as

n, = e +&ei+ . . . (102)
where,
, 4B°(0)b ,
o = 2B0)(1+o(0)41) 5 e = = [(1+459)+ 0.1 (0) 4y ] (103)

As in the first of Egs. (12) and. (13), we now reverse the series Eq. (102) and let

&= gt - - (104)

where by, we eventually get
-1 =-2 105
81 e > &3 614 . ( )

The maximization Eq. (3) (with 77, substituted for ¢, ) gives

3
(2

ny=-Sb=p,,= (106)
3g; 3e;

where /7,4 is the value of /7, at dynamic buckling.
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On substituting in Eq. (104) for/7 .4, we get

This gives on simplifications

Certainly, Eq. (108) is implicit in the load parameter A,
and is asymptotic in nature.

8. Analysis of Results

Equation (89) clearly shows the contribution of each
parameter to the dynamic buckling process. To the level of

N Py "
e S (1) (0) 4 ]2 108)
( "D)Z‘T(b)”f"{ 1+37"(0) 4, (
(1-4,): zg(b)i ME(1+4)2. (110)
and
E
_ 1
ol o
s S

the approximation retained, the dynamic buckling process
depends, among other things, on the first derivative of the
load function evaluated at the initial time. Using Eq. (19),
we can easily relate the static and dynamic buckling loads
to get

-1,

1-Ag

The relationship is independent of the imperfection
parameter ¢. Thus, given either of Ay or Ag, we can easily
determine the other value.

The corresponding step loading result for the case, d =0,
f(5f) 01 easily yields.

e (109)

T

As 1+5f( )All

The results Egs. (110) and (111) are those for a pre—loaded
case later trapped by a step load.

However, if there is no pre—load in the step loading case,
then, we have

(112)

(-1, =2 (5)s 1,

1-4, %_ A
el

The Egs. (112) and (113) were initially obtained by
Budiansky [18] by using phase plane analysis:

and

(113)

Figure 1. A Simple Cubic Model Structure.
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0.86

0.84 - R

0.82 B

0.8r B

0.78 - R

0.76 - R

0.74 B

Dynamic Buckling Load Ao

0.72 B

0.7 R

‘

0.68 . . . . . . . .
0.01 0.02 003 004 0.05 0.06 0.07 008 009 0.1 0.11
Imperfection Parameter &

Figure 2. Dynamic buckling load Ap versus imperfection parameter g?
calculated by Eq. (108) for different values of Ay, O and [’ (0):—1 Jor
f(r)=eT. (1) 4= 02,=003 (2) d=02,5=00.

0.35

0.349 E

0.348 E

0.347

0.346 - b

Dynamic Buckling Load Ap

0.3451 b

0.344 I I | | | | | | |
0.01 0.02 003 0.04 005 0.06 007 0.08 009 01 01

Static Buckling Load Ag

Figure 3. Dynamic buckling load Ap versus the static buckling load Ag
calculated by Eq. (109) for different values of Ay, O and f'(O) =-1jor
f(r) =e ™. (1) =02 =003 (2 4 =02 5=00.

9. Conclusion

Using regular perturbation and asymptotics, we have been
able to determine the dynamic buckling load of a Pre —
Statically loaded nonlinear cubic elastic model structure
struck by a slowly varying dynamic load. The effects of the
pre—load and slowly varying dynamic load are determined.
The dynamic and static buckling loads are mathematically
related and the relationship is independent of the
imperfection parameter. Specializations are made to various
cases, including the case of no pre—static load and step load.
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