

American Journal of Embedded Systems and Applications
2022; 9(1): 1-5
http://www.sciencepublishinggroup.com/j/ajesa
doi: 10.11648/j.ajesa.20220901.11
ISSN: 2376-6069 (Print); ISSN: 2376-6085 (Online)

Design on Linux Platform Driver for Embedded Systems

Mei Rifei
1
, Xiao Laisheng

2, *

1Shenzhen Edge Medical Technology Co., Ltd. Shenzhen, China
2School of Mathematics and Computer, Guangdong Ocean University, Zhanjiang, China

Email address:

*Corresponding author

To cite this article:
Mei Rifei, Xiao Laisheng. Design on Linux Platform Driver for Embedded Systems. American Journal of Embedded Systems and

Applications. Vol. 9, No. 1, 2022, pp. 1-5. doi: 10.11648/j.ajesa.20220901.11

Received: February 11, 2022; Accepted: March 4, 2022; Published: March 12, 2022

Abstract: In the development of embedded systems, driver design is one of its core technologies. In the driver design, Linux
driver occupies an important position. For the design of Linux driver, platform model is an important driver design method
which is introduced after Linux 2.6. This paper first introduces the driving principle and architecture of Linux platform model,
and describes the device, driver and device registration and unloading of the platform model in detail. Then, the driver code of
watchdog platform in Linux kernel is analyzed. Finally, taking the embedded development environment tiny4412 as an
example, a driver design example of Linux platform is given. The platform driver architecture has the characteristics of reusing
framework code, strong independence of device resources and drivers, simple code, unified kernel interface, easy maintenance
and expansion. In the development of specific drivers, we only need to focus on keeping the underlying device operation
function set corresponding one by one with the kernel interface provided by the driver structure, and ensuring device.name and
driver.name consistent, and making the platform device registered in the kernel space before the platform driver, which can
make the driver run well and stably, greatly reduce the work intensity and shorten the development time of new products.
Compared with the traditional device driver mechanism, the Linux platform driver mechanism registers the resources of the
device into the kernel which is managed by the kernel, and driver uses these resources by applying standard interface provided
by platform_device, which improves the independence of driver and resource management, and has better portability and
security. The developing test shows that the driver based on this architecture has good portability, maintainability and
scalability.

Keywords: Linux Platform Driver, Embedded System, Ttiny4412

1. Introduction

Device driver is a collection of functions and data
structures. Its purpose is to implement an interface for
managing devices. The kernel uses this interface to
request the driver to control the device. With the
continuous progress of technology, the number of
devices supported by the system is increasing, the
topology of the system is becoming more and more
complex, and the support requirements for plug and play
are also higher and higher. Device drivers based on
Linux [1] have a wide range of development
applications, such as developing real-time applications
[2], embedded SCADA and RFID systems [3], Linux
Optimization Technique [4], non-contact infection

screening systems [5], keyboard driver [6], GPIB
instrument [7], PCI synchronous clock card [8], CAN
driver [9], HI3210 driver [10], USB card reader [11],
numerical control system [12], sensor equipment [13]
etc.

The traditional device driver design is difficult to meet the
needs of this situation, so a new driver management and
registration mechanism based on platform is introduced into
Linux 2.6 kernel. Platform is a kind of virtual bus, which is
used to connect SOC integrated resources to CPU bus in
embedded system. It uses the object-oriented idea to
complete the abstraction from device driver to bus and core
layer.

2 Mei Rifei and Xiao Laisheng: Design on Linux Platform Driver for Embedded Systems

On Linux in the platform, bus, device and driver are
called bus device driver model, that is, a framework is
designed for the same kind of equipment. The core layer of
the framework realizes some common functions of this kind
of device, and the programmer does not need to implement
it by himself. The separation of driver and device makes the
writing of host controller driver and peripheral driver
parallel, and they are no longer related to each other,
realizing the idea of layering and separation, so as to
improve the independence and portability of the driver. Bus
binds the device and driver to the system every time it
registers a device, it will automatically find the matching
driver. Similarly, when registering a driver, it will
automatically find the matching device. Therefore, the
automation degree of device and driver matching is
improved, so as to the efficiency of driver development is
improved. Because of the advantages of Linux platform,
most of the drivers in Linux 2.6 kernel are rewritten
according to the platform mechanism.

This paper first introduces the driving principle and
architecture of Linux platform model, and describes the
device, driver and device registration and unloading of the
platform model in detail. Then, the driver code of watchdog
platform in Linux kernel is analyzed. Finally, taking the
embedded development environment tiny4412 as an
example, a driver design example of Linux platform is
given.

2. Principle and Architecture of Linux

Platform Driver

2.1. Linux Platform

After Linux version 2.6, the platform model was
introduced, which has three concepts: hardware information
(device), software algorithm (driver), and platform
(platform). [14]

Hardware information (device): refers to which GPIO
Interface, which interrupting number (IRQ), which physical
memory and other hardware resources are occupied by the
driver.

Driver: it refers to the software algorithm driven, such as
filtering algorithm, Fourier transform and other classical
algorithms. Its main function is control, operation and other
functions.

Platform bus: it is a virtual bus, and there is no real wire.
Its function is to match whether the name of device and
driver is the same. If they are the same, the probe function in
driver will be executed.

When designing drivers based on platform model, device
and driver are often written in different source files and
described with different structures. After being registered into
the kernel, the platform bus will match the relationship
between them according to whether their name members are
the same. [15]

Linux Platform is as shown in Figure 1. [16-17]

Figure 1. Linux Platform.

In Linux 2.6 kernel, the general process of developing
underlying driver through platform mechanism is: (1) define
platform_device; (2) register platform_device; (3) define
platform_driver; (4) register platform_driver. The function
entry point provided by the device driver is defined by the
platform_driver which explains to the system. User develops
his own device driver to realize the function interface in the
structure of platform driver according to the function of the
driver. [18-19]

2.2. Describing the Device of a Platform Device

In the Linux platform model, the following structure is
commonly used to describe a device:

struct platform_device { // platform bus device
const char * name; // The name of the platform device. Use

this as the basis for matching
int id; // When the device name conflicts with other

devices, ID is used to distinguish them
struct device dev; // Built in device structure
u32 num_resources; // Number of resource structures
struct resource * resource; // Pointer to the resource

structure array
const struct platform_device_id *id_entry; // ID used to

match the device driver_Table
struct pdev_archdata archdata; //Additional parameters can

be added
};
The resource structure is described as follows:
struct resource { // Resource structure
resource_size_t start; // The starting value of the resource
resource_size_t end; // End value of the resource
const char *name; // Resource name
unsigned long flags; // The identification of resources used

to identify different resources
struct resource *parent, *sibling, *child; // Resource

pointer, can form a linked list
};

2.3. Describing the Driver of a Platform Device

In the Linux platform model, the following structure is

 American Journal of Embedded Systems and Applications 2022; 9(1): 1-5 3

commonly used to describe a driver:
struct platform_driver {
int (*probe)(struct platform_device *); // Probe function

pointer. When the match is successful, the function pointed to
by this pointer will be triggered;

int (*remove)(struct platform_device *); // Unload
function. When either device or driver is deleted, the function
pointed to by this pointer will be triggered;

void (*shutdown)(struct platform_device *); // Close the
device function. When the device receives the shutdown
command, the function pointed to by this pointer will be
triggered;

int (*suspend)(struct platform_device *, pm_message_t
state);// Sleep function: when the device receives the sleep
command, the function pointed to by this pointer will be
triggered;

int (*resume)(struct platform_device *); // Wake up
function: when the device is awakened from sleep, the
function pointed to by this pointer will be triggered;

struct device_driver driver; // Built in device_ Driver
structure;

const struct platform_device_id *id_table; //List of devices
supported by the device driver;

};

2.4. Register / Uninstall Device Functions

int platform_driver_register(struct platform_driver *); //
Register driver with platform;

void platform_driver_unregister(struct platform_driver *);
// Unload the driver from the platform;

int platform_device_register(struct platform_device *); //
Register device with platform;

void platform_device_unregister(struct platform_device
*); // Uninstall device from platform;

When we don't need the device driver, we can delete it
from the bus to save memory space, because the memory
resource of embedded system is very precious.

In short, the advantages of the platform model are as
follows: when the driver needs to be transplanted to another
platform, only the device part needs to be modified, and the
driver part does not need to be modified. Because the register
address and interrupt number of the driver part are obtained
through device, the portability of the driver becomes very
strong, and the product development cycle will be greatly
reduced.

3. Bus Driver Code Analysis of Linux

Kernel Watchdog Platform

Tiny4412's watchdog driver is designed based on the
platform model. It is divided into two parts, one is device, the
other is driver, of which is written in two source files.

It is worth noting that they use a large number of
precompiled macro definitions here to facilitate menuconfig
configuration and remove or add different functions.

3.1. The Section of Tiny4412 Watchdog Device

Source codes are displayed as following:
#ifdef CONFIG_S3C_DEV_WDT
static struct resource s3c_wdt_resource [] = {
[0] = DEFINE_RES_MEM(S3C_PA_WDT, SZ_1K),
[1] = DEFINE_RES_IRQ(IRQ_WDT),
};
struct platform_device s3c_device_wdt = {
.name= "s3c2410-wdt",
.id= -1,
.num_resources= ARRAY_SIZE(s3c_wdt_resource),
.resource= s3c_wdt_resource,
};
The codes are parsed as follows:
There are two kinds of hardware resources in the arrays

3c_wdt_resource:
Register address: S3C_PA_WDT is the base address of the

register watchdog, its value is 0x10060000
Interrupt number: IRQ_WDT is Interrupt macro definition,

its value is 75
Only some members of the platform_device structure are

initialized in the device section:
The value of the name member is initialized to "S3C2410

WDT", and the platform bus will match based on it;
Id is set to - 1 here, which means you don't care about

repetition;
Num_resources uses an array _size macro, which is used

to calculate the number of array elements;
Resource points to s3c_wdt_resource, that is, the physical

address of the watchdog register;
Then s3c_wdt_resource was put into the

smdk4x12_devices array, and then the system sets the
smdk4x12_ devices registered uniformly with device;

3.2. The Section of Tiny4412 Watchdog Driver

Source codes are displayed as following:
static struct platform_driver s3c2410wdt_driver = {
.probe = s3c2410wdt_probe,
.remove= __devexit_p(s3c2410wdt_remove),
.shutdown= s3c2410wdt_shutdown,
.suspend= s3c2410wdt_suspend,
.resume= s3c2410wdt_resume,
.driver= {
.owner= THIS_MODULE,
.name = "s3c2410-wdt",
.of_match_table= of_match_ptr(s3c2410_wdt_match),
},
};
The codes are parsed as follows:
The driver section is based on the value of driver.name as

the basis for matching. After observing the previous devices,
we know that their names are the same. Therefore, the
matching is successful and S3C2410 WDT Probe function is
executed, in which the initialization is completed to activate
watchdog.

4 Mei Rifei and Xiao Laisheng: Design on Linux Platform Driver for Embedded Systems

4. Design Example of Bus Driver on

Linux Platform

In actual project, we can refer to the platform model for
driver design, which can greatly shorten the time cycle of
project migration. Taking the embedded development
environment tiny4412 as an example in the project, a driver
design example of Linux platform is given. There are two
parts in Linux platform driver design: device section and
driver section, which are shown as follows.

4.1. Device Section

Source codes are displayed as follows:
struct resource led_res [] = {

[0] = {

.start = 442,

.end = 442,

.flags = IORESOURCE_IRQ,

.name = "key1 irq"

},
[1] = {

.start = 0x110002e0, //starting adress of gpm4con

.end = 0x110002e7, //end adress of gpm4con,

.flags = IORESOURCE_MEM, // The type of resource is
physical memory

.name = " GPM4CON ",
},
};
struct platform_device led_device = {

.name = "tiny4412_led", // matching with the name of
tiny4412_ Led

.id = -1,

.resource = led_res,

.num_resources = ARRAY_SIZE(led_res),

.dev.release = leds_release, // Write an empty function to
eliminate the warning when unloading the module

};
static int __init tiny4412_device_init(void)
{

int ret;
ret = platform_device_register(&led_device);
if(ret < 0){

printk("platform_device_register error\n");
return ret;
}

return 0;
}

static void __exit tiny4412_device_exit(void)
{

platform_device_unregister(&led_device);
}

module_init(tiny4412_device_init);
module_exit(tiny4412_device_exit);
MODULE_LICENSE("GPL");
The codes are parsed as follows:
module_init and module_exit macro determines the

functions to execute when the user enters the command
insmod/ rmmod, respectively.

platform_device_register/platform_device_unregister function
is used to register/delete a device to/from the platform bus. You
can see that when user use insmod to install the driver, it registers
led_ device to the platform bus; when user use rmmod to unload
the driver, it will remove the led_device from platform bus.

The matching name is "tiny4412_Led", the platform bus
will match according to this name.

4.2. Driver Section

Source codes are displayed as follows:
struct platform_driver led_driver = {
.probe = led_probe,
.remove = led_remove,
.driver = {
.owner = THIS_MODULE,
.name = "tiny4412_led",
},
};
static int __init tiny4412_driver_init(void)
{
int ret;
ret = platform_driver_register(&led_driver);
if(ret < 0){
printk("platform_driver_register error\n");
return ret;
}
return 0;
}
static void __exit tiny4412_driver_exit(void)
{
platform_driver_unregister(&led_driver);
}
module_init(tiny4412_driver_init);
module_exit(tiny4412_driver_exit);
MODULE_LICENSE("GPL");
The codes are parsed as follows:
When user uses insmod/rmmod, tiny4412_driver_init/

tiny4412_ driver_ Exit function is executed respectively.
Tiny4412_driver_init/tiny4412_driver_exit register/delete

the platform driver to/from the platform bus respectively.
In led_driver, the member driver.name is the basis for

matching. You can see that it is the same as the name as
device. Therefore, when both device and driver modules are
registered into the kernel, the probe function in driver,
namely led_probe function, will be executed. In the probe
function, the initialization of related hardware is completed.

5. Conclusions

This paper introduces the driving principle and
architecture of Linux platform model, and describes the
device, driver and device registration and unloading of the
platform bus model through examples. The platform driver
architecture has the characteristics of reusing framework
code, strong independence of device resources and drivers,

 American Journal of Embedded Systems and Applications 2022; 9(1): 1-5 5

simple code, unified kernel interface, easy maintenance and
expansion. In the development of specific drivers, we only
need to focus on keeping the underlying device operation
function set corresponding one by one with the kernel
interface provided by the driver structure, and ensuring
device.name and driver.name consistent, and making the
platform device registered in the kernel space before the
platform driver, which can make the driver run well and
stably, greatly reduce the work intensity and shorten the
development time of new products. Compared with the
traditional device driver mechanism, the Linux platform
driver mechanism registers the resources of the device into
the kernel which is managed by the kernel, and driver uses
these resources by applying standard interface provided by
platform_device, which improves the independence of driver
and resource management, and has better portability and
security. The developing test shows that the driver based on
this architecture has good portability, maintainability and
scalability.

Acknowledgements

Fund projects: Science and technology projects of
Guangdong Province (2014B040401014, 2016A040403115);
Major scientific research and cultivation program of
Guangdong Ocean University (Q18305).

References

[1] REN Yan-Yan, ZHAI Gao—Shou, ZHANG Jun-Hong,
Automatic Updating and Auxiliary Tools of Linux Device
Drivers Computer Systems & Applications, 2018, 27 (7), pp.
211-218.

[2] Marco Pagani, Alessandro Biondi, Mauro Marinoni, Lorenzo
Molinari, Giuseppe Lipari, Giorgio Buttazzo, A Linux-based
support for developing real-time applications on
heterogeneous platforms with dynamic FPGA reconfiguration,
Future Generation Computer Systems 129 (2022) 125–140.

[3] Milorad Papi´c, Zlatko Bundalo, Dušanka Bundalo, Radovan
Stojanovi´c, Živorad Kovaˇcevi´c, Dražen Pašali´c, Branimir
Cviji´c, Microcomputer based embedded SCADA and RFID
systems implemented on LINUX platform, Microprocessors
and Microsystems 63 (2018) 116–127.

[4] Jasleen Kaur and SRN Reddy, Implementation of Linux
Optimization Technique for ARM Based System on Chip,
Procedia Computer Science 171 (2020) 1780–1789.

[5] Cuong V. Nguyen, Truong Le Quang, Trung Nguyen Vu, Hoi
Le Thi, Kinh Nguyen Van, Thanh Han Trong, Tuan Do Trong,
Guanghao Sun, Koichiro Ishibashi, A non-contact infection
screening system using medical radar and Linux-embedded

FPGA: Implementation and preliminary validation,
Informatics in Medicine Unlocked 16 (2019) 100225.

[6] Zhang Shilin, Development of serial port custom keyboard
driver based on Embedded Linux, Information
Communication, 2019, Sum. No 204, pp. 291-292.

[7] Zhao Xin, Guo Enquan, Li Xiaojie, Design and
Implementation of GPIB Driver Optimal in LINUX System,
Computer measurement and control, 2020, 28 (3), pp. 163-
167.

[8] Chen Mengtong, Wei Feng, Yang Bingjian, Driver Design of
PCI Synchronous Clock Card Under Linux Computer
measurement and control, Vol. 26, 2018, 26 (1), pp. 145-148.

[9] SHI Xiao-Yan, ZHU Jian-Hong, Realization of Baud Rate
Adaptive CAN Driver Under Embedded LinuxComputer
Systems & Applications, 2018, 27 (1), pp. 231-234.

[10] ZHANG Tuo-zhi, KONG De-qi, ZHU En-liang, LI Xiao-
dong, HI3210 Driver Software Design and Realize Based on
Embeded Linux System, Aeronautical Computing Technique
May 2019, Vol. 49, No. 3, pp. 99-102.

[11] Gao Jie, Research on USB Card Driver Based on Embedded
Linux Microcontrollers & Embedded Systems 2018, 9, pp.
3-8.

[12] ZHAO Ming, Design and Implementation of NC System
Based on Embedded Linux, Microcomputer Applications Vol.
35, No. 9, 2019, pp. 12-13, 25.

[13] Zhu Kun, Bai Pengfei, Li Hui, Wang Maochun, Zhou Guofu,
Device Driver Design Based on Three-axis Acceleration
Sensor in Linux Microcontrollers & Embedded Systems,
2020, 6, pp. 24-29.

[14] Zhou Derong, Xia ling, Research and application of
Implementation mechanism of Linux platform driver
architecture, Journal of Chifeng University (Natural Science
Edition) Oct. 2010, Vol. 26, No. 10, pp. 28-30.

[15] ZHAO Jie, GONG Wei, Framebuffer Driver Based on
Embedded Linux, Application of computer system, 2010, Vol.
19, 12, pp. 208-211.

[16] ZHAO Bo, GAO Zhenxiangzi, Xiang Boyang, YU Zhongde,
Analysis and implementation Linux platform driver
framework, Journal of Dalian Polytechnic University, Vol. 32,
No. 1, Jan, 3013, pp. 71-74.

[17] Wang Xiaojun, Wang xin, Li Yuying, Design and application
of platform driver based on Embedded Linux, Science and
technology wind September 2018 pp. 1, 9.

[18] Huang Xiangping, Yu Shuibao, Xia Can, LCD driver module
based on S3C6410 platform of embedded Linux Microcomputer
and its application, 2013, Vol. 32, 12, pp. 9-12, 16.

[19] Guo Xiaomei, Embedded Linux Power Detect Driver
Development in Portable Device, Microcontrollers &
Embedded Systems, 2011, 5, pp. 78-81.

