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Abstract: We can solve electromagnetic problems using two main mathematical tools: vector calculus and differential 
equations. These tools command the computational electromagnetic domain. However, these tools are not always needed for 
the realistic modeling of electromagnetic problems. In reality, we are interested in the measurement of scalar quantities in 
electromagnetics, not vector quantities. Conventional electromagnetic simulation approaches are proving to be more 
mathematical than physical. Furthermore, the use of differential equations leads us along a different route for modeling 
fundamental physics. Since computers need discrete formulations, we can’t directly transform continuous differential equations 
into numerical algorithms. The algebraic topological method is a direct discrete and computationally ambitious technique that 
uses only physically measurable scalar quantities. This paper simulates a parallel plate capacitor using global variables and 
calculating and comparing the potentials with the analytical method. The measured results show a good agreement between the 
analytical and the algebraic topological methods. 
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1. Introduction 

Computational electromagnetic problems mainly deal 
with finite-difference methods, finite-element methods, 
finite-volume methods, or method of moments. These 
methods have some unique advantages and disadvantages 
for modeling certain problems in electromagnetics and 
computing approximate values of physical quantities. 
These methods mainly depend on differential equations 
and vector calculus [1, 2]. In this article, we address our 
standard methodology and can't help thinking about why 
we quite often go with vector-calculus and differential 
equations? [3, 4] Is there any choice for examining and 
demonstrating electromagnetic issues other than vector- 
calculus and differential equations? Indeed, the 
appropriate response is YES. [5] In the last 30-40 years, a 
better than ever approach to consider Electromagnetic was 
presented in [6]. So other than this, there is another tool 
called the algebraic topological method (ATM). Algebraic 

topology can be defined as a study of spatial objects like 0 
simplex (nodes), 1 simplex (lines), 2 simplex (surfaces), 3 
simplex (volumes) etc. In the Algebraic topological 
method, to avoid vector field and differential equations we 
will use only physically measurable scalar quantities. [7] 
Using the mathematical tools of algebraic topology, we 
directly get discrete formulations. So with these, we 
cannot change the problem from discrete to continuous we 
directly solve the problems with the discrete formulation. 
The physically measurable quantities like potential, 
current, electric & magnetic flux, and charge content are 
defined as co-chains on topological objects such as points, 
lines, surfaces, and volumes [8, 9]. For a better 
understanding of algebraic topology in electromagnetics, 
let’s take an example; there are 4 metro stations, namely 
A, B, C, and D, from the figure 1 and l1, l2, l3, and l4 are 
the tracks on each the metro trains runs on both sides and 
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this is called an un-oriented network, but some 
characteristics do not vary under topologically equivalent 
transformations. So for clarity purposes, let us see the 
right side of the figure 1, where all track distances are 
changed; however, it represents the same network. We 
have not added any new connections like new metro 
stations and existing connections between stations. Also, a 
particular parameter must belong to a particular network. 

 

Figure 1. Two topologically equivalent situations. 

We can also visualize the oriented structure from the office 
tree where the ending and starting points are well defined, for 
example- from CEO to research and development to project 
manager to team lead to employees. These examples are used 
to introduce and explain some topologies like homeomorphic 
transformation etc. 

2. Source & Configuration Variables 

Source variables, configuration variables and energy 
variables are the major types of variables that characterize 
physical phenomena. 

2.1. Configuration Variables 

Configuration variables are those that describe the 
configuration of the field, its potentials and all those 
variables are linked by algebraic and differential operations. 
Configuration variables are linked to the source one by the 
consecutive equations. 

2.2. Source Variables 

Source variables they are variables that characterize the 
field's origin or forces acting on the device. These variables 
are linked with one another by operations of sum, difference, 
limit, derivative and integral. 

2.3. Energy Variables 

Energy variables that are acquired by the product of a 
source variables by a configuration variable. 

Configuration variables 
Gauge-function Χ 
electric-voltage (impulse) U,(U) 
e. m. f. (impulse) E, (E) 
electric-field vector E 
magnetic-flux Φ 
electric-potential (impulse) V, (V) 
magnetic-vector potential A 
magnetic-induction B 
Source variables 

Electric-charge content QC 
Electric-charge flow Qf 
Electric-current density J 
Electric-flux Ψ 
Electric-induction D 
Magnetic-field strength H 
Magnetic-voltage (impulse) Um, (Um) 
m. m. f. (impulse) Fm, (Fm) 
magnetic-scalar potential Vm 
dielectric-polarization P 
Magnetization M 
Energy variables 
work, heat W, Q 
electric-energy density we 
magnetic-energy density wm 
Poynting-vector S 
Electro-magnetic momentum G 
Momentum-density G 
electro-magnetic action A 

In this algebraic topology, we completely avoid using 
field variables (vector quantities). So we use only global 
variables; these variables are known as integral variables 
derived from the result of volume, surface, and line 
integration of field vectors. And they are six global 
variables, namely Electric charge flow, Magnetomotance, 
Electromotance, Magnetic-flux, Electric charge content, 
Electric flux, Qc, Qf, Ψ, represent U, V, and Φ, respectively. 
All these variables are scalar quantities. Source variables 
and configuration variables subdivide these global 
variables. The product of source variable and configuration 
variables will get energy-variables are derived. These 
source and configuration-variables are obtained from 
Lorentz equation. 

F = q (E + v x B)                              (1) 

E and B refer to the electric and magnetic fields of forces, 
respectively. 

E = Fe/q, v × B = Fm /p 

Global variables are derived from line, surface, and 
volume association. 

Line association: 

V = ∫E · dl                                    (2) 

U = ∫ H · dl                                   (3) 

Surface association: 

Ψ = ∫ D · ds                                  (4) 

Φ = ∫B · ds                                  (5) 

I = ∫ J · ds                                   (6) 

Volume association: 

Qc = ∫ ρ dv                                  (7) 
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Magnetomotance, Electromotance equation (2), (3) are 
obtained by line integral of Electric field and Magnetic field 
and Electric flux, magnetic flux and electric charge flow 
equation (4), (5), (6) are obtained by surface integral. With 
the help of this knowledge, we can divide these global 
variables as source variables and configuration variables for 
field variables. So, electromotance and magnetic flux are 
configuration variables, and electric flux, magnetic-flux, and 
electric-charge flow are source variables. 

3. Global Variables VS Field Variables 

Global variables are not the volume, surface, or line 
density of another variable. Most global variables are also 
known as integral variables, derived from volume, surface, or 
line of field variables. Here, we use V, U, Φ, Ψ, Qc, and Qf of 
six global variables. One might ask why field quantities were 
introduced into Maxwell equations in the first place. The 
explanation is clear, but many people are unaware of it. Field 
variables were created mostly for mathematical reasons 
rather than physical ones. Mathematically has already 
developed elaborate which can be used to analyze differential 
formulation employing field variables - E, B, D, H, and J. 
field variables can only deal by the differential formulation. 
These Global variables are always uninterrupted across the 
boundary surfaces and depending on the geometrical objects 
known as domain functions. Geometrical objects play the 
best role in algebraic topological formulations that will get 
much detailed in further secessions. 

4. Algebraic Topological Parameters 

4.1. Simplex 

The dimension of a spatial object k is its most basic 
feature. For example, the spatial dimensions of points, lines, 
surfaces, and volumes are k = 0, 1, 2, and 3, respectively. A 
simplex k, abbreviated as sk, is a set of k+1 points in Rn with 
n k. As a result, s0 denotes a vertex (point), s1 denotes a line, 
s2 denotes a surface, and s3 denotes a volume. In a model, the 
ith point, jth line, and lth surface are denoted as s0

i, s
1

j, and s2
l 

and so forth. The ordinal numbers of a simplex are denoted 
by the subscripts i, j and l. Simplexes can be thought of as the 
building blocks of all geometric models. In the introduction, 
we defined algebraic topology as the study of spatial objects 
such as points, lines, surface, volume, etc. Simplexes are 
used to define basic topological objects generally call as 0-, 
1-, 2-, 3-simplex in [10] Here 0, 1, 2, 3 are called as 
dimensions. Simplex are represented by si

k 0, 1, 2, 3 simplex 
represents points, lines, surfaces and volume respectively. 

 

Figure 2. 3-dimenssional objects that contains 0-, 1-, 2-simplex. 

4.2. Chains & Co-chains 

 

Figure 3. Representation of chains and co-chains. 

The variables and the geometrical elements (k-simplexes) 
have a close relationship, as we discovered. A collection of 
simplexes is called a chain. [11] The representation of k-
chains are 

Ck
i = Σaisi

k 

Where ai is the weighted-orientation coefficient. 
The representation of chains and co-chains are ck and ck, 

respectively. However, in Algebraic topology, we cannot 
connect different dimensions (simplex) of a topological 
object. A k-chain has strictly only a collection of k-
simplexes. [12, 13] The respective co-chains are potentials, 
electromotances, fluxes, and charge-contents defined on 
these chains. 

4.3. Boundary & Co-boundary Operators 

A boundary operator is a fundamental operator that gives 
the boundary of certain objects. The boundary values will be 
obtained through this equation in [14, 15]. 

∂ (sij
k+1) = ∑ ���

��� ij
ksi

k 

Here ak is called incidence coefficients. If we take the 
boundary of 1-simplex we will get 0-simplex. 

The co-boundary operator will be the exact opposite of the 
boundary operator and it is represented by delta(δ), it takes k 
co-chains to k+1 co-chains. 

δ: ck →ck+1 

The relation between co boundary operator and boundary 
operator is the adjoint of boundary operator. 

δ = (aKT)*=ak (ak=incidence coefficient) 

[c k, c
k] = [(ak

T)∗ck−1, c
k] = [ck−1, ak

T ck] 

∫ ck δck−1 = ∫ ∂ck c k−1 

The co-boundary operator uses the node potentials to 
calculate the electromotance (potential difference between 
nodes). We receive the flux travelling through the surface 
when it works on the potential difference on a chain of lines. 

 

Figure 4. Defining positive and negative orientations of a point and a line. 
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Let us take 1-simplex that having a boundary of two 0-
simplex. The above figure shows the s1

1 = [p0, p1]. Here s11 
called as 1-simplex is moving away from the po so the 
coefficient of this taken as negative as the same time the s11 
is moving towards p1 hence it taken as positive. In special 
orientation we generally talk about two dimensional space 

called as R2 and three dimensional space called as R3. These 
orientation may vary according to the dimensions and 
according to inner and outer orientation. If the inner 
orientation is k-simplex it becomes outer orientation of (n-k) 
simplex, n gives the dimension of space. The below table 
gives much information on special orientation. 

Table 1. Outer-orientation and inner-orientations in 2&3-dimensional embedding space. 

 Object dimension, K (simplex) Inner orientation Outer orientation 

2-dimensional space, R2 

K=0 Point Surface 
K=1 Line Line 
K=2 Surface Point 
K=3 Volume Not-defined 

3-dimensional space, R3 

K=0 Point Volume 
K=1 Line Surface 
K=2 Surface Line 
K=3 Volume Point 

 

In 2-D space, the outer-orientation of a1-simplex, for 
example, is also a line. In three-dimensional space, however, 
a line's outer-orientation is a surface. 

4.4. Primal and Dual Complex 

 

Figure 5. Representation 0-, 1-, 2-simplex primal and dual complex. 

The above diagram describes the primal and dual complex 
so that all the inner oriented can be taken as primal and all 
the outer oriented can be taken as dual so that in the 2D 
geometry, The dual 0-simplex is equaled to primal 2-simplex 
and dual 1-simplex is equals to primal 1-simplex and dual 2-
simplex is equals to primal 0-simplex. [16, 17]. 

5. Maxwell’s Equations 

1) 	. D =ρv → Gauss's-law 
2) 	. B =0 → Gauss's law for magnetism 
3) 	XE = -∂t B → Faraday's-law 
4) 	XH = ∂tD + J → Ampère's-law 
The above equations are Maxwell's equations. [18, 19] 

These equations operate on curl, gradient, Divergence and 
differential equations. However, while modeling in ATM we 
will use mainly 6 global variables in space and time. All 
these global variables are scalar quantities. Global variables 
are further divided into source variables and configuration 
variables. The cause of electromagnetic fields is related to the 
source variables. Configuration-variables correspond to the 

effect produced due to the source. The combination of these 
source-variables and configuration-variables is called energy-
variables. There is another model called primal and dual, 
which relates to source-variable and configuration-variable to 
model the ATM formulations [20] for electromagnetics. 

Table 2. Algebraic notation for global variables. 

Global variable Notation 

Charge-content Qc(s᷈3, t) 
Charge-flow Qf (s᷈2, τ) 
Electric-flux Ψ(s᷈2, t) 
Magnetomotance U(s᷈1, τ) 
Electromotance V (s1, τ᷈) 
Magnetic-flux Φ(s2, t᷈) 
Electric-potential Φ(s0, t᷈) 

6. Algebraic Topological Formulations 

Laplace’s equation 

Algebraic equation: 

Φ (sl
0, t᷈n) = 0 

Algebraic mathematical equation: 

Σ a ᷈3. Σ aml
1 Φ (sl

0, t᷈n) = 0 

Where aml
1 is the primal line*point incidence matrix. We 

have a᷈ml
0 = 0 if the point s᷈l

0 does not connect to the boundary 
of the line. If the s᷈l

0 does belong to the boundary of the s᷈ m
3, 

then aml
1 =1. a᷈3 is called dual 3-simplex*2-simplex incidence 

matrix. 
When utilizing the differential equations technique, we 

often begin with a discrete collection of scalar 
measurements. Then we'll move on to physics, where we'll 
solve continuous partial differential equations with field 
vectors. Finally, it's within the variety of a discrete 
formulation. This twisting way is avoided by taking the 
algebraic topological method (ATM), which begins with 
discrete scalar measurements and directly yields discrete 
algebraic topological equations. This is often obtained by 
boundary and co-boundary operators in algebraic topology. 
[21, 22] The physical quantities we define on objects like 0, 
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1, 2 & 3 simplex are called 0, 1, 2, 3-cochains, respectively. 

7. Parallel Plate Capacitor Modeling 

The energy of electrons is stored in the form of an 
electrical charge on the plates of capacitors. The larger the 
plates and/or the narrower their separation, the greater the 
charge held by the capacitor for any given voltage across its 
plates. So, we designed a parallel plate capacitor in the cad 
software that gives a 3-dimensional structure of the capacitor. 
In Algebraic topological method the domain is discretized 
into cells known as volumes, which can be of any form. To 
best model a multi-scale problem, we can use tetrahedral 
cells. So, to retrieve primal a1 matrix and dual a3 matrix for 
the Laplace equation we are going to generate a mesh grid 
for the designed parallel plate capacitors. 

 

Figure 6. Generating mesh for parallel plate capacitor. 

The above figure shows the formation of mesh grid for 
retrieving the primal and dual simplex. So, with nodes and 
elements we can able to retrieve 0-simplex (nodes) and 3-
simplex respectively. In 2D space elements gives 2-simplex 
(surface) but here we are using 3D space hence we can able 
to retrieve 3-simplex (volume). So, from Laplace Algebraic 
topological formulation is the combination of primal a1 and 
dual a3 matrix. Primal matrix is the combination of 0-simplex 
and 1-simplex with the data of 0-simplex and 3-simplex 
performing matrix formulation we can able to retrieve 1-
simplex (line) and 2-simplex (surface) So by forming the 
primal and dual matrix from the data that we retrieved and 
calculating the coefficients we will get the electric potential 
in the parallel plate capacitor as shown below diagram. 

 

Figure 7. Field in parallel plate capacitor through simulations. 

So, from the above diagram we are able to observe that the 
potential drastically decreases from the top plate to bottom 
plate only by using global variables and topological objects. 

Table 3. Comparison of algebraic topological method and analytical 

method. 

(V = 

�

�

� Analytical method Algebraic topological method 

Z = -1 = V = -0.5 V = -0.56 
Z = -0.8 = V=-0.4 V= -0.52 
Z = -0.5 = V=-0.25 V=-0.36 
Z = -0.3 = V = -0.15 V = -0.3 
Z = 0 = V = 0 V = 0 
Z = 0.2 = V = 0.1 V=0.24 
Z = 0.4 = V = 0.2 V = 0.43 
Z = 1 = V = 0.5 V = 0.7 

8. Conclusion 

As we saw in this study, algebraic topology is dealing with 
fairly basic but fundamental properties of space. while 
simulating the electromagnetic Unlike traditional methods 
such as finite-difference, finite-element, and finite-volume, 
the algebraic topological method provides more simple and 
discrete formulations using global variables. with this 
knowledge we had simulated parallel plate capacitor using 
laplace equation and compared the potentials with analytical 
method and Algebraic topological method. 

9. Future Identification 

When working in several dimensions, algebraic methods 
become increasingly relevant, and increasingly sophisticated 
elements of algebra are now being used. [23-27] Algebraic 
topology, a Field of mathematics that uses algebraic 
structures to study geometric object's transformations. It uses 
functions to represent continuous transformations. Some new 
uses of ATM tools in biomedicine, thermo-electrics, quantum 
burrowing, radar distant detecting worth mentioning. 
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