
American Journal of Computer Science and Technology
2021; 4(3): 75-82
http://www.sciencepublishinggroup.com/j/ajcst
doi: 10.11648/j.ajcst.20210403.13
ISSN: 2640-0111 (Print); ISSN: 2640-012X (Online)

Activation Maximization with a Prior in Speech Data

Sho Inoue, Tad Gonsalves

Department of Information & Communication Sciences, Sophia University, Tokyo, Japan

Email address:
s-inoue-tgz@eagle.sophia.ac.jp (S. Inoue), t-gonsal@sophia.ac.jp (T. Gonsalves)

To cite this article:
Adane Fekadu Wogu, Shanshan Zhao, Hazel B Nichols, Jianwen Cai. Activation Maximization with a Prior in Speech Data. American
Journal of Computer Science and Technology. Vol. 4, No. 3, 2021, pp. 75-82. doi: 10.11648/j.ajcst.20210403.13

Received: July 30, 2021; Accepted: August 13, 2021; Published: August 31, 2021

Abstract: Recently, more and more studies regarding neural networks have been done. However, the learning process of neural
networks is often elusive to human beings, which leads to the advent of feature visualization techniques. Activation Maximization
(AM) is one of the feature visualization techniques, originally designed for image data. In AM, the input data is optimized to find
the data that activates the selected neuron. In this paper, the emotion recognizer’s output is selected as the neuron, and the latent
code of a generator (of Generative Adversarial Networks) is optimized instead of the input raw data. The aim of this study is to
apply AM to different representations of audio data (waveform-based data and mel-spectrogram-based data) and different model
structures (CNN, WaveNet, LSTM), and to find out the most suitable condition for AM in audio domain data. Additionally, we
have also tried to visualize the essential features of being a certain class for emotion classification in speech data, using 2 datasets:
the Toronto emotional speech set (TESS) and the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS).
The mel-spectrogram-based models were found to be superior to the others, showing the distinctive features of selected emotions.
More specifically, the CNN-mel-spectrogram-based model was the best in both qualitative and quantitative (FID score) results.
Moreover, as demonstrated in this study, AM can also be employed as an output enhancer for generative models.
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1. Introduction

Neural Networks are predominant for processing various
tasks such as object detection, speech recognition, emotion
detection, and so on. However, their internal processing
is, in general, not understandable for human beings. To
understand how the models tackle the problems, some
visualization techniques such as feature visualizations are
proposed. In this paper, we have discussed the applications of
Activation Maximization(AM) [1], which is one of the feature
visualization techniques.

In AM, the input data is optimized to the data that activates
the selected neuron in the network in order to understand how
the models make a decision. The reference neurons can be
the filter of layers, the pre-trained classifier’s output, and so
on. There are quite a few applications of AM such as class-
based activation maximization [2] and activation maximization
with a prior (generator) [3]. Both of these are relevant to our
experimentation. In the former application, the input data is
gradually altered to improve the output of the learned classifier

to observe the reason for being in a certain class. Therefore it
is called class-based Activation Maximization. In the latter
concept, they optimize the noise of the generator in the
generative models such as Generative Adversarial Networks
(GAN) [4] which is employed as a prior.

In this paper, we have applied AM to audio data in
different conditions, which are defined by the form of data
and the classifier’s structure and make a comparison among
different conditions. There was no application of Activation
Maximization in raw audio with a vocoder, which is modeled
after WaveGlow [5]. A generator in GAN is also employed
as a prior for AM to increase the stability. It is trained with
two audio emotion datasets, namely the Toronto emotional
speech set (TESS) [6] and the Ryerson Audio-Visual Database
of Emotional Speech and Song (RAVDESS) [7]. The purpose
of the experiment is two-fold: (1) To find out the features in a
speech that are important for the classifier to judge the class by
optimizing the input audio data into the data which activates
the score of the classification. (2) To examine the different
conditions and find out the one suitable for AM. In addition,
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from a different perspective, AM acts as an output enhancer.
In other words, AM strengthens the output of the generator to
have a distinctive feature of a specific emotion. This could be
used as any kind of generator that has the noise vector as input.
The implementation and the results of the audio are available
at: https://github.com/shinshoji01/AM with GAN for
melspectrogram.

2. Related Work

2.1. GAN

Generative Adversarial Networks (GAN) [4] is one of the
deep generative models and is often compared with Variational
Auto-Encoder (VAE) [8]. VAE tries to reconstruct exactly the
same data as the input, whereas GAN learns to generate data
that is similar to the input data distribution (not necessarily
the same data). GAN is basically composed of two models:
Generator (G) and Discriminator (D). G generates data that is
able to deceive D and D tries to judge whether the input data
is real or fake generated by G. GAN optimizes the function
below:

min
G

max
D
V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z))]
)

(1)

Where the first term indicates the judgement of the real data
and the second shows that of generated data. In addition, x and
z represent the input data and the noise vector, respectively.
The noise vector z was optimized in our experiment. GAN is
generally considered as having an unstable training process,
so we employ 2 techniques to stabilize: UnrolledGAN [9] and
Consistency Regularization [10]

2.2. Activation Maximization

Activation Maximization (AM) is first proposed to visualize
the way and the reason why deep neural networks work [1].
In general, in deep neural networks, the model’s weights
(parameters) are optimized to have a better result via
backpropagation. Instead, the input data tries to be optimized
to the data that maximizes the activation of selected neurons
in AM. These include the filter of layers, the classification
output [2], and so on. AM is initially volatile and cannot
find the optimal data. The data tends to end up with an
incomprehensive result that excessively activate the selected
neuron. To tackle this problem, some regularization techniques
were invented, including frequency penalization [11], dataset
examples [12], transformation robustness [13], and the
employment of the learned prior [3]. In our case, the noise
of the generator in GAN, which is employed as a prior, is
optimized to activate the output of the classifier to observe how
the model determines the classes.

2.3. Tacotron2 and WaveGlow

There was a breakthrough in signal data generation when
WaveNet [14] was proposed. It was first invented as
the generative model of raw audio data. Previously, the
reconstruction of audio data from mel-spectrogram was
considered a difficult problem due to the simplicity of the mel-
spectrogram. However, it was solved by the vocoder modeled
after WaveNet, which was employed to achieve a whole
speech generation system with Tacotron2 [15]. Tacotron2
was developed from the former version named Tacotron [16],
which makes use of either linear-scale spectrogram or mel-
scale spectrogram as the intermediary and reconstruct speech
data from them. These models had a great impact on the
development of speech synthesis, especially in Tacotron2 that
was found to be able to generate neutral speech with high
fidelity. This system has improved its performance with the
change of vocoder, one of which was WaveGlow [5]. This
model borrows ideas from Glow [17] and WaveNet to generate
high-quality speech from mel-spectrogram with a flow-based
network. Additionally, thanks to the flow-based network, it
enables us to generate speech much faster.

3. Experiment

3.1. Overview

In this experiment, we are going to apply the class-based
Activation Maximization (AM) to the audio domain. As
shown in Figure 1(a), a generator in Generative Adversarial
Networks [4] was used as a prior for stable training process,
which is detailed in Sec.3.5. The experiment includes the
effectiveness of using different forms of data and the model
(classifier) structures. As for the form of audio data, 2 types
of audio features are employed, which are raw audio and mel-
spectrogram. Three different models are implemented: CNN-
based, WaveNet-based, and LSTM-based models.

3.2. Mel-Spectrogram-based Activation Maximization

In mel-spectrogram-based AM, the classifier’s input is a
mel-spectrogram and the generator’s output is also a mel-
spectrogram. Therefore, the generator and the classifier are
directly connected to each other as shown in Figure 1(b) and
the input of the generator (noise vector) is optimized to make
the output more emotional.

3.3. Waveform-based Activation Maximization

As for waveform-based AM, since the classifier uses the
waveform data instead of mel-spectrogram as the input, the
model, which converts the mel-spectrogram into the audio, is
required and a pre-trained WaveGlow is capable of this task.
Thus, the flowchart becomes as shown in Figure 1(c).
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3.4. Classifier

As class-based AM, the classifier plays an important
role and it could strongly affect the validity of the results.
Therefore, we have compared 3 kinds of model structures,
which can be considered as CNN-based, WaveNet-based, and
LSTM-based models.

CNN-based model: CNN stands for Convolutional Neural
Network. CNN-based model just has a simple structure which
consists of some convolutional blocks with a max-pooling
layer as compression and a ReLU function as an activation
function, and a fully-connected layer after a global average
pooling layer [18]. Moreover, a batch normalization [19] is
installed between a max-pooling layer and a ReLU function.

WaveNet-based model: WaveNet [14] is first proposed as
a deep generative model for raw audio and it was one of the
largest steps for raw audio generation. The biggest takeaway of

this model is its massive receptive field due to the employment
of various dilated convolutional layers. So, in this model, we
have built a classifier based on the structure of WaveNet to
allow the model to have a large receptive field.

LSTM-based model: When humans understand sequential
data such as audio and sentences, they usually consider
the former part of data. This feature was first imitated in
Recurrent Neural Networks (RNN) and currently it has a lot of
applications. One of them is called Long Short TermMemory
networks (LSTM) [20] and it solved the problem of RNN
not being able to ’memorize’ the data in the distant past. In
this model, LSTM is employed followed by some stacked-
convolutional blocks.

Hyper-parameter tuning is done in all models and
the optimal and detailed structures can be found
at https://github.com/shinshoji01/AM with GAN for
melspectrogram.

Figure 1. (a) Flowchart of GAN (b) Mel-spectrogram-based AM (c) Audio-based AM.
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3.5. GAN

The main part of this model is to employ a generator
as a prior to stabilize the result. For this reason, we
also make use of GAN. GAN requires 2 models to train;
the generator and the discriminator, and both structures
are modeled after DCGAN [21]. More specifically, the
pooling layer is eliminated, the compression process is
done by setting the stride of the convolutional layer as 2,
and the transposed convolution layer is employed for the
expansion process. In addition, to make the generator learn
semantic representation and to stabilize the training process,
consistency regularization [10] and UnrolledGAN [9] are
adopted, respectively. As for the training condition, the hyper
parameters λconsistency regularization, λk for UnrolledGAN ,
and the learning rate were 0.1, 5, 0.01, respectively. The

loss function is MSE Loss as employed in LSGAN [22]. In
addition, Adam optimizer [23] and learning rate scheduler
which reduces the learning rate exponentially were employed.
As for these parameters, β1 = 0.5 and β2 = 0.999 were set
for the optimizer and γ = 0.99 for the scheduler.

3.6. Condition in Activation Maximization

In general, original activation maximization is not quite
as stable to work as the other machine learning models.
Some regularization techniques were invented to tackle this
problem, which is detailed in Sec.2.2. In this paper, we have
made use of 3 kinds of regularization techniques, including
L2 regularization, preventing undesired output, and a learned
prior. Eventually, the loss will be:

loss = −desired+ λundesired ∗ undesired+ λL2 ∗ ‖noise vector‖2 (2)

Where, desired indicates the score of selected classes
before softmax function as mentioned here [24] and similarly,
undesired is the score of not selected classes before softmax
function. The noise vector is the noise vector that is
inserted into the generator. The hyper parameters; λundesired,
λL2, and learning rate were 1, 100, 0.01, respectively. In
addition, Adam optimizer [23] and learning rate scheduler
which reduces the learning rate exponentially were employed.
As for these parameters, β1 = 0.9 and β2 = 0.999 were set
for the optimizer and γ = 0.99 for the scheduler.

3.7. Quantitative Evaluation

To avoid the analysis being too subjective, we have taken
an analysis based on the FID score [25]. FID score indicates
the similarity of 2 sets of representations. In our case, we
have computed the FID score between the samples in the
dataset and the same amount of optimized samples of AM
(80 samples), so, for instance, the ”angry” audio in the TESS
dataset and the samples which are optimized to be more
”angry” sound. However, the inception v3 model [26], which
is used for the computation of FID, is originally trained with
ImageNet [27], so, we could not assure that FID is appropriate
for evaluation in mel-spectrogram. Therefore, in addition to
the model pretrained with ImageNet, we compute FID score
with the model pretrained with the sound datasets used in this
experiment. The learning rate was 0.01 and the loss function
was Cross Entropy Loss. Similar to Activation Maximization,
Adam optimizer [23] and learning rate scheduler which
reduces the learning rate exponentially were employed. As for
these parameters, β1 = 0.9 and β2 = 0.999 were set for the
optimizer and γ = 0.99 for the scheduler.

4. Dataset and Preprocessing

2 datasets were used in this experiment: The Ryerson
Audio-Visual Database of Emotional Speech and Song

(RAVDESS) [7] and Toronto emotional speech set (TESS) [6].
For preprocessing, some techniques are employed for training,
such as silent removal and mel-spectrogram conversion. The
RAVDESS dataset includes speech and song audio whose
sampling rate is 48kHz and audio depth is 16 bit. 2 statements
are spoken by 24 actors (12 female and 12 male) in 8 emotions
such as ”neutral”, ”happy”, and so on. TESS is also an
audio dataset labeled with 7 emotions such as ”fear”, ”disgust”
and so on. The sampling rate is 24414Hz. The sentence is
spoken by 2 female speakers and every audio is prefaced with
”Say the word” followed by a certain word. Since they have
different sampling rates, it is downsampled to 22050 Hz and
its silent section is removed. As the data length is different
from each other, it is adjusted by random-zero-padding and
random-cropping. In addition, the audio labeled with ”calm”
is integrated into the label ”neutral” due to the similarity.
Eventually, the dataset is utilized in the following condition.

1. sampling rate: 22050 Hz
2. no silent section
3. emotions: ”neutral”, ”happy”, ”sad”, ”angry”
4. audio depth: 16 bit

Concerning mel-spectrogram conversion, we have imitated
the parameter used in Tacotron2 [15]. To sum up, the
parameters are:

1. frame size (STFT): 50 ms
2. frame hop (STFT): 12.5 ms
3. mel scale: 80 channels

5. Results

In this experiment, we tried the class-based Activation
Maximization in (AM) audio domain. Since we
are not able to post any audio data in this paper,
we have uploaded the result with the soundtrack on
GitHub (https://github.com/shinshoji01/AM with GAN for
melspectrogram). In this paper, the results are represented in
the form of a mel-spectrogram computed with the parameters
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in training. We analyzed the result in both qualitative
and quantitative ways. The classifier structures for mel-

spectrogram-based AM were CNN-based, LSTM-based, and
WaveNet-based. Similarly, those for waveform-based AM
were LSTM-based and WaveNet-based.

Figure 2. Qualitative Result: initial (the left column) and optimized (the rest columns) mel-spectrograms (waveform).
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5.1. Qualitative Analysis

Activation Maximization is an algorithm to explain the
thought process of the model by optimizing the vector to
activate the selected neuron. Therefore, it is important to
go over (in this case, and listen to) the result carefully and
individually.

We posted the distinctive result in Figure 2. Primarily,
it shows the initial result where AM is not applied in the
first column, followed by the results optimized with the mel-
WaveNet-based, mel-LSTM-based, mel-CNN-based, audio-
WaveNet-based, and audio-LSTM-based models. The bold
texts indicate the emotion which AM aims at and the emotions
just above each mel-spectrogram represent the final predicted
emotions.

As for the result of neutral emotion, it was not classified
as ”neutral” in the first place. However, some models have
greatly succeeded in optimization such as mel-CNN and audio-
WaveNet models. The intonation became monotonous. In
general, the neutral sound had horizontal lines in the mel-
spectrogram and it seems to lead to plain sound. As far as
sad emotion is concerned, mel-spectrogram based models had
better results. The ups and downs of the intonation have

diminished and the strong accent has transferred from the
beginning to the middle as shown in the waveform. The
intonation became weaker in the last part. On the other hand,
in the angry emotion, the gap between the highs and lows of
the intonation was intense and it changed on and off quickly.
Mel-spectrogram-based models were superior to the audio-
based models. We can find unambiguous results in the happy
emotion. Most models have changed the mel-spectrogram to
reshape it to have a mountainous line in the middle of a speech.
When we listen to the sounds, we can hear the drastic surge of
the intonation in the middle.

To sum up, the mel-spectrogram-based models had better
results than the audio-based models due to simplicity. The
more simple the input data is, the more stable the training
process can be. Mel-spectrogram-based models had good
results because, at least in emotion, we can barely find
the differences only by observing the mel-spectrogram.
Presumably, there is an optimal result within the whole sets
in audio-based models, but there is no efficient way to tune the
hyper-parameters in the feature visualization field. Therefore,
we should prioritize stability or simplicity rather than the
possibility of getting a perfect result.

Table 1. FID scores: ImageNet.

mel-spectrogram audio

Emotion Data set wavenet lstm cnn wavenet lstm

neutral ravdess 169.842 158.846 143.283∗ 151.482 164.045

tess 158.807 156.328 145.729∗ 149.674 154.831

happy ravdess 180.494 173.904 167.680 160.182 159.255∗

tess 182.499 182.426 164.719∗ 166.192 166.248

sad ravdess 144.581 134.962 140.281 130.331 129.905∗

tess 164.213 180.635 158.353∗ 173.494 160.990

angry ravdess 171.898 175.071 164.053 165.599 161.147∗

tess 181.111 182.707 153.969∗ 168.848 163.930

The value with ∗ means the highest score among the models.

Table 2. FID scores: TESS and RAVDESS.

mel-spectrogram audio

Emotion Data set wavenet lstm cnn wavenet lstm

neutral ravdess 511.088 338.269 306.979∗ 482.245 786.82

tess 261.918 281.961 175.165∗ 196.721 333.123

happy ravdess 390.420 385.269 254.387∗ 340.724 406.724

tess 568.427 587.502 399.811∗ 522.355 618.015

sad ravdess 96.635 63.138 38.862∗ 155.651 213.153

tess 110.931 84.246 47.317∗ 207.254 260.014

angry ravdess 167.203 327.067 70.736∗ 437.072 482.265

tess 192.875 730.336 100.696∗ 856.200 945.929

The value with ∗ means the highest score among the models.
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5.2. Quantitative Analysis

The method to evaluate the result quantitatively is
mentioned in Sec. 3.7. The average of the 80 FID scores in
each emotion and classifier is illustrated below (Table 1 and
Table 2 for the models pretrained with ImageNet and the sound
datasets, respectively). In the original FID score, obviously,
mel-CNN-based models were better than the other models in
most cases, especially in neutral emotion. Nonetheless, the
audio-based model had a comparatively good result in the
emotions other than ”neutral” and it might be because of the
way to show the emotion. In other words, these emotions
are often expressed using the accent in the sentence, which
is elusive in mel-spectrogram. When it comes to the feature
extractor pretrained with the sound datasets (Table 2), mel-
spectrogram-CNN model was superior to the others in all
cases and other mel-spectrogram based models were better
than audio-based models in most cases.

6. Conclusion
We have demonstrated the application of Activation

Maximization (AM) specifically class-based AM with a prior
(a generator) in audio data. The classifier, which is essential for
AM, varied in the structure and representation of data. Overall,
the mel-spectrogram-based models, especially CNN model,
are superior to the audio-based models in both qualitative
as well as quantitative results. In the qualitatives result,
we could find out the reason why and how the emotion
recognizer classified the emotions. Take the emotion ”angry”,
for example; the intonation of the generated audio was
changed drastically, indicating that the speech with an angry
emotion tends to have that feature. In the quantitative
result, we employed FID score with not only the model
pretrained with ImageNet (the original model), but also
with the model pretrained with sound datasets (TESS and
RAVDESS). Both the evaluation methods proved that the
CNN-mel-spectrogram-based model was better than any other
model, especially with the sound datasets. To sum up, AM has
altered the output of the generator by activating the desired
score. However, seeing from another point of view, AM can
be regarded as the enhancer of the generator. The future plan
is to conduct research on the following related topics:

1. AM while fixing the selected feature, such as emotion
conversion without changing the text information.

2. Using sophisticated generator as priors and use AM as
an output enhancer.
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