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Abstract: In this paper we study the general characteristics of deposition of large particles (or aggregates) that result 

from the mutual aggregation of small and large fractions in bidisperse (or double fractional) suspension. We give equations 

of motion and change in mass of the large particle in the presence of inter-fractional coagulation process and effect of 

straitened sedimentation. In the limiting Stokes and Newton modes (relevant for small and large Reynolds numbers) we 

have movement formulas for speed of sedimentation and their analysis. Discuss some of the results of calculations obtained 

by numerical integration of the equations of motion of a large particle in suspension. 
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1. Introduction 

In various areas of chemical technology (production of 

catalysts, photographic materials, coagulative purification 

of liquids, etc.) are widespread processes of sedimentation 

of a solid phase. Thus quite often there are suspensions 

with strongly different sizes of particles (so-called, bi-

disperse or two-fractional suspensions). For example, in [1] 

it is noted that under certain conditions in disperse systems 

there can be a splitting of a range of particles of a disperse 

phase on two different scales fractions. Besides, there is a 

wide class of bidisperse suspensions in which particles of 

fine (small) fraction can be taken for a homogeneous 

medium in which the particle has a coarse(large) fraction 

(e.g., two-stage grinding coal-water slurries which are used 

in pipeline transport [2], two-fractional polymeric 

suspensions [3], etc). Earlier suspension with a two-

fractional disperse phase was observed in [4] to research 

the degree of dispersion of peat. 

Nowadays, with the advent of increased interest in nano-

suspensions (liquids with nano-scale particles) because of 

their unique properties studying of the sedimentation of the 

solid phase is quite important. This is due to the fact that 

nano-suspension is quite unstable, i.e. for various reasons 

the particles can coagulate and when it reaches a certain 

critical size begin to precipitate. The process of 

sedimentation in the suspension of heterogeneous particles 

with very different sizes is also used to produce nano-

composite materials. 

Some aspects of two-fractional model of the coagulating 

disperse system are based on Smolukhovsky kinetic 

equation are discussed in [5, 6], and in [7] the kinetics of 

sedimentation of a low-concentrated coagulating 

suspension is investigated. 

The aim of this work is studying of influence of 

coagulation of particles of fine (small) and coarse (large) 

fractions in bidisperse suspension on dynamics of 

gravitational sedimentation of aggregates (appearing in 

suspension by the addition of small particles) for the effect 

of constraint. 

Further, along with the term "large particle" will also use 

the term "aggregate”. 

2. Basic Assumptions and Equations 

2.1. The Key Assumptions 

Let suspension be Newtonian (unstructured), i.e. its 

rheological properties are determined by only 

hydrodynamic factors. Conditions for the existence of such 

suspensions are analyzed in detail in [2]. In relation to the 

large particle (aggregate) environment disperse system 

"liquid-fine particles" is viewed as a continuum with an 

effective viscosity and adduced density. In this case the 

influence of Brownian motion of small particles on the 
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effective viscosity of the suspension is neglected. This 

approach is often used for the process of sedimentation 

slurry [2, 8, 9]. 

Let's consider coagulating dispersion system, which was 

already split into two fractions. Following [5], we make the 

following assumptions: the particles of different fractions 

vary considerably in size; aggregates grows by the addition 

of fine (small) particles; the process of coagulation growth 

of fine particles to aggregate size has a negligible rate 

compared to the direct exchange of material between the 

two fractions. We assume that the process of inter-

fractional coagulation is due to two main mechanisms: 

Brownian motion of fine (small) particles and their 

engagement by large particles because of the speed 

difference of fine and coarse fractions of the dispersed 

phase of the suspension. Aggregates consist of fine 

particles (intervals are filled with liquid), have a spherical 

form and aren't subject to Brownian motion. Fragmentation 

of aggregates is not considered, in this connection be taken 

into account the effect of straitened sedimentation of large 

fraction as by capture of small particles the volume part of 

the aggregates can be substantial. For simplicity, we 

assume that the number density of large particles is 

constant and uniform throughout the space filled with a 

stationary suspension of fine particles (spatially 

homogeneous suspension). Under the latter assumption to 

describe the motion of the entire coarse fraction is 

sufficient to consider the equations of motion of only one 

large particle (taking into account the effects of other 

particles). 

Further the bottom indexes 1, l and 1pare noted 

parameters of suspension, its liquid and fine components. 

Parameters of coarse fraction (aggregates) and the small 

particles attached to it are noted by the bottom indexes 2 

and 2p respectively. 

2.2. The Equations 

Thus, within the accepted assumptions the equations 

describing change of mass and velocity of aggregate in the 

field of gravity can be written down in a look (the 

coordinate axis is directed against gravity acceleration) 

j
dt

dm =2 , 2
2

2 juffff
dt

du
m mAg −+++= µ ,        (1) 

221

2

2
2

1
uurCf �ρπ−= µµ , gVf g

�

22ρ−= , gVf A

�

12ρ= , 

dt

du
Vfm

2
12

2

1
�ρ−= , 

)(1 cBpp KKmnj += , 

lp

llpp

α+α
ρα+ρα

=ρ
1

1

1

��

�
, ���

lppp ρα−+ρα=ρ )1( max

2

max

22
 

3

22 )3/4( rV π= , �

222 ρ=Vm , 121 =α+α , pl 11 α+α=α , 

222 nV=α , constn =2 , 

where t is time,
2m , 

2V , 
2r , 

2u
 
are mass, volume, radius 

and speed of the large particle, j is the intensity of the 

deposition of the fine fraction on a surface of large particles,

µf , gf , 
Af , 

mf
 
are, respectively, force of viscous 

resistance, weight, Archimedes and the force of attached 

mass, 
µC

 
is coefficient of resistance of a large particle,

pn1
, 

pm
 
are numerical concentration of the fine fraction of the 

suspension and the mass of small particle, 
lα , 

p1α , 
�

lρ , �

pρ
are volume fraction and the true density of the liquid and 

the fine fraction in the suspension, respectively, 
1α , �

1ρ  
are 

the volume concentration and the true density of the 

suspension of fine particles (a mixture of liquid and fine 

particles, without aggregates), 
2α , 

2n , 
�

2ρ
 
are the volume 

and numerical concentration of large particles in the slurry, 

and their true density, max

2 pα
 
is the volume fraction of solids 

(fine particles) in the aggregate ( max
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remained share is 

the liquid phase), which can usually be assumed constant, 

the density of large aggregate �
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particular, the random packing of spherical particles
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[10]). Rate of change of volume concentration 

of the fine fraction is described by equation 
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The frequencies of collisions of fine particles with a 

large particles in Brownian motion of small particles and 

due to the difference in the speeds of particles of different 

fractions are given by [6, 11] 

)()(4 2 ppBB rBrrTkK +π= , 2

2

2 )( urrK pc +πη= , 

1)6()( −πµ= plp rrB , 

where 
Bk

 
is the Boltzmann’s constant, T is temperature, 

pr
 

is radius of small particles. Value )( prB
 
characterizes the 

mobility of fine particles and  is determined by Stokes law. 

Efficiency of catching of fine particles by aggregate due 

to the difference between their velocity η can be calculated 

by the following formulas [12, 13] (taking into account that 

the ratio of particle sizes of fine and coarse fractions δ is 

sufficiently small). 
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where 
12Re  

is Reynolds number of relative movement of  

aggregate. In the formula (3) the expressions at the top and 

bottom lines meet the limit viscous and potential modes of 

motion of the aggregate, and the expressions in the middle 

row - transients. Mechanism of catching occurs mainly 

because the fine particles have a finite size, and at the 

distance order of the radius of fine particle from the surface 

of a large particle the normal component of velocity of 

liquid is not zero [6]. 

Effect of constraint of motion of aggregates in case of 

the large volumetric concentration usually is accounted by 

correction ψ  in the resistance coefficient [10, 14, 15] 
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To calculate the effective viscosity of the suspension 

with the fine fraction of particles it is advisable to use a 

Mooney’s formula, which describes quite well the 

numerous experimental data in a wide range of volume 

content of the dispersed phase and has the form [8, 16, 17] 
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where max

1pα
 
is the volume part of the fine fraction of the 

suspension at the most dense packing of the particles 

(henceforth referred max

1 pα =0.74). Coefficient 2.5 provides 

a transition Mooney’s formula to Einstein's famous formula 

for small volume content of the fine fraction [10]. 

We define the following initial conditions for the system 

(1), (2): 
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3. Results and Discussion 

3.1. A Fist Integral 

It is easy to see that the system of equations (1), (2) has 

the first integral, which reflects the law of conservation of 

mass 
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where the constant value on the right side is determined, for 

example, by the initial data. Equation (4) can be used, in 

particular, to compute the volume content of the coarse 

fraction and the radius of the aggregate 
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Hence, in particular, derive an expression for the limiting 

or steady-state (when the fine fraction is fully joined to the 

large aggregates, i.e., when 
p1α =0) and the radius of the 

appropriate limit the volume content of aggregates in 

suspension 
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This formula reflects the fact that the limit of volume 

fraction of large particles (aggregates) is always greater 

than the sum of the initial volume content of fine and 

coarse fractions of the dispersed phase (as in the aggregate 

there is also a liquid phase, which fills the space between 

the particles of aggregate). Because of the assumptions 

made in the framework the volume fraction of aggregates 

in suspension may not exceed the limit value corresponding 

to the most dense packing, so that must be done the relation 
max
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2
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When we give the value 
01pα
 
and 

20α
 
we should keep 

in mind the obtained ratio. 

3.2. A Case of Non-Sedimentation 

In the absence of the sedimentation ( 02 ≅u ) 

consolidation of aggregates occurs due to Brownian 

coagulation. Such a situation can occur in those cases 

where, for example, aggregate sizes are sufficiently small 

or the particle substance density is not much different from 

the density of the liquid. In this case the system (1), (2) has 

an analytical solution that can be represented in an implicit 

form 
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is shown 

in Fig. 1. 

 

Fig. 1. Graph )(tz  at different 0z : 1 - 0z =0.2, 2 - 0.5, 3 - 0.8. 

Further it is useful to analyze the limiting Stokes and 

Newton regimes of the steady motion of the aggregate. 

3.3. Stokes Movement Mode of Aggregate 

In the Stokes regime, when the Reynolds number of the 

relative motion of large particles 
12Re  

are small enough for 

the drag coefficient of the aggregate is allowed the 

following approximate expression 
12Re/24≅µ

�C . In this 

case sedimentation rate can be expressed in the formula 
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Analysis showed that the rate 
sv2

, defined by the 

formula (6) with increasing 
20α

 
monotonically decreases, 

whereas with a change 
01 pα

 
behaves not monotonically 

and has maximum at the following value of 
01 pα
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Limit volume concentration of the coarse fraction 

corresponding to this value 
∗α 01p  

is equal to 
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The corresponding maximal rate of sedimentation can be 

calculated by the formula 
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For example, for 
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 can only be 

in the range from 0 to ��

pρρ 17/2 2
. When 17/220 >α , the 

velocity 
sv2  

with increase 
01pα

 
monotonically decreases. 

The results of calculations according to formula (6) below 

(see Fig. 5). 

The non-monotonic behavior of the limit speed is 

explained by the fact that with increasing 
01 pα

 
increases 

limit volume fraction of large particles 
s2α , consequently, 

the limit size of aggregates sr2 . Growth sr2  
leads to an 

increased rate of sedimentation of aggregates, and 

magnification 
s2α

 
leads to increased influence of 

straitened sedimentation. 

For small values of parameter 1/ 2001 <<αθα= pq  for the 

deposition rate of the aggregate sv2  
there are following 

asymptotic representation 
















 α−+α−α−−ρ≅ qv s 2020

4

2022
17

2

3

17
1)1)(1( �

.        (8) 

This shows that when 17/220 <α
 
the speed 

sv2  
with 

increasing q is also growing, whereas when 17/220 >α , in 

the contrary, it decreases. If 17/220 =α  the sedimentation 

rate 
sv2  

does not depend on a small parameter q, it is 

expressed in a more compact form 5
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3.4. Newtonian Motion Mode of the Aggregate 

In other extreme condition corresponding to high 

Reynolds number of the relative motion of the aggregate 

(when you can take 5.0≅µ
�C ) for a steady rate of 

sedimentation we have 
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Similarly to Stokes mode, in this case rate 
sv2  

during 

increase
20α

 
monotonically decreases, and with a change 

01 pα
 
 behaves non-monotonically and has maximum at the 

following value of 
01 pα
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Limiting volume concentration of the coarse fraction 

corresponding to this value 
∗α 01p  

is equal to 
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The corresponding maximum rate is calculated by the 

formula 
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Note that the maximum rate in the Newton mode is 

achieved at a lower value 
01 pα  than in the Stokes regime 

(compare formulas (7) and (10)). 

For small values of q<<1 for the sedimentation rate of 

the aggregate in the Newtonian mode, similar to a Stokes 

regime, the asymptotic representation is 
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from which, in particular, follows that with 16/120 <α
 
the 

value 
sv2

 with growth of q is increased, whereas when 

16/120 >α , conversely, decreases. When 16/120 =α  the rate 

of deposition of aggregates does not depend on a small 

parameter q and has a simpler form 2/5

202 )1( α−β≅sv . 

Comparing formulas (6) and (9), it should be noted that 

the steady rate (dimensionless) of aggregate sedimentation 

in the Newtonian regime is proportional to 2/1

2sr , whereas it 

is proportional to 2

2sr
 
in the Stokes mode. From this we can 

conclude that in any mode of movement of the aggregate 

(when the Reynolds number takes not very small and not 

very large values) 
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∝ ω
sr2
, where 0.5 ≤ ω ≤ 2. In this 
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Note that the expressions (6), (9) can be used, in 

particular, for an approximate calculation of the steady rate 

of sedimentation, respectively, for small and large scale 

aggregates, and the asymptotic formulas (8), (11) - at low 

volume concentration of the fine fraction (when

θα<<α /2001 p
). 

3.5. Numerical Results 

After this there are discussed some results obtained by 

numerical integration of the system of equations (1) and (2) 

under the following fixed parameters: 

max

1pα =0.74, 
max

2 pα =0.6, 
�

pρ =7, 20r =50 µm, pr =0.05 µm, 

T=293 K. 

The initial volume concentrations of fine and coarse 

fractions 
01 pα  and 

20α were chosen taking into account the 

constraints (5) and ranged from 0 to 0.35 and from 10
-4 

to 

0.2, respectively. 

 

Fig. 2. Dependence of deposition rate of the aggregate at time when 
20α

= 0.001: 1 -
01 pα =0.05, 2 - 0.2, 3 - 0.3. 

Fig. 2 shows time variation of the rate of deposition 

aggregates 022 >−= uv  for the initial concentration of the 

coarse fraction 
20α =0.001. Curves 1-3 correspond to 

different initial volume content of the fine fraction 
01 pα

=0.05 (curve 1), 0.2 (2), 0.3 (3). For comparison, a dot-

dashed line shows the steady-state speed of a large particle 

in the absence of inter-fractional coagulation (for 
01 pα

=0.2), and the dashed line - without the fine fraction (
01 pα

=0). It is evident that depending on the volumetric 

concentration of the fine fraction the deposition rate of the 

aggregate behaves differently. In non-highly concentrated 

suspension aggregate speed gradually increases, reaching 

its steady-state value for a long time (curve 1). Whereas in 

the process of sedimentation slurry concentrated coarse 

fraction can be divided into two stages (curves 2, 3). In the 

first stage rate increases because larger particles to increase 

its mass by addition of fine particles, and the second stage 

where it eventually reaches a certain size, the sedimentation 

rate decreases due to the effect of constraint. In this range 

of the concentration of the initial volume fraction of the 

sedimentation rate of small aggregate in the presence of the 

coagulation process is substantially higher than in its 

absence. However, we note that an increase 
01pα

 
rate of 

deposition of the aggregate due to the influence of 

straitened sedimentation effect may be less than in the pure 

liquid. The effect of the steady rate 
01 pα  on a large particle 

in a suspension is discussed below (see Fig. 5). 
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Fig. 3. Dependence of the volume concentration of the fine fraction of the 

suspension from time when 
20α =0.001: 1 -

01 pα =0.01, 2 - 0.05, 3 - 0.1, 4 

- 0.2, 5 - 0.3. 

Fig. 3 shows the variation in time of the volume 

concentration of fines in its various initial values 
01 pα

=0.01 (curve 1), 0.05 (2), 0.1 (3), 0.2 (4), 0.3 (5). Value 

20α  is the same as in Fig. 2. It is seen that at time 10
5
 sec 

despite the different speeds of aggregates at different 
01 pα
 
 

(see Fig. 2) the volume concentration of the fine fraction 

decreases significantly. 

 

Fig. 4. The same as in Fig. 3 but with 
20α =0.0001: 1 -

01pα =0.01, 2 - 

0.05, 3 - 0.2, 4 - 0.35. 

Fig. 4 illustrates the behavior at lower values (compared 

with the previous case) the initial value of the volume 

concentration of the coarse fraction 
20α =0.0001. Curves 1-

4 correspond to 
01 pα =0.01 (curve 1), 0.05 (2), 0.2 (3), 0.35 

(4). It can be seen that not very concentrated slurry volume 

fraction of fines due to coagulation is reduced as in the 

previous case, slowly enough (curve 1). While more 

concentrated slurry coagulation of fine and coarse fractions 

occurs slowly at first, then, unlike the previous case, in a 

relatively short time the fine fraction is almost completely 

converted into aggregates (curves 2-4). The latter is due to 

the fact that reducing the volume content of coarse particles 

(fixed size) of the number density of the slurry is reduced. 

Consequently, by joining aggregates of fine particles, 

compared with the previous case, reach the larger sizes to 

which the flow regime changes from a viscous to potential. 

Thus, in accordance with formula (3) the intensity of 

transfer of fine fraction to the coarse fraction significantly 

larger, as in the viscous regime it is proportional to δ
2
, and 

in the potential regime – to δ (δ<<1). 

 

Fig. 5. Dependence of stationary velocity of aggregate on volume 

concentration of fine particle fraction for different 
20α : 1 -

20α =0.01, 2 

- 0.05, 3 - 2/17, 4 - 0.2. 

Fig. 5 shows the sedimentation rate of limit aggregate 

sv2
 from an initial concentration of fines in suspension at 

different initial concentrations of a large volume fraction 

20α =0.01 (curve 1), 0.05 (2), 2/17 (3), 0.2 (4). The solid 

curves correspond to the numerical integration of the 

system (1), (2), and dashed curves are based on the formula 

(6) and the corresponding Stokes regime of movement of 

the aggregate. Calculations show that, in general, similar to 

Stokes and Newtonian regimes the dependence )( 012 psv α
 

from the values 
20α

 
behaves qualitatively different. For 

example, at about <α20
~2/17 considering dependence 

varies non-monotonically (curves 1, 2) and passes through 

a maximum, whereas with >α20
~2/17 it monotonically 

decreases with increasing 
01 pα  (curves 3 and 4). Moreover, 

with a decrease 
20α  the maximum point shifts to higher

01pα  (as evidenced by the behavior of the dot-dashed line). 

Note that with increasing initial volume content of the 

coarse fraction 
20α

 
difference in behavior )( 012 psv α   

according to the Stokes and general cases decreases. This is 

understandable, because with the increase 
20α  due to the 

effects of constraint deposition rate of the aggregate falls, 

and the conditions for movement close to Stokes regime. 

3.6. Conclusions 

Thus, in the model there are analyzed some features of 

the dynamics of aggregates in a spatially homogeneous 

coagulating suspension with the straitened sedimentation 

effect. Note the given work is theoretical. The results of the 

analysis and the resulting approximate formulas can be 

used for estimation and calculation the general parameters 

of sediment suspension in the presence of the coagulation 

process. 
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