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Abstract: In the present study elastic buckling of steel columns with three different cross sections, i.e. square, rectangle 

and circle cross sections, and two different boundary conditions, i.e. fixed-free(F-F) and pinned-pinned (P-P) boundary 

conditions, under axial compression has been investigated. At first, the basic equations of the problem have been given. Then 

solutions are found and the effects of the boundary conditions, cross sections, slenderness ratios on the buckling loads of the 

steel columns have been discussed. For the solution of the problem not only numerical computations have been performed but 

also finite element modeling (FEM) has been employed. For the validation of the present study, the results of numerical 

computations have been compared with the results of FEM, and a very good agreement has been achieved.  
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1. Introduction 

Steel is an alloy of iron, with carbon, which may 

contribute up to 2.1% of its weight, it can be used either 

separately or combined with other materials. Its popularity 

comes from the facts that; it has great strength and good 

ductility, it can be manufactured easily, and it is a relatively 

cheap, as well as the ultimate recyclable material [1].  

Buckling behavior can be described as bending of a 

structure under axial compressive load. As it is well known, 

columns are the slender structural members that support the 

axial compressive loads. If the compressive load excessive, 

a column may fail by structural instability called buckling. 

Hence, the problem of buckling of steel columns is very 

important issue. Underestimation of this effect may lead to 

disastrous results or unjustified factors of safety [2]. The 

pioneer experiments on the buckling of bars under centrally 

compression, were performed by Musschenbroek [3]. And 

then Euler [4] investigated the elastic stability of a centrally 

loaded structures and given a formula for buckling of 

columns. Euler's formula reckon as the failure of a column 

stems from the stresses induced by sidewise bending only. 

This assumption is valid for long columns only, because the 

failure which occurs in short and medium columns stems 

from the combination of direct compression and bending. 

Euler developments of columns had been reviewed by 

Bleich [5] and Timoshenko [6]. Elastic beam-columns were 

examined by Timoshenko and Gere [7]. In the monograph of 

Brush and Almroth [8], the buckling of bars, plates and 

shells was investigated. In the study of Shrivastava [9] the 

elastic buckling of columns under varying axial force was 

examined. Reissner [10] presented a study on the buckling 

of columns. Historic highlights and milestones covering the 

development and application of the Euler formula for 

buckling strength of a geometrically perfect column together 

with modifications for inelastic behavior was given in the 

research of Johnston [11]. The fundamental concepts and on 

the methodology developed through the years to solve 

structural stability problems were given in the monograph of 

Simitses [12]. The subject of buckling of columns maintains 

its importance nowadays, and numerous studies have been 

performed on this topic with considering different boundary 

conditions, effects, shapes, and methods [13-34].  

The one of the important problems arisen in the columns 

is determining its optimal shape against buckling. Namely, 

the strongest column i.e., the column including the largest 

critical buckling load. Earlier investigation on this issue was 

given in the study of Keller [35]. And then several studies 

were performed on this topic [36-50]. 

As one can see from the open literature, column buckling 

is an important and actual problem for researchers and 

engineers. In the present study elastic buckling of steel 

columns with different cross sections, lengths and F-F and 

P-P conditions, subjected to axial compressive load is 
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addressed. The results of numerical computations and finite 

element model are compared and the differences between 

them are analyzed. Furthermore, the influences of 

slenderness ratio, cross section and boundary conditions on 

the buckling behaviors of columns are examined in detail.  

2. Basic Equations 

Consider an elastic column of length L loaded by an axial 

compressive load P  with the action line coinciding with 

the z axis of a rectangular coordinate system Ozx with (F-F) 

and (P-P) boundary conditions respectively as shown in 

Figure 1(a-b). In here, dashed lines denote the buckled shape 

of the columns. Furthermore, the three different cross 

sections of the column have been shown in Figure 1(c).  

 

Figure 1. Geometry of column under axial compression 

The governing equation for the buckling of such columns 

is 
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where E  is the Young’s modulus of the column, I  is the 

area moment of inertia of the column cross section, and u  

is the transverse displacement.  

As Eq. (1) is modified the following equation yields: 
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where the following definition applies 
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The general solution of Equation (2) as follows: 

4321 CzCkzcosCkzsinC)z(u +++=       (4) 

where are 4321 CandC,C,C coefficients and can be 

identified with boundary conditions.  

3. Solution of the Basic Equations  

3.1. Particular Solution for Fixed-Free (F-F) Column 

The boundary conditions satisfies the F-F column as 

follows: 
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Substituting the Eqs. (5)-(6) into (4) and after some 

mathematical rearrangements, the determinant of coefficient 

matrix and its solution gotten as follows:  
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Consequently, the critical buckling load occurs when 

0n =  and we get [4]: 
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where minI  is the minimum area moment of inertia of the 

column cross section.  

3.2. Particular Solution for Pinned-Pinned (P-P) Column 

The boundary conditions satisfies the P-P column as 

follows: 
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Substituting Eqs. (13)-(14) into (4), and after some 

mathematical rearrangements, the determinant of coefficient 

matrix and its solution found as follows:  
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Consequently, the critical buckling load occurs when 

1n = and we get [4]: 
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3.3. General Formulation for F-F and P-P Columns 

The buckling load can be expressed as the following 

general form also:  

2
eff
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2

cr
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where, effL  is the effective length of column, and 

L2Leff = ; LLeff =  for F-F and P-P columns, 

respectively.  

4. Finite Element Modeling of Problem 

The finite element modeling of the problem is very 

important step to achieve accurate results. For the finite 

element modeling a computer program called ANSYS has 

been employed [51].  

Beam element is used in the modeling and finite element 

mesh of column is modeled using appropriate nodes and 

elements depending on length and cross section of the 

column with sizing and bias factor. The sample of mesh 

design of the column is shown in Figure 2. 

 

Figure 2. Mesh design of the column 

5. Numerical Results and Discussion 

In this section, five studies have been performed for 

investigating the buckling behaviors of the steel columns 

with different geometries and boundary conditions.  

Study 1. In Table 1 variations of the buckling loads versus 

length, which are obtained from FEM and the formula of 

Euler [4], for steel columns with three different cross 

sections and F-F ends are given. As the buckling loads of 

FEM, crFEMP , are compared with the results of the formula 

of Euler [4], crEulerP , the difference between them varies 

from 0.01% to 0.29%, namely a very good agreement is 

achieved, and this shows the accuracy of the present finite 

element model. Where the following expression is used for 

calculation of percentages 100
P

PP

crEuler

crFEMcrEuler ×






 −
. 

Besides, the differences between crFEMP  and crEulerP  are, 

0.03%; 0.03%; 0.02%; 0.02% in square cross section, 0.01%; 

0.01%; 0.01%; 0.01% in rectangle cross section, 0.29%; 

0.29%; 0.29%; 0.28% in circle cross section for 

mm3500;3250;3000;2750L =  respectively. One can see 

from the above results that the highest differences between 

FEM and Euler [4] occur in the circle cross section, and the 

lowest differences between FEM and Euler [4] occur in 

rectangle cross section.  

For examining the efficient shape of column against 

buckling, the areas of all cross sections are fixed, i.e. 
2mm3600A = , for F-F steel column with square, rectangle 

and circle cross sections. As the appropriate columns are 

compared with each other, namely columns whose volumes 

are equal, the differences between the buckling loads of 

square cross section and rectangle cross section are 

approximately 55.55% for crFEMP ; the differences between 

the buckling loads of square cross section and circle cross 
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section are nearly 4.72% for crFEMP ; the differences 

between the buckling loads of circle cross section and 

rectangle cross section are approximately 53.35% for 

crFEMP . Here the following expressions are used for 

calculation of the percentages 100
P

PP

Squarecr
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











 −
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Consequently, it is observed that, the most efficient shape of 

column against buckling is square cross section, for 

investigated problem, due to highest buckling loads are 

obtained in this cross section. In addition, the lowest 

buckling loads are found in rectangle cross section, and so it 

is the least efficient shape of column against buckling, for 

examined problem.  

Table 1. The variations of buckling loads of F-F steel column with three different equivalent cross sections versus length. 

( MPa102E 5×= , 2mm3600A = ) 

L(mm) 

)kN(crP  

Square F-F ( mm60a = ) Rectangle F-F 








=
=

mm40h

mm90b
 Circle F-F ( mm855.331R = ) 

FEM Euler [4] FEM Euler [4] FEM Euler [4] 

2750 70.452 70.474 31.318 31.322 67.129 67.326 

3000 59.202 59.218 26.316 26.319 56.409 56.573 

3250 50.447 50.458 22.423 22.426 48.066 48.204 

3500 43.499 43.507 19.335 19.336 41.446 41.564 

 

Study 2. In Figure 3 variations of the buckling loads of 

FEM for steel columns with three different equivalent cross 

sections versus length under F-F boundary conditions are 

presented.  

One of the dominant parameter acting on the elastic 

buckling of the column is slenderness ratio, λ :  

i

Leff=λ                      (22) 

where i is the radius gyration and the following definition 

applies: 

A

I
i min=                     (23) 

The slenderness ratios of steel column are computed as 

follows,  404 375; 346; 318;=λ for square cross section; 

 606 3;476;520;56=λ for rectangle cross section and 

 414384;354; 325;=λ for circle cross section, for 

mm3500;3250;3000;2750L = respectively, under F-F 

boundary conditions. As it is seen from the above results that 

the square cross section has the lowest slenderness ratios, 

and the rectangle cross section has the highest slenderness 

ratios for investigated problem and note that the slenderness 

ratio increase with the increase of the length of the column. 

In addition it is observed that the buckling loads decrease 

with the increase of slenderness ratio, in all cross sections. 

The effect of the variation of the slenderness ratio on the 

buckling loads are 15.97%; 28.40%; 38.26% for square 

cross section, 15.98%; 28.40%; 38.26% for rectangle cross 

section, 15.97%; 28.40%; 38.26% for circle cross section. 

Consequently, it is observed that the effects of the variation 

of slenderness ratios on the buckling loads increase with the 

increase of the length of the column and remains in an 

almost same interval for all cross sections, under F-F 

boundary conditions.  

 

Figure 3. Variations of the buckling loads of FEM for steel columns with 

three different equivalent cross sections versus length under F-F boundary 

conditions ( MPa102E 5×= ,
2mm3600A = ) 

Study 3. In Table 2 variations of the buckling loads versus 

length, which are obtained from FEM and the formula of 

Euler [4], for steel columns with three different cross 

sections and P-P ends are tabulated. The differences between 

crFEMP  and crEulerP  are, 0.12%; 0.10%; 0.09%; 0.07% in 

square cross section , 0.05%; 0.04%; 0.04%; 0.03% in 

rectangle cross section, 0.38%; 0.30%; 0.29%; 0.27% in 

circle cross section for mm3500;3250;3000;2750L =  

respectively. One can see from above the results that the 

highest differences between FEM and Euler [4] arise in the 

circle cross section, and the lowest differences between 

FEM and Euler [4] arise in rectangle cross section under P-P 

boundary conditions.  
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For investigating the efficient shape of column against 

buckling, the areas of all cross sections are fixed, i.e. 
2mm3600A = , for columns pinned both ends with square, 

rectangle and circle cross sections. As the convenient 

columns are compared with each other, the differences 

between the buckling loads of square cross section and 

rectangle cross section are nearly 55.56% for crFEMP ; the 

differences between the buckling loads of square cross 

section and circle cross section are nearly 4.47% for crFEMP ; 

the differences between the buckling loads of circle cross 

section and rectangle cross section are 53.48% for crFEMP . 

Therefore, it is concluded that the most strongest shape of 

column against buckling is square cross section, as well as 

the least efficient shape of column against buckling is 

rectangle cross section for columns pinned both ends in 

examined problem.  

Table 2. The variations of buckling loads of P-P steel column with three different equivalent cross sections versus length. 

( MPa102E 5×= ,
2mm3600A = ) 

L(mm) 

)kN(crP  

Square P-P ( mm60a = ) 

Rectangle P-P 










=
=

mm40h

mm90b
 

Circle P-P ( mm855.331R = ) 

FEM Euler [4] FEM Euler [4] FEM Euler [4] 

2750 281.550 281.895 125.122 125.287 268.290 269.306 

3000 236.630 236.871 105.230 105.276 225.610 226.292 

3250 201.650 201.830 89.668 89.702 192.260 192.816 

3500 173.900 174.027 77.320 77.345 165.80 166.255 

 

 

Figure 4. Variations of the buckling loads of FEM for columns with three 

different equivalent cross sections versus length under P-P boundary 

conditions ( MPa102E 5×= ,
2mm3600A = ) 

Study 4. In Figure 4 variations of the buckling loads of 

FEM for steel columns with three different equivalent cross 

sections versus length with P-P ends are presented. The 

slenderness ratios of the steel column pinned both ends are 

computed as follows:  202 188; 173; ;591=λ for square 

cross section;  1;303238;260;28=λ for rectangle cross 

section and  7177;192;20 162;=λ for circle cross section, 

for mm3500;3250;3000;2750L = , respectively. It is seen 

from the above results that the square cross section has the 

lowest slenderness ratios, and the rectangle cross section has 

the highest slenderness ratios for investigated problem. In 

addition it is observed that the buckling loads decrease with 

the increase of slenderness ratio, in all cross sections. The 

effect of the variation of the slenderness ratio on the 

buckling loads are 15.96%; 28.38%; 38.23% for square 

cross section, 15.96%;28.39%; 38.25% for rectangle cross 

section, 15.91%; 28.34%; 38.20% for circle cross section. 

Consequently, it is found that the effects of the variation of 

slenderness ratios on the buckling loads increase with the 

increase of the length of the column and remains in an 

almost same interval for all cross sections under P-P 

boundary conditions.  

Study 5. As the buckling loads of F-F and P-P steel 

columns for mm3500;3250;3000;2750L = , which are 

shown in Figs. 3-4, respectively, are compared in each other, 

it is seen that the buckling loads of P-P columns are higher 

than those for F-F columns. In addition, the boundary 

conditions have a constant influence on the buckling loads in 

all cross sections, approximately 75%. Where the following 

expressions are used for calculation of the percentages 

100
P

PP

PPcr

FFcrPPcr ×












 −

−

−−
. Consequently, it is observed that 

columns with P-P conditions have more resistant against 

buckling than F-F columns.  

6. Conclusion 

In the present work elastic buckling of steel columns with 

three different cross sections and F-F and P-P boundary 

conditions under axial compressive load is studied. The 

effects of the boundary conditions, cross sections, 

slenderness ratios on the buckling load of the steel column 

have been discussed. Numerical computations have been 

performed, and FEM has been employed for the solution of 

the problem. And briefly the following results are obtained 

for the investigated problem:  

• The highest differences between FEM and numerical 

computation occur in the circle cross section, and the 

lowest differences between FEM and numerical 

computation arise in rectangle cross section, in both of 

F-F and P-P boundary conditions.  
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• The most efficient shape of column against buckling is 

square cross section and the least efficient shape of 

column against buckling is rectangle cross section, in 

both of F-F and P-P boundary conditions. 

• The square cross section has the lowest slenderness 

ratios, and the rectangle cross section has the highest 

slenderness ratios, in both of F-F and P-P boundary 

conditions. 

• The effects of the variation of slenderness ratios on the 

buckling loads increase with the increase of the length 

of the column and remains in an almost same interval 

for all cross sections, in both of F-F and P-P boundary 

conditions.  

• As the convenient buckling loads of F-F and P-P 

columns are compared, the buckling loads of P-P 

column is higher than F-F column.  
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