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Abstract: The Riccati Matrix Differential Equation (RMDE) is an interesting equation in different fields of science and 

engineering practice.  In fact, that the arithmetic solution for this matrix differential equation in the general case of varying-

time matrices is very difficult to find. The literature offers the solution of this differential equation in the case of dependant 

constant matrices (i.e. invariant-time matrices). The present approach is an approximate discrete-time method for the 

resolution of the matrix differential equation of Riccati in the general case of varying-time (dependant of time) matrices; 

the method in fact, is a discrétisation of the exact matrix solution, that evaluates for any so small step of time, and which is 

function of the solution of the preceding step of time and the constitute equation matrices. The proposed algorithm is 

verified, for a controlled structure under Modified El-Centro earthquake by a comparison with the same uncontrolled 

structure, which constitutes by a two Degrees Of Freedom (2DOF) system. The results of this comparison offer good 

differences between the controlled and the uncontrolled systems. 
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1. Introduction 

The Optimal Control is a field of science which is 

interesting by different branches of science and engineering 

such that Economy, Electronics, Civil Engineering, 

Mechanical Engineering, Communication Engineering, 

Aeronautical Engineering, Robotics and Quantum Physics. 

The Linear and the Nonlinear Quadratic Regulators are 

universal methods for the resolution of the problem of the 

controlled systems subjected to signals or earthquakes. The 

determination of the control signals or the output feedback 

gain in the case of closed-loop, conduct to the resolution of 

the Riccati Matrix Differential Equation, which is in the 

general case nonlinear. The arithmetic or theoretical 

solution of this equation is in fact very difficult to find. As a 

conclusion of literature cited bellow [1-15], one can find 

that there are be theoretical solutions for this equation in 

the cases of constant solution, or in the more than that, in 

the case of invariant with time matrices (i.e. in the linear 

state space equation); but in fact, there’s no accurate 

method or algorithm for the resolution of this equation in 

the general case of nonlinear state space equation (i.e. the 

Non-Linear quadratic Regulator). The algorithm presented 

bellow, based on nonlinear state space equation, allow the 

resolution the Matrix Differential Equation of Riccati at 

any step of time, function of the preceding solution of this 

equation, and of the preceding dependant matrices which 

compound the Hamilton Matrix, which could be equal or 

different from step to step, and that by the integration of the 

Hamiltonian differential equation, one consider that the 

Hamiltonian Matrix elements vary linearly through the step 

of time. The exactitude of this method is conditioning by 

the refinement of the step of time, to assure that the 

Hamiltonian Matrix elements vary linearly through this 

step of time. As an application of this algorithm and a 

comparison between the controlled and uncontrolled 

systems, a 2DOF structure subjected to a Modified El-

Centro earthquake was analyzed in the two cases. The 

results of the comparisons between the displacements of the 

structure show the considerable differences between them, 

of the same analyzed structure, in the two cases and this 

return to the nonlinearity of controlled structure. The 

varying with time, of the elements of the solution of the 

Riccati equation will be also shown bellow, which allow 

the conclusion of the nonlinearity effects on the solution 



 American Journal of Civil Engineering 2014; 2(2): 12-17 13 

 

needed against the pseudo-monotone solution in the case of 

linearity. 

2. NLQR with Full State Feedback 

As we know that, the dynamic equilibrium equation of a 

system can be transformed to the state space formulation 

����� � �������� � 	
���� � 	
����            (1) 

With, � and 	 are state space matrices, such that � is a 

nonlinear or a dependent of time matrix. Define the 

Hamiltonian function, which is a scalar function of time, as 

 

Figure 1. The El-Centro earthquake �� ��⁄ � 
���� � �� �������������� � 
������
����� � �������������� �	
�����                                    (2) 

����  and �  are weighting matrices. In order to 

minimizing the cost function involves taking the variation 

of the Lagrangian with respect to ����, 
���� and ����, it 

follows that 

��
�
���� �!��" #� � ����� � 0       �%�&' � 0

�� �!��( #� ) ����� � 0      ��0� � �*
�� �!��&+ #� � 0                                      

,              (3) 

To solve the set of simultaneous equations in Eq. (3), �& 

is generally unknown in real time control. Therefore, the 

value of �& is taken to be very large. Now substituting Eq. 

(2) into Eq. (3), it follows that 

 

Figure 2. Controlled and uncontrolled displacements of the first floor 
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, �4) 

Solving for 
���� in the third equation in Eq. (4), we can 

obtain 


���� � )�-�	�����                      (5) 

Substituting Eq. (5) into the first equation in Eq. (4), and 

solving for ����� and �����, gives the system of equations 

 

Figure 3. Controlled and uncontrolled velocities for the first floor 

.����������/ � 0 ����� ����	�-�	� )����1 .��������/           (6) 

This equation is called Hamilton Equation, and 
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Figure 4. Controlled and uncontrolled accelerations for the first floor 

0 ����� ����	�-�	� )����1 � �2���                        (7) 

is called Hamilton Matrix. 

Suppose that 

 

Figure 5. Controlled and uncontrolled displacements for the second floor 

���� � 3�������                                   (8) 

Substituting Eq. (8) into Eq. (5), we obtain 


���� � )�-�	�3�������                    (9) 

But 3��� is unknown, and we can see how can we obtain 

for a discrete time in the next section. 

Differentiating Eq. (8) with respect to time, and 

substituting ����� and ����� by their expressions (Eq. 6) and ���� by Eq. (8), we can obtain 

 

Figure 6. Controlled and uncontrolled velocities for the second floor 

����� � 3� ������� � 3��������� 3� ������� � 3���	�-�	�3�������) 3������������ �����3������� � �������� 

Simplifying this equation, and dividing by ���� , we 

obtain 

3� ��� � 3������� � �����3��� ) 3���	�-�	�3��� � ����  (10) 

Which is called the Matrix Differential Riccati Equation 

(RMDE), and its solution, 3��� is needed to compute the 

output feedback 
����. 

 

Figure 7. Controlled and uncontrolled accelerations for the second floor 

3. Discrete-Time Solution of the RMDE 

Integrating the Eq. (6) with respect to time, from �4 to �45�, we obtain 
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67 .���45�����45��/ ) 67 .���4����4�/ � 8 �2���9�!:;<!:     (11) 

Suppose that ∆> � �45� ) �4, a so small step of time for 

the raison that the Hamiltonian Matrix elements vary 

constantly.  

Suppose that 

 

Figure 8. Controlled and uncontrolled forces vs. displacements for the 

first floor 

�2��?� � �2?                                     (12) 

Then the equation (11) can be expressed as 

67 .���45�����45��/ ) 67 .���4����4�/ � �24∆> 2⁄ � A4 

Or, by elevate it to a power 

.���45�����45��/ � B C:∆� �⁄ .���4����4�/             (13) 

The matrix B C:∆� �⁄  has the same dimensions like �2? , 
then we can compute it by the Taylor series, as 

A345� � B C:∆� �⁄ � BD: � ∑ D::4!G4H*       (14) 

We can suppose that �4 � ���4� and �4 � ���4�, and we 

subdivide A345� on four equal dimensions matrices, such 

as 

A345� � IA345��� A345���
A345��� A345��� J                   (15) 

As we suppose that 3 � ��-�  (Eq. 8), then we can 

obtain for any step of time, using the subdivision of Eq. (17) 

345� � �A345��� �4 � A345��� �4��A345��� �4 � A345��� �4�-�(16) 

Multiplying rightly the nominator and the denominator 

of the right side of Eq. (18) by �4-�, we would obtain then 

345� � �A345��� 34 � A345��� ��A345��� 34 � A345��� �-�   (17) 

For K � 0, we can obtain 

3� � �A3���3* � A3�����A3���3* � A3����-�        (18) 

Such that 3*  represent the given initial condition at K � 0 (i.e. at � � 0). 

Table 1. The comparison between controlled and uncontrolled maximal 

responses 

 
Nonlinear Analysis 

 

Uncontrolled Disp., Vel. 

And Acc. 

Controlled Disp., Vel. And 

Acc. 

First Floor 0,110 1,051 12,160 0,022 0,330 5,678 

Second Floor 0,063 0,722 8,349 0,008 0,243 5,229 

 
% of differences Disp., Vel. and Acc. successively 

First Floor 0,801 0,686 0,533 

Second Floor 0,879 0,664 0,374 

 

The Eq. (19) and (20) represent the discrete-time 

solution for the Nonlinear Matrix Differential Equation of 

Riccati. Note that, as we take a so small step of time ∆>, as 

the solution being more exact and accurate. 

 

Figure 9. Controlled and uncontrolled forces vs. displacements for the 

second floor 

4. Demonstration Example 

A tow degrees of freedom system, subjected to El-Centro 

Earthquake shown by the Figure 1, with the property 

matrices of the state space formulation (Eq. 1) which are 

given by 

���� � 0 0 L2-�M��� 2-�N���1 

	 � O 02-�P 

2 � O� 00 �P 

M��� � O K )K)K 2K P 

N��� � 0.052 � 0.05M��� 
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� � 0.25  and, K � K� � �2S��  in the case of elastic 

domain and, K � KT � K� 3⁄  in the case of plastic domain. 

The stiffness model is considered as a bilinear model with 

the given data. The step of time is ∆> � 0.02 �BVW79� and 

the elastic displacement is considered as X* �0.002 �B�BY� . The controlled and uncontrolled 

displacements, velocities and accelerations of the first floor 

are shown by the Figures 2, 3 and 4 successively, while that 

concern the second floor are shown by the Figures 5, 6  and 

7 successively. The hysteresis Force-Displacement for the 

first and the second floor, for controlled and uncontrolled 

systems, are shown successively by the Figures 8 and 9. 

The matrix solution of the Riccati equation in this example 

is then 4 [ 4, symmetric and its four equal blocs are too, 

symmetric. The variations of its elements versus time are 

shown by the Figures 10, 11, 12, 13 and 14. 

 

Figure 10. The P11 and P22 variations versus time 

 

Figure 11. The P33 and P44 variations versus time 

 

Figure 12. The P12 variations versus time 

 

Figure 13. The P13 and P24 variations versus time 

 

Figure 14. The P14 and P34 variations versus time 
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5. Conclusion 

The optimal control in general is an interesting branch of 

engineering, and it is conduct to the resolution the classical 

Riccati matrix differential equation. The theoretical 

solution of the nonlinear matrix differential equation of 

Riccati is really difficult to find. There were exact solutions 

for this equation in the linear case; but there is no solution 

for the nonlinear case. This algorithm presents a good 

approximation of the solution in the general case, of 

dependent of time matrices of the state space formulation 

and the weighting matrices. When the solution is found, 

one can deduct the output control feedback, which works to 

reduce the responses of the structure subjected to 

earthquakes. This algorithm in fact, being more and more 

precise and accurate only when the step of time of reading 

the signal, analyzing the structure, deducting the output 

feedback and practicing it by mean of actuators, is so small 

as possible. The application of this algorithm for 2 % of a 

second time step, for a two degrees of freedom nonlinear 

system, gives a good results such as the responses of the 

structure (Displacements: about 80 % , Velocities: 70 % 

and Accelerations: 40 %, reduction) as shown in Table 1. 

and the concerned Figures. The acted forces at any floor are 

reduced for about 70 % for controlled structure compared 

to that uncontrolled one, and this is because closed-loop 

control of the displacements and also, because the effect of 

the nonlinearity of the structure taken for a chosen plastic 

stiffness as a third of the elastic stiffness; but in reality, the 

plastic stiffness is less than this value, which makes the 

differences between the controlled and uncontrolled 

responses increase. The Figures concern the solution of 

Riccati equation elements versus time show the effect of 

the nonlinearity of the equation constituents’ matrices, 

while in linearity shown as pseudo-monotones.  
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