
 

American Journal of Applied Mathematics 
2014; 2(6-1): 1-10 

Published online January 08, 2015 (http://www.sciencepublishinggroup.com/j/ajam) 

doi: 10.11648/j.ajam.s.2014020601.11 

ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online) 

 

Asymptotic analysis for blocking probabilities of optical 
buffer with general packet-length distributions 

Yasuji Murakami 

The department of Telecommunications and Computer Networks, Osaka Electro-Communication University, Osaka, Japan 

Email address: 
mura@isc.osakac.ac.jp 

To cite this article: 
Yasuji Murakami. Asymptotic Analysis for Blocking Probabilities of Optical Buffer with General Packet-Length Distributions. American 

Journal of Applied Mathematics. Special Issue: Switched Dynamics with Its Applications. Vol. 2, No. 6-1, 2014, pp. 1-10.  

doi: 10.11648/j.ajam.s.2014020601.11 

 

Abstract: Asynchronous optical packet switching seems to be suitable as a transport technology for the next-generation 

Internet due to the variable lengths of IP packets. Optical buffers in the output port are an integral part for solving contention 

by exploiting the time domain. Fiber delay lines (FDLs) are a well-known technique for achieving optical buffers. This work 

aims to give a highly accurate approximation of the blocking probabilities of the optical buffers for a generally distributed 

packet length even when the offered load is extremely low. Such a tool is needed for investigating and designing realistic 

optical packet switches, which will be used for low-offered-load and low-packet-loss optical IP networks. We use the 

asymptotic expansion for the decay rate, resulting in a highly accurate approximation. By using the fourth order approximation 

of the decay rate, an accuracy within 10 % was obtained for both the exponential and uniform distribution cases of an offered 

load greater than 0.3. The approximations established in this work can be applied to investigate multiclass optical buffers for 

priority queueing. 
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1. Introduction 

The ultimate capacity of the Internet may be constrained by 

energy density limitations and heat dissipation considerations 

rather than by the bandwidth of the physical components [1]. 

Recent studies show that optical packet switches do not appear 

to offer significant throughput improvements or energy 

savings compared to electronic packet switches [2]. However, 

the studies also show that optical switch fabrics generally 

become more energy efficient as the data rate increases [2]. 

We believe that development of the optical components could 

lead to a breakthrough in the optical packet switches, and use 

of all-optical packet switches, in which optical packets are 

buffered and routed in optical form, will solve the present 

Internet problems. Asynchronous optical packet switching 

appears to be suitable as a transport technology for the 

next-generation Internet due to the variable lengths of IP 

packets. 

In optical packet switches, optical buffers in the output port 

are an integral part for solving contention by exploiting the 

time domain. Fiber delay lines (FDLs) are a well-known 

technique for achieving optical buffers because random access 

memory (RAM) is not achievable with current optical 

technologies. However, optical buffers behave differently 

from electronic RAM. FDLs can only delay the packets for 

multiples of a discrete amount of time, called time granularity; 

the maximum delay is bounded and a packet will be discarded 

if the maximum delay is not sufficient to avoid contention. 

Various analytical methods have been proposed to evaluate 

the performance of an asynchronous optical buffer [3-10]. One 

earlier work [3] investigates an optical buffer with Poisson 

arrivals and exponential packet lengths and presents an 

approximation using an iterative procedure. This exponential 

assumption has been extended to obtain an approximation of 

blocking probability [5]. Exact solutions in a 

Laplace-transformed expression for the blocking probability 

and delay have been given [6], where general packet-length 

distributions can be applied. However, these solutions are 

limited in the Laplace transformation form; numerical results, 

which are obtained by computer simulations, are not given by 

solving the inverse Laplace transformation. Exact solutions 

have also been obtained using the stochastic method of 

multi-regime Markov fluid queues [7], which provides a 

numerical algorithm and not a closed-form expression. In 

other research, closed-form expressions for certain optical 
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buffers, a numerical algorithm for general cases [8], and a 

heuristic approach, allowing for simple performance analysis 

[10], have been provided. However, numerical results only for 

exponentially distributed packet length were shown. 

In our recent work [9], we established a close-form 

approximate expression for the blocking probabilities and the 

average delays of the optical buffer, where general 

packet-length distributions can be applied. For both the 

uniform and deterministic distributions, the accuracy was high 

enough in an offered load of greater than 0.7, but decreased 

when the offered load decreased. 

In ITU-T Y.1541 [11], the objective of the end-to-end IP 

packet loss ratio (IPLR) is recommended to be less than 10
-3

. 

Assuming that optical packets pass through a maximum of 

100 switches for end-to-end network transmission, the IPLR 

required for one packet switch is less than 10
-5

. Packet loss 

cannot be avoided for the finite FDL optical buffer, and it 

seems that an IPLR of less than 10
-5

 is quite difficult to 

achieve, except in a low offered load. 

Our main purpose in this work is to give a highly accurate 

approximation in closed-form expressions for a generally 

distributed packet length, even when the offered load is 

extremely low. Such a tool is needed for investigating and 

designing realistic optical packet switches, which will be 

applied for ultra-high-capacity optical IP networks with low 

offered load and low packet loss. In other words, the present 

approximation aims at providing an engineering tool for real 

optical IP network design. 

The probability ( ) ( )xWwxP ≡>  that an arriving customer 

has the waiting time w  less than x  can be approximated to 

be the exponential form ( ) x

A CexW η−−= 1 , where η  is a 

decay rate and C  is a constant. In this work, we use the 

asymptotic expansion for the decay rate, and can then obtain a 

highly accurate approximation even when the offered load is 

extremely low. 

Section 2 briefly reviews the theorems on which our 

analysis is based [6, 9]. In Section 3, we introduce an 

asymptotic analysis for the decay rate of the tail probabilities 

in an infinite optical buffer. The fourth order approximation of 

the blocking probabilities is given for the generally distributed 

packet length. In Section 4, we show numerical results and 

compare them with computer simulation results and exact 

calculations. Finally, Section 5 concludes this paper. 
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Fig. 1. Basic structure of optical buffer with fiber delay lines. 
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Fig. 2. An example of optical packet flow from optical buffer 

2. Optical Buffer Model and Theorems 

Our approximation for blocking probabilities is based on 

the theorems derived by Liu et al. [6] and Murakami [9], so we 

first briefly review these theorems and notations. 

2.1. Model 

The basic structure of optical buffers, composed of FDLs, is 

shown in Fig. 1. Arrived packets can be delayed for a discrete 

time of ( )Di 1− , Bi ≤≤1 , where D  is the time granularity of 

FDLs and B  is the buffer length, to avoid contention at the 

single output. The maximum delay is ( )DBT 1−= ; packets 

with a delay time longer than T are discarded. All packets are 

served under the first-come first-served (FCFS) discipline in 

the optical buffer. 

When a newly arrived packet has to wait for at least w  

units of time to be served, the packet is treated as follows. 

1) If ( ) iDwDi <≤−1 , the packet is switched to the ( )1+i th 

FDL, and a void period τ  is attached to the head of the 

packet, where 

wiD −=τ , iD
D

w =





,            (1) 

and  x  means the smallest integer greater than x . 

2) If ( ) wDBT <−= 1 , the packet is discarded. 

In the case of an FCFS system with Poisson arrivals, the 

waiting time (that a fictitious packet, which arrived at an 

arbitrary point of time, has to wait) has the same statistics as 

the actual waiting time (that each packet spent in the system). 

Then, we deal with the distribution function of the “virtual” 

waiting time x  in stead of the actual waiting time. If a packet 

arrives, it would have to wait for a duration x  to get service. 

The service times of buffered packets are prolonged by a void 

period τ , which introduces excess load compared to the real 

load. When the buffer is empty and the destination output is 

free, the packets are transmitted immediately and no void 

period is attached. The term “PACKET” is defined to indicate 

the effective service time. There are two kinds of PACKETs; 

first-arrival packets, which have no void period and where 

service times are the real packet lengths, and non-first-arrival 

packets, which arrive when the buffer is not empty and whose 

service times are prolonged by the void periods. 

Figure 2 shows an example of the optical packet flow from 

the output of the optical buffer. In the figure, the packets flow 

from the left to the right. The head of the packet flow is at the 
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right. The output packet at 1t  belongs to first-arrival packets 

and has no void period. The third packet from the head 

required waiting time w  to be served when it arrived at the 

buffer, and the void period τ , given by (1), was attached to 

its head. The buffer becomes empty when the fourth packet 

flows from the output end at 2t . The busy period which 

consists of the four packets on the right side of the figure, 

therefore becomes the time from 1t  to 2t . At 3t , a 

first-arrival packet newly arrives and a new busy period starts. 

2.2. Theorems in Infinite Optical Buffer Theorems in 

Infinite Optical Buffer 

We first describe the case of the infinite buffer, i.e., ∞→B , 

where no packet is lost. The following notations are used for 

the system. 

λ  Poisson arrival rate 

0s  real packet length 

( )xg0
 probability density function (pdf) of packet length 

0s  

( )xG0
 cumulative distribution function (CDF) of packet 

length 0s  

0s  mean value of 0s , so ( )∫
∞

=
0

00 dxxxgs  

ρ  offered load, i.e., 
0sλρ =  

( )xl  pdf of void period τ  

υs  service time of non-first-arrival packets, i.e., 

τυ += 0ss  

( )xg   pdf of the service time υs , so 

( ) ( ) ( ) ( ) ( )∫
∞

∞−

−≡⊗= dyylyxgxlxgxg 00 ,      (2) 

where ⊗  shows convolution integral 

υs  mean value of υs , so 

( )
2

00

0

D
ssdxxxgs +=+== ∫

∞

τυ        (3) 

( )xv  steady state pdf of virtual waiting time x  of 

PACKET 

( )xV  steady state CDF of virtual waiting time x  of 

PACKET 

Q  steady probability of system being empty 

eqρ  equivalent load of PACKET, i.e., Qeq −= 1ρ  

The following equations were obtained for steady-state 

system conditions [6]. 

The equivalent load is given by 

ρ

ρρ

02
1

s

Deq

−
=

.               (4) 

When the system is in a stable condition, i.e., 1<eqρ , the 

Laplace transformation of ( )xv  is given by 

( ) ( )
( )]1[

]1[
*

*

0*

θλθ
θλθ

g

gQ
v

−−
−

= ,             (5) 

where ( )θ*

0g  and ( )θ*g  are the Laplace transformations of 

( )xg0
 and ( )xg , respectively. Equation (5) corresponds to 

the Pollaczek-Khinchin transform equation in the M/G/1 

system [12]. If the denominator will be some rational function 

of θ , finding a particular factored form is desirable. 

2.3. Theorems in Finite Optical Buffer 

In the finite buffer, if the packet requires a virtual waiting 

time x  longer than the maximum allowable delay ( )DBT 1−= , 

the packet is discarded. There are three types of PACKETs: 

1) first-arrival packets, 0=x  and are admitted past the 

buffer 

2) non-first-arrival packets and admitted packets, Tx ≤<0  

3) non-first-arrival packets and discarded packets, xT < . 

The notations used to describe the finite buffer system 

follow. 

Tw  mean packet delay of admitted packets without a void 

period, which is the average of delays of both type 1) and 2) 

PACKETs 

BP  packet blocking probability 

When 1<eqρ , the mean packet delay is given by 

( )
( ) ( )






−+−= ∫ TV

QD
dx

TV

xV
Tw

T

T 1
2

0

,          (6) 

where the third term on the right-hand side is caused by the 

void periods of the admitted PACKETs, i.e., type 2) 

PACKETs, whose service times are prolonged. 

When 1<eqρ , the packet blocking probability is given by 

( ) ( )[ ]
( )[ ]TV

TV
PB −′−

−′−=
11

11

ρ
ρ

,              (7) 

where the quasi-load ρ ′ was introduced [9] as 









+=≡′

02
1

s

D
s ρλρ υ ,             (8) 

and all the variables are associated with the infinite buffer 

system. 

3. Our Asymptotic Analysis 

The tail probability ( )TV−1  in (7) is obtained from the 

solution of the inverse Laplace transformation of (5). However, 
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solving the inverse Laplace transformations analytically is not 

easy except for specific functions. The probability 

( ) ( )xWwxP ≡> , that an arriving customer has the virtual 

waiting time w  less than x , can be approximated as the 

exponential function 

( ) x
A CexW

η−−= 1 ,               (9) 

where η  is the decay rate and C  the proportional constant 

[13-15]. Equation (9) holds for heavy traffic, i.e., traffic load 

ρ  nears 1, and suitably large x  in the M/G/1 system. If 

( ) ( )xWxW A≅                  (10) 

and we use 

( ) ρ−=−= 110 CWA ,            (11) 

we can obtain parameters such as 

ρ=C  and wρη = .           (12) 

In our recent work [9], furthermore, we approximated the 

inverse Laplace transformation of ( )θ*v  given by (5) as 

( ) ( )












+
′−−−=

υ

ρρ
s

x

C
xV

g

eq 2
1

12
exp1 ,          (13) 

where 2

gC  is the variance of the service time of the 

non-first-arrival packets, which is normalized by the square of 

the mean service time υs ; that is, 

( ) 2222

υυυ sssCg −= .           (14) 

By the approximation of (13), we could obtain numerical 

solutions with high accuracy for the blocking probabilities and 

the average delays when the offered load was greater than 0.7. 

3.1. Asymptotic Expansion for Decay Rate η  

The method of heavy-traffic asymptotic analysis in solving 

the inverse Laplace transformation for the probability function, 

such as ( )θ*v  of (5), has been already studied in [13, 14]. The 

decay rate η  was expanded by a power series of ( )ρ−1 , and 

each coefficient of ( )nρ−1  ( )⋯,2,1,0=n  was calculated step 

by step. The first-order approximation in the expansion by 

( )ρ−1  is sufficient for heavy-traffic cases of 1→α  limit. 

When ρ is low, i.e., ( )ρ−1  is large enough, however, the 

higher-order terms are needed to obtain highly-accurate 

calculations. If the denominator of (5) can be factorized by θ , 

the decay rate η  is given by a negative root of denominator = 

0. Then, we start to solve the negative root of 

( )[ ] 01 * =−− θλθ g  by asymptotically expanding 

( )[ ] 01 * =−−−− ηλη g  in powers of ( )ρ−1 . 

The Laplace transformation ( )θ*g  of the pdf for the 

service time of the non-first-arrival packets can be expanded 

by 

( ) ( )∫
∞

=−
0

* dxxgeg xηµ  

⋯⋯ +++++= nn

n

MMM ηηη
!!2!1

1
221 ,      (15) 

where 
nM  is the n th moment of ( )xg , defined by 

( )∫
∞

≡
0

dxxgxM n

n .              (16) 

Equation (15) is called the moment-generating function of 

( )xg . For example, the first moment is the mean service time 

of the non-first-arrival packets, such as 

2
01

D
ssM +== υ ,             (17) 

and the second moment is given by 

( )22

2 1 gCsM += υ .            (18) 

Inserting (15)~(17) into ( )[ ] 01 * =−−−− ηλη g , we can 

obtain 

( ) 






 +
+

+++=′− +
⋯⋯

nn

n

MMM ηηηλρ
!1!3!2

1 1232
 

( ) 







+

+
+++′= +

⋯⋯

nn

sn

M

s

M

s

M ηηηρ
υυυ !1!3!2

1232
,      (19) 

where we use υλρ s=′ . Equation (19) indicates that the 

asymptotic decay rate is expressed in powers of ( )ρ ′−1  

instead of ( )ρ−1 . 

For expanding (19), we set 

( ) ⋯⋯ +
+

+++≡ + nn

sn

M

s

M

s

M
A ηηη

υυυ !1!3!2

1232
 

++++= n

nbbb ηηη ⋯

2

21
,                   (20) 

where 

( ) υsn

M
b n

n
!1

1

+
= +

.                 (21) 

Assuming the conditions of 1, <Aη , we can expand (19) 

in powers of A  and obtain the equation in powers of η , i.e., 

⋯+−+−=′− 4321 AAAAρ  

( ) ( ) 33

1213

22

121 2 ηηη bbbbbbb +−+−+=  

( )[ ] ( )544

12

2

1

2

2314 32 ηη Obbbbbbb +−++−+ ,     (22) 
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where we show up to the fourth term of η . 

In (22), ρ ′−1 is given by the polynomial of η . According 

to the reverse transformation formula [16], η  is also 

expressed by the polynomial of ρ ′−1 , i.e., 

( ) ( ) ( )3

3

2

21 111 ρρρη ′−+′−+′−= aaa  

( ) ( )( )54

4 11 ρρ ′−+′−+ Oa ,               (23) 

where each coefficient is given by 

( ) υ

υ

sCM

s

b
a

g

1

1

221
2

21

1 +
=== ,           (24) 

3

1

2

12
2

b

bb
a

−
−= ,                 (25) 

( ) ( )
5

1

3

12131

22

12

3

22

b

bbbbbbb
a

+−−−
=          (26) 

( )( )[ 3

1213

2

1217

1

4 25
1

bbbbbbb
b

a +−−=  

( ) ( ) ]32

12

4

12

2

131

2

24

2

1 532 bbbbbbbbbb −−−+−−−   (27) 

Hereafter, we call the asymptotic series in which 

greater-than- n th terms are truncated, as in (23), the n th 

order approximation. Note that the first order approximation 

of (23) is used in (13) 

3.2. Asymptotic Expansion for Proportional Constant C  

Table 1. Moments for service time distributions for non-first arrival packets 

moments Exponential Deterministic Uniform 

1M  
2

1
D+  

2
1

D+  
2

1
D+

 

2M  
3

2
2D

D ++  

3
1

2D
D ++  

3

34 2DD ++  

3M  

4
36

3
2 D

DD +++  ( )
D

D

4

11
4 −+  

4
22

3
2 D

DD +++  

4M  
5

41224
4

32 D
DDD ++++  ( )

D

D

5

11
5 −+  

53

8
4

5

16 4
3

2 D
D

D
D ++++  

5M  

22060120 DD ++  

      

6
5

4
43 D

DD +++  
( )

D

D

6

11
6 −+  ( )( )

6

242
22DDD +++  

 
Two methods to obtain the approximation of C  have been 

considered: the 0→x  approximation and ∞→x  

approximation. In our previous paper, we used  

( ) eqxC ρ=→ 0 ,               (28) 

as shown in (13). 

However, the asymptotic constant was defined [15] as 

( ) ( ) αη ≡>=∞→
∞→

xwPexC x

x
lim  )10( << α .    (29) 

The asymptotic constant is a constant obtained by the 

inverse Laplace transformation for ( )θ*v  of (5), and is a 

residue at the negative root of ( )[ ] 01 * =−− θλθ g , i.e., η− . 

If the Laplace transformation of ( ) ( )xVxV c −= 1 , which is 

the complementary distribution function of ( )xV , is 

expressed by ( )θ*cV , i.e., 

( ) ( )
θ

θθ
*

* 1 v
V c −= ,            (30) 

the asymptotic constant is given by the final-value theorem, 

i.e., 

( ) ( )θηθα
ηθ

*lim cV+=
−→ .          (31) 

With (5), we can obtain α  as 

( )[ ]
( )




 −′+

−−
=

ηλη

ηλα
*

*

0

1

1

g

gQ

,            (32) 

where the prime mark in ( )θ′*g  means the differentiation 

with respect to θ , and then we can obtain ( )η−′*g  by using 

the moments 

( )






 +++++−=−′ +

⋯⋯

nn

n

MMM
Mg ηηηη

!!2!1

1232
1

*
. (33) 

In Eq. (32), ( )η−*g  is also given by 

( )
η

η
0

*

0
1

1

s
g

−
=−  for the exponential distribution      (34) 

( )1
2

1
02

0

−= η

η
se

s
 for the uniform distribution,  (35) 

and 
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η0s
e=  for the deterministic distribution.      (36) 

3.3. Asymptotic Average Packet Delay 

Using the asymptotic delay rate and the asymptotic constant, 

we can obtain the average packet delay of (6) as 

( ) ( )





 −






 ++






 −=
TV

QD

TV
TwT 1

2

11
1

η ,         (37) 

where we use (28) as C . 

When the offered load is low, the blocking probability is in 

the range 1<<BP . Then, we can assume that the tail 

distribution of ( ) T

eqeTV ηρ −=−1  is small enough to use the 

asymptotic expansion of  

( )
T

eqe
TV

ηρ −+≈ 1
1

,              (38) 

and we can obtain from (37) 

Te
D

w T

eqeqT ⋅−






 +≈ −ηρ
η

ρ
2

1
.         (39) 

The first term on the right-hand side of (39) indicates the 

average delay of optical packets in the infinite buffer length 

system ( ∞→B ), where no packet is discarded and all 

packets are prolonged by 2D  on average. The second term 

indicates the product of the probability of packets discarded 
T

eqe ηρ −  and the maximum delay T . Therefore, (39) gives the 

approximate average delay in which the discarded packets are 

excluded. 

4. Numerical Examples 

4.1. Accuracy of Asymptotic Analysis 

Table 2. Calculations of asymptotic decay rate when 3.0=D  

ρ  
Exponential Deterministic Uniform 

first second forth first second forth first second forth 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.8736 

0.7601 

0.6466 

0.5330 

0.4195 

0.3060 

0.1925 

0.0790 

0.8828 

0.7671 

0.6517 

0.5365 

0.4217 

0.3071 

0.1929 

0.0790 

0.8837 

0.7676 

0.6520 

0.5366 

0.4217 

0.3071 

0.1929 

0.0790 

1.5305 

1.3316 

1.1327 

0.9338 

0.7350 

0.5361 

0.3372 

0.1383 

1.9769 

1.6695 

1.3772 

1.1001 

0.8379 

0.5909 

0.3590 

0.1420 

2.4098 

1.9401 

1.5348 

1.1833 

0.8761 

0.6047 

0.3621 

0.1422 

1.2238 

1.0647 

0.9057 

0.7467 

0.5877 

0.4287 

0.2696 

0.1106 

1.4974 

1.2719 

1.0556 

0.8486 

0.6508 

0.4622 

0.2829 

0.1129 

1.7740 

1.4447 

1.1563 

0.9018 

0.6752 

0.4711 

0.2850 

0.1130 

 

Table 3. 
eqρ  and asymptotic constant α  when 3.0=D  

ρ  
eqρ  

Exponential Deterministic Uniform 

first second forth first second forth first second forth 
0.1 
0.2 

0.3 

0.4 
0.5 

0.6 

0.7 
0.8 

0.102 
0.206 

0.314 

0.426 
0.541 

0.659 

0.782 
0.909 

-1.04 
-1.59 

-2.87 

-11.4 
6.21 

2.50 

1.58 
1.18 

-1.89 
-784 

2.39 

1.37 
1.05 

0.929 

0.896 
0.931 

2.85 
0.826 

0.622 

0.587 
0.616 

0.686 

0.788 
0.909 

-0.312 
-0.799 

-1.88 

-8.80 
5.32 

2.30 

1.52 
1.16 

-0.884 
3.89 

1.32 

1.00 
0.891 

0.861 

0.878 
0.935 

0.624 
0.478 

0.499 

0.555 
0.632 

0.721 

0.820 
0.925 

-0.357 
-0.889 

-2.04 

-9.34 
5.55 

2.36 

1.55 
1.17 

-0.960 
5.04 

1.47 

1.07 
0.927 

0.879 

0.885 
0.936 

0.699 
0.511 

0.516 

0.563 
0.633 

0.719 

0.818 
0.923 

 
We now calculate the blocking probabilities of (7) using the 

asymptotic decay rate and the asymptotic constants. In 

addition, we compare the calculations with simulation results, 

and confirm the accuracy of the asymptotic analysis. In our 

calculations, the time unit is set to be the mean packet length 

such that 10 =s . Table 1 gives the moments of the service 

time distributions of the non-first-arrival packets, whose 

packet lengths are prolonged by 2D  on average. The table 

also shows the moments of three service time distributions, 

exponential, uniform, and deterministic, where 
1M  indicates 

the mean service time and is the same 21 D+  for the three 

distributions. 

Table 2 shows values of the asymptotic decay rate η  

against the offered load ρ , which were calculated using  

(23)~(27) and the moments in Table 1. For calculations, we set 

3.0=D , and then 1=eqρ  when ρ  is 0.87. The table also 

shows results of the first, second, and fourth order 

approximations for the three service time distributions. 

In the exponential distribution case, the decay rate shows 

little changes when the approximation order increases. For 

example, when 3.0=ρ , the difference between the values of 

the first order and fourth order approximations is only 0.8 %, 

and when 8.0=ρ , the difference is less than 0.1 %. Then, we 

see that the first order approximation of the exponential 

distribution already has good accuracy. We have already 

approximated the CDF of the virtual waiting time as the 

exponential function, which fits well with the exponential 

distribution of packet length. 

In contrast, in the deterministic distribution case, the decay 

rate becomes larger when the approximation order increases. 

Moreover, the percentages of the decay-rate differences 
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between the approximation orders become smaller when the 

order increases or the offered load becomes heavier. For 

example, when 3.0=ρ , the difference between the values 

of the first order and second order approximations is 15 %, 

and that between the second order and fourth order is 10 %. 

When 8.0=ρ , the difference between the first order and the 

second order is 2.6 % and that between the second order and 

fourth order is 0.14 %. It is clear that the decay rate converges 

to a certain value and then the accuracy may increase when the 

approximation order increases or the offered load becomes 

heavier. When the deterministic distribution is expanded by 

the exponential function, the expansion coefficients remain 

large even for higher order terms, and that is why the 

high-order terms are needed for the decay rate to converge. 

For the uniform distribution case, we can see that the 

dependencies of the decay rate on the approximation order and 

the offered load lies between those of the exponential and the 

deterministic distributions. 

Table 3 shows values of proportional constants 
eqρ  and 

α  against ρ  when 3.0=D . Equations (32)~(36) are used 

for calculations of the asymptotic constant α  and results 

using the first, second, and fourth order approximations of 

asymptotically expanded ( )η−′*g , as given in (33), are shown 

for each service time distribution. α  values approach those 

of 
eqρ  when the approximation order increases or the offered 

load becomes heavier. When the order is low and the load is 

light, however, α  values become negative or more than 1, 

which are over the definition of α , i.e., 10 << α . This is 

because the low order approximation of asymptotically 

expanded ( )η−′*g  is low in accuracy. It is clear that even the 

fourth order approximation of (33) is not accurate enough. 

Then, we use 
eqρ  values as C  for calculations of the 

blocking probabilities. 
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Exponent ia l 
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Fig. 3. Blocking probabilities against the offered load with 32=B  and 

3.0=D . Thick and thin lines respectively show the fourth order and first 

order approximation results. Marks are simulation results. 

Figure 3 shows the blocking probabilities against the 

offered load varied from the light-traffic case of 0.3 to the 

heavy-traffic case of 0.8. We set 32=B  and 3.0=D  and 

compared simulation results. We used ( )xWA
 of (9) as ( )xV , 

η  of (23), and 
eqρ  of (28) for the calculations. The solid, 

dashed, and dotted lines show the cases for the exponential, 

uniform, and deterministic packet-length distributions, 

respectively. The thick lines show the results of the fourth 

order approximation, and the thin lines show the results of the 

first order one, which have been already reported [9]. The 

circles, crosses, and triangles show the simulation results for 

the same respective cases. The simulations were carried out 

with 10
8
 packets, and the countable packet loss limit became 

to be 10
-8

. 
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Fig. 4. Blocking probabilities against  D  varied up to 2.0 with 32=B  

and 5.0=ρ .  Lines and marks are the same as those in Fig. 3. 

In both the uniform and deterministic distribution cases, the 

accuracy of the fourth order approximation was extensively 

improved compared with that of the first order approximation. 

The differences between the fourth order approximation and 

simulation results were within 10 % in the uniform 

distribution case for the entire offered load from 0.3 to 0.8. In 

the deterministic distribution case, the difference between 

them was also within 15% when the offered load was larger 

than 0.4. When the offered load was 0.3, however, the 

difference was 45%. The accuracy is not enough, but is 

extensively improved from the first order approximation. 

Figure 4 shows the blocking probabilities against FDL 

granularity D  varied up to 2.0 with 32=B  and 5.0=ρ . 

Due to the stable condition 1<eqρ , the value of D  is 

limited by (4) as 

( )1120 −< ρsD .               (40) 

When 5.0=ρ , the maximum D  value is 2.0. The lines 

and marks have the same meanings as in Fig. 3. 

Again, in both the exponential and uniform distribution 

cases, the accuracy of the fourth order approximation was 

excellent. The differences between the fourth order 

approximation and simulation results were within 10 %. In the 

deterministic distribution case, however, the differences 

between them were relatively large, especially around 1=D , 

where the FDL granularity is equal to the deterministic 
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packet length. Except around 1=D , i.e. when the value of 

D  is from 0.5 to 0.8 or from 1.3 to 1.5, the differences were 

within 60 %. 

1.4 

10-1 

B
lo

c
k
in

g
 p

ro
b

a
b

ili
ti
e

s 

FDL granularity D 

0.6 1.0 0.8 1.2 

10
-2 

10-3 

10-4 

10
-5 

10
-6 

10-7 

10
-8 

32=B  6.0=ρ  

55.0=ρ  

5.0=ρ  

45.0=ρ  

 
Fig. 5. Blocking probabilities of deterministic packet-length distribution case 

around 0.1=D  with 32=B  and 6.0~45.0=ρ . Lines show the 

fourth order approximation results and marks show simulation results. 

Figure 5 shows the blocking probabilities in detail around 

1=D  where ρ  is set to be 0.45~0.6 as a parameter. At 

1=D , the simulation results have minimum values, which 

were about a one-tenth of the results of the fourth order 

approximation. It seems that, when the FDL granularity is 

equal to the deterministic packet length, delay periods of 

arrival packets may synchronize with the packet length and 

the blocking probabilities largely decrease even if arrivals are 

asynchronous. In this case, the assumption of an exponential 

function for the virtual waiting time, as shown in (9), can not 

to be applied. Except for 25.1~85.0=D , however, the 

differences between approximations and simulations are 

within 60 %. 
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Fig. 6. Blocking probabilities against  D  with 32=B  and 5.0=ρ . 

Thick lines show the forth order approximation results and marks show 

simulation results of 2-packet length and 3-packet length distributions.  

4.2. Applications to Real Traffic 

In ITU-T Y.1541 (12/2011) Network performance 

objectives for IP-based services [11], the objective of the 

end-to-end IPLR is recommended to be less than 10-3 for all 

the QoS classes from 0 to 4. Assuming that packets pass 

through a maximum of 100 packet switches for end-to-end 

network transmission, the IPLR required for one packet 

switch is less than 10-5. Packet loss cannot be avoided for the 

finite FDL optical buffer, and, according to Fig. 3, it seems 

that an IPLR of less than 10-5 is quite difficult to achieve 

except in a low offered load. 

In a realistic IP-packet-length distribution on the Internet, 

several sharp peaks occur at 40, 552, 576, and 1500 Bytes 

[17-19]. To design an optical buffer for a realistic network, we 

have to consider multiple fixed-packet-length distributions. 

For n  fixed packet lengths with ( )nisi ,,2,1 ⋯=  and their 

arrival rates ( )nii ,,2,1 ⋯=λ , the pdf of the packet length is 

( ) ( )∑
=

−=
n

i

ii sxpxg
1

0 δ ,             (41) 

where 

λ
λ

λ

λ i

n

i

i

i
ip ==
∑

=1

 and ∑
=

=
n

i

i

1

λλ .        (42) 

The packet-length mean value 0s  and each moment of the 

packet length distribution are given by 
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Thus, we calculated the blocking probabilities in multiple 

fixed-packet-length distributions for two cases as follows. 

Case 1. Two packet lengths; 641 =s Bytes, 15182 =s Bytes, 

and 5.021 == pp , so 7910 =s Bytes. 

Case 2. Three packet lengths; 641 =s Bytes, 5822 =s Bytes, 

15183 =s Bytes, and 31321 === ppp , so 7210 =s Bytes. 

Note that these packet lengths are the frame lengths in layer 

2 of the network hierarchy model 

Figure 6 shows the blocking probabilities with 32=B  and 
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5.0=ρ  against FDL granularity D . The offered load of 

5.0=ρ  was selected as a low value, below which the present 

commercial IP networks are normally operated. The thick 

solid and dashed lines show the cases for the 2-packet-length 

and 3-packet-length distributions, and the circles and crosses 

represent the simulation results for the same respective cases. 

The thin solid and dashed lines show the results of the fourth 

order approximations for the exponential and uniform 

packet-length distributions, respectively.  

The lines of the 2-packet-length and 3-packet-length 

distributions roughly agreed with those of the simulations 

when 5.1<D , and are situated between those of the 

exponential and uniform distributions. A realistic packet 

length distribution would be the shape of the 2-packet-length 

distribution, overlapping at the low levels with the uniform 

distribution [19]. Therefore, the blocking probabilities for the 

realistic distribution are situated between those for the 

2-packet-length and the uniform distributions, and are greater 

than 10
-5

 for  the 32=B  and 5.0=ρ  case. 

Figure 7 shows the buffer length B , at which the blocking 

probabilities become less than 10
-5

, against the offered load 

ρ . The FDL granularity D  was selected to be 1.0 because, 

in Fig. 4, the blocking probabilities reach the minimum near 

0.1=D . The lines have the same meanings as in Fig. 6. When 

B  is small, the permitted offered load values strongly depend 

on the distributions. When B  is large, however, the 

dependency on the distributions decreases. When 40=B , 

permitted offered load values lie in the range greater than 0.5 

for the 2-packet-length and uniform distributions. Then, 

assuming that all-optical packet networks will be operated 

within the 0.5 offered load, the buffer length B  is required to 

be greater than 40. 
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Fig. 7. Buffer length B , at which blocking probabilities become less than 

10-5, against offered load ρ .  Lines are the same as those in Fig. 6. 

5. Conclusions 

This paper established a highly accurate approximation to 

calculate the blocking probabilities of optical-packet-switch 

buffers with generally distributed packet lengths. We focused 

on a simple exponential approximation for tail probabilities of 

the steady-state virtual waiting time in the infinite optical 

buffer. The decay rate of the tail probabilities was 

asymptotically expanded by a power series of ( )ρ ′−1 , and 

approximations up to the fourth order were used for 

blocking-probability calculations.   Calculation values were 

compared with simulation results. 

The main results are as follows. 

1) It was clarified that the higher-order terms in the 

asymptotic expansion reinforced the accuracy of the 

blocking-probability calculations for all packet-length 

distributions. 

2) By using the fourth order approximation of the decay rate, 

an accuracy within 10 % was obtained for both the 

exponential and uniform distribution cases when an 

offered load is greater than 0.3. For the deterministic 

distribution case, however, the accuracy was within 60% 

except for 25.1~85.0=D . 

3) The approximation was applied to design an optical 

buffer with realistic IP-network traffic distributions. It 

was clarified that, assuming that all-optical packet 

networks will be operated within a 0.5 offered load, the 

buffer length B  is required to be greater than 40. 

The approximations established in this paper can be applied 

to investigate multiclass optical buffers for priority queueing 

and to design wavelength-division multiplexing optical packet 

switches and networks with the maximum throughput. 
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