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Abstract: It is often important to account for the effects of a competing risk when estimating the risk of a particular event of 

interest by estimating its absolute risk. Available methodology for interval estimation of the absolute risk using the proportional 

regression of cause-specific hazards (CSH) has been limited to situations with time-invariant covariates and a single random 

censoring mechanism, without accommodation of cohort sampling study designs. Here we derive asymptotic pointwise 

confidence intervals in closed form for the absolute risk of an event at a specified time (the value of the cumulative incidence 

function) in the presence of competing risks using proportional CSH regression, accommodating external time-dependent 

covariates, cohort sampling study designs and multiple censoring mechanisms. Different covariates may be used for the event of 

interest and the various competing risks. Consistent with the definition of absolute risk, the CSH method produces absolute risk 

estimates that are less than or approximately equal to corresponding “conditional” risk estimates that do not account for 

competing risks. An example shows that this property is not necessarily shared by methods based on subdistribution hazard 

regression. Simulation studies indicate that the CSH method confidence intervals computed on the log cumulative hazard or the 

risk scale have coverage probabilities that approximate the nominal level for small and moderate samples, provided that the 

number of events per covariate is at least 10 and, when using cohort sampling, the ratio of patients without events to patients with 

events is at least 2:1. 

Keywords: Absolute Risk, Cause-Specific Hazards, Cohort Sampling, Competing Risks, Cumulative Incidence Function, 

Interval Estimation, Time-Dependent Covariates 

 

1. Introduction 

When individual study participants or members of a cohort 

are followed for an event of interest, they may experience 

other events that prevent the occurrence of the event of interest 

or its observation. These other events may be regarded as 

competing risks. For example, in a clinical study of recurrence 

of cancer after surgical removal of the primary tumor, death 

without recurrence may be considered a competing risk. It is 

often useful to estimate the absolute (unconditional) risk of the 

event of interest, accounting for the effect of the competing 

risk. Analyses adjusting for competing risks can also be used 

to estimate the risk of the event of interest as a first event 

among several others. This is useful for composite endpoints 

such as disease-free survival: a competing risks analysis could 

be used to describe the treatment effect on each of the 

components of the composite. 

The absolute risk of the event of interest as a function of 

time is known as the cumulative incidence function (CIF). If 

M is the event type of interest and 1 2, , , KD D D…  are 
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competing risk event types, then the CIF at time 0t is 

0

0
0

( ) ( )d )
t

MCIF t S t t= Λ (∫  where ( )S t =  

{ }1
exp ( ) ( )

k

K

M Dk
t t

=
−Λ − Λ∑  is the probability of remaining 

free of events of any type through time t and where )M tΛ (  

and the )
kD tΛ (  are the event-type-specific (or, thinking of 

the various event types as distinct causes of failure, 

“cause-specific”) cumulative hazards at time t without prior 

occurrence of any event type [1, 2]. If we treat observations 

with event type kD  as censored at the time of occurrence of

kD , and if the time to occurrence of kD  can reasonably be 

assumed to be independent of time to occurrence of ,M our 

estimate of the risk of event M at time 0t is effectively 

conditional on no event of type kD  occurring before time 

0 .t  Since events of type kD  prevent the occurrence of events 

of type M, the absolute risk of M is lower than the risk of M 

conditional on the absence of events of type 

, 1, 2, , .kD k K= …  The difference between the conditional 

and absolute risks may be substantial if kD events are 

frequent [3, 4]. 

In this work, we discuss estimation of the absolute risk 

using Cox proportional hazards regression applied to the 

cause-specific hazards. We consider “external” 

time-dependent covariates, which arise when the effect of a 

covariate measured just once is not constant over time. We 

allow that the various event types may have distinct censoring 

mechanisms. We also consider stratified cohort sampling 

studies, in which a random sample is drawn from the study 

cohort with sampling fractions that vary across strata [5]. 

Typically, all study subjects with an event are included in the 

sample, but only a fraction of subjects without an event. Such 

designs are particularly useful when events are rare and 

assessment of necessary covariates is expensive or logistically 

difficult. 

Point estimation of the absolute risk using proportional 

CSH regression is described by Prentice et al. [1] and by 

Kalbfleisch and Prentice [2], but neither variance estimation 

nor confidence intervals for the CIF are mentioned. 

Andersen et al. [6] note that the CSH approach to competing 

risks analysis is a special case of counting process methods 

for multi-state models (with each of the event types being an 

absorbing state), but do not discuss methods for weighted 

analyses of stratified cohort sampling designs. The SAS 

macros CumInc and CumIncV [7], which estimate 

cumulative incidence functions based on these methods, do 

not accommodate stratified cohort sampling weighting or 

time-dependent covariates. Putter and colleagues [8] give a 

very helpful review of methods for estimating the absolute 

risk, but do not discuss variance estimation. Benichou and 

Gail [9] describe an approach to estimating the variance of an 

estimator of a generalization of the CIF when proportional 

hazards regression of the cause-specific hazard is used, but 

do not provide a closed form solution. Large sample 

pointwise confidence intervals (and simultaneous confidence 

bands) for the CIF are provided in closed form by Cheng, 

Fine and Wei [10] using proportional regression of CSH with 

time-invariant covariates in studies not using cohort 

sampling, but they provide no simulations to evaluate the 

small- and moderate-sample coverage probabilities of the 

intervals. 

Here we use the delta method to derive asymptotically 

valid confidence intervals in closed form for the absolute risk 

of an event at a specified time (value of the CIF at that time) 

using proportional regression of CSH, accommodating 

external time-dependent covariates, stratified cohort 

sampling designs and censoring mechanisms that vary across 

event types. The methods also accommodate stratified 

analyses in which the cumulative hazard function may vary 

freely between strata. Using an example data set, we 

compare point and interval estimates from the CSH approach 

to the point and interval estimates derived from a regression 

analysis for competing risks based on modeling the 

subdistribution hazard [11]. We study the small and moderate 

sample coverage probabilities of the CSH-method 

confidence intervals using simulations. 

2. Interval Estimation of the Absolute 

Risk with a Single Competing Risk 

Suppose we have possibly right-censored data on the time 

to an event of interest M and a single competing risk event D, 

with corresponding vectors of covariates zM  and z .D  

These may be “external” time-dependent covariates 

( )z zM M t= and ( )z zD D t=  for 0,t ≥  as defined by 

Kalbfleisch and Prentice [2]. Such covariates arise when the 

effect of a covariate assessed at baseline is time-dependent, 

as the model { }T
0) exp β ( )z ( )t t tλ λ( =  is equivalent to a 

model { }T
0) exp β z( ) ( )t t tλ λ( =  with fixed regression 

coefficients and time-dependent covariates with z( )t  being 

a fixed vector function of time. For example, if the elements 

of z( )t are indicator functions of time, a piecewise constant 

hazard ratio model results. The elements of z( )t  might also 

be continuous functions of time, such as the basis functions 

of a spline. Current patient age, defined as age at study entry 

plus elapsed time on study, is an external time-dependent 

covariate. Other examples are environmental factors not 

associated with individual study subjects. While 

model-fitting is straightforward with “internal” 

time-dependent covariates resulting from repeated measures 

over time of a covariate for each subject, the estimation of 

the CIF with such covariates is complex [2, 6, 12]. We will 

not consider internal time-dependent covariates here. In the 

following, we will use zM  and zD  to denote the vector 

functions of time; if only time-invariant covariates are used, 

the functions are constants. Using proportional hazards 

regression and the cause-specific hazards approach to 

competing risks analysis [1], we model the hazard function 



 American Journal of Applied Mathematics 2022; 10(2): 59-85 61 

 

for event type M as ( ) ( ) ( )T
0;z exp β z ( ) ,M M M M Mt t tλ λ=  

where ( )T

1 2β , , ,
MM M M Mpβ β β= … is a vector of regression 

parameters associated with the covariate vector function 

z .M  Similarly, we model the hazard function for event type 

D as ( ) ( ) ( )T
0;z exp β z ( ) ,D D D D Dt t tλ λ=  with 

( )T

1 2β , , , .
DD D D Dpβ β β= …  The covariate vector functions 

zM  and zD  for event types M and D may be identical, have 

elements in common, or be completely distinct. For 

notational convenience, define ( )T
T Tz( ) z ( ),z ( ) .M Dt t t=  No 

assumption on the relationship of the M-type and D-type 

events is required; in particular, the times to the two event 

types need not be independent [1]. If the study design uses 

stratified cohort sampling, let iw  be the sampling weight 

for subject 1,2, , ,i n= …  which is the inverse of the 

sampling fraction in the subject’s cohort sampling stratum. If 

the study design does not use stratified cohort sampling, set 

1.iw ≡  Without cohort sampling, the likelihood covering 

both event types M and D factors into a product of separate 

likelihoods for event types M and D, which implies that we 

can obtain maximum partial likelihood estimators β̂M  and 

β̂D for βM  and βD by fitting separate proportional hazards 

model for each event type, censoring on occurrence of the 

other event type [1]. The same result holds for the 

pseudolikelihood that is maximized when analyzing data 

from a stratified cohort sampling design [5], 
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   (1) 

where for 1,2, , ,i n= …  { , }i M Dε ∈ is the event type 

observed at time ,it εδ equals 1 if an event of type ε
occurred at this time and 0 if not, iεδ is an indicator for 

whether patient i  had an event of type ,ε z ( )i tε  is the 

covariate vector functions of time for event type ε  for 

subject ,i  and ( )iY tε  is an indicator function for whether 

subject i  is in the risk set for event type ε at time t. 

When we fit the cause-specific models, we are modeling the 

occurrence of event type M without prior occurrence of event 

type D, and vice versa. This requires concurrent follow-up for 

both event types. The right-censoring times might differ 

between event types. In a clinical trial, for example, if cancer 

recurrence is the event of interest M and death without cancer 

recurrence is the competing risk D, time to event M or 

censoring may be determined exclusively by clinical trial 

visits whereas time to event D or censoring may also include 

post-study follow-up using registries. Subjects who die may 

have the censoring date for M recorded as the last clinical 

evaluation date before death. In this situation, it is appropriate 

for the analysis to include deaths occurring within a 

reasonably short window of time after the last follow-up for M, 

perhaps guided by the planned follow-up time interval for 

event M. For competing risk follow-up outside this window, 

the M-status is unknown, so we cannot determine whether D 

has occurred without prior M. In these cases, the time to D 

without prior M should be censored at the M censoring time 

plus the window. When neither event is observed, a subject’s 

censoring time for both the M and D analyses should be the 

minimum censoring time for the two event types in that 

subject; when using a time window for event type M, we can 

consider that the subject is still being simultaneously followed 

for M and D until censoring for D if the censoring occurs 

within the time window, or until the end of the window if it 

does not. These considerations determine the risk set 

indicators ( ).Y tει  

If stratified cohort sampling is used, the inverted Fisher 

information matrices (based on the pseudolikelihood) are 

not valid estimators of the covariance matrices of the 

regression parameter estimators β̂M  and β̂ ;D  appropriate 

covariance matrix estimators V̂M  and V̂D  are given by 

the “robust” covariance sandwich method of Lin and Wei 

[13]. The Lin-Wei estimator approximates the jackknife 

estimator of variance [14, Section 7.2]. If stratified cohort 

sampling is not used, either the covariance sandwich 

estimators or the inverted Fisher information matrices are 

appropriate for V̂M  and V̂ .D  Let ( )MiN t  and ( )DiN t  

be the event-counting processes and let Mit  and Dit be the 

times to event or censoring for events M and D for subject 

.i  Let ( )T
T Tz z , zM D=  be a covariate function of time for 

which we wish to estimate the absolute risk of event M 

occurring by time 0t  (the cumulative incidence function 

value at time 0t  for event type M). Following Cheng et al. 

[10], a consistent estimator is given by 

( ) ( ) ( ) ( )0 T
0 0

0

ˆˆˆ ˆ;z ; z exp β z ( ) d ,
t

M M M MCIF t S t t t= Λ∫    (2) 

where ( ) ( ) ( )ˆ ˆ ˆ;z ;z ;z ,M M D DS t S t S t= and, for { }, ,M Dε ∈  

( )ˆ ;zS tε ε ( ) ( )T
0

0

ˆ ˆexp exp β z ( ) d ,
t

s sε ε ε
 = − Λ 
 ∫ with 

( )
( )

1
0

T0

1

d ( )
ˆ ,

ˆ( )exp β z ( )

n

t i ii

n

j j jj

w N s
t

w Y s s

ε
ε

ε ε ε

=

=

Λ =
∑

∫
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      (3) 
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the last quantity being the estimated baseline cause-specific 

cumulative hazard function. 

For large samples, the asymptotic variance of the estimator 

of the risk at a specific time can be obtained using the delta 

method. The M- and D-type event-counting processes jump at 

the same time with probability 0, so they are orthogonal [15]. 

The regression parameter estimators β̂M  and β̂D are 

asymptotically independent of the jumps d ( )Mi MiN t  and 

d ( )Di DiN t  in the M and D event counting processes [15, 16]. 

Hence, the variance of ( )0
ˆ ;zMCIF t  is consistently estimated 

by 

( ){ }
( ){ } ( ){ }
( ){ } ( ){ }
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    (4) 

where  

( )T

ˆ 1 2β
ˆ ˆ ˆ, , ,

MM
M M Mpβ β β∇ = ∂ ∂ ∂ ∂ ∂ ∂…

 

and 

( )T

ˆ 1 2β
ˆ ˆ ˆ, , ,

DD
D D Dpβ β β∇ = ∂ ∂ ∂ ∂ ∂ ∂…  

are gradient operators, and, as shown in Appendix A1, 

( )

( ) ( ){ }
( )
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ˆ 0β

0

ˆ ; z

ˆ ;z z ( ) ξ ( ) ψ ;z
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S t t t t

t
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− −

× Λ
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( ) ( ) ( ) ( )0

ˆ 0β 0

ˆˆ ˆ;z ; z ψ ;z d ;z ,
D

t

M D D M MCIF t S t t t∇ = − Λ∫  (6) 
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0
0
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where 

( ) ( ) ( )
0 0

ˆ ˆ ˆ; z exp d ;z d ;z ,
t t

M M D DS t s s
 = − Λ − Λ 
 ∫ ∫     (9) 
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The asymptotic normality of the estimator ( )0
ˆ ;zMCIF t  

follows from a first order Taylor series expansion based on 

( )ˆ 0β
ˆ ; z ,

M
MCIF t∇ ( )ˆ 0β

ˆ ;z ,
D

MCIF t∇ ( )0
ˆ ; z d ( )M Mi MiCIF t N t∂ ∂  

and ( )0
ˆ ;z d ( )M Di DiCIF t N t∂ ∂ , the orthogonality of the M 

and D counting process, the asymptotic multivariate normality 

of β̂M  and β̂D [6, 16], the mutual independence among the 

random variables d ( ), 1, 2,Mi MiN t i n= …  and the mutual 

independence among the random variables 

d ( ), 1, 2, .Di DiN t i n= …  

To form a confidence interval for the absolute risk that is 

restricted to the unit interval (0,1), we can transform to the log 

cumulative hazard scale, defining ( )0
ˆ ;zLL tρ

( ){ }0
ˆln ln 1 ;z .MCIF t = − −  

 Using the delta method, the 

standard deviation of ( )ˆ ;zTρ  is consistently estimated by 

( ){ } ( ){ }
( ){ } ( ){ }
0 0

1

0 0

ˆ ˆˆ ˆSTD ;z Var ;z

ˆ ˆ1 ;z ln 1 ;z .

LL M

M M

t CIF t

CIF t CIF t

ρ

−

=

× − −
 Back-transforming 

to the risk scale gives an asymptotic level α  confidence 

interval for ( )0;zMCIF t  with endpoints 

( )( ( ) ( ){ } )1
0 0

ˆ垐1 exp exp ;z 1 2 STD ;z ,LL LLt tρ α ρ− − − ±Φ −   

where 
1−Φ is the inverse cumulative distribution function 

(CDF) of the standard normal distribution. We will refer to this 

as the “log-log” confidence interval. We can similarly 

compute the confidence intervals transforming to the 

cumulative hazard scale, giving an interval with endpoints 

( ) ( ) ( ){ }1
0 0

ˆˆ ˆ1 exp ;z 1 2 STD ;z ,L Lt tρ α ρ− − − ± Φ −   where 

( ) ( ){ }0 0
ˆˆ ;z ln 1 ;z .L Mt CIF tρ = − −  and 

( ){ } ( ){ } ( ){ } 1

0 0 0
ˆ ˆ ˆˆ ˆSTD ;z Var ;z 1 ;z .L M Mt CIF t CIF tρ

−
= −  We 
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will refer to this as the “log” confidence interval. A confidence 

interval can also be computed on the risk scale with endpoints 

( ) ( ) ( ){ }1
0 0

ˆ ˆˆ;z 1 2 Var ;z ,M MCIF t CIF tα−± Φ −
 

but this 

interval may contain values less than 0 or greater than 1. We 

will refer to this as the “linear” interval. 

The derivations of the “log-log” and “log” method intervals 

assume that ( )0
ˆ0 ; z 1.MCIF t< <  By its definition, the 

estimated absolute risk is never exactly equal to 1. If we 

estimate the CIF at a time 0t  that precedes the first observed 

M-type event, the estimated CIF will be 0, in which case the 

“log-log” and “log” methods do not give a confidence interval. 

It is possible to estimate the absolute risk for event type M 

using proportional CSH regression on a set of covariates zM  

but without covariates for the competing risk D. In this case, 

the term in the variance formula (4) associated with 

( )ˆ 0β
ˆ ;z

D
MCIF t∇  vanishes and the hazard function estimate 

for event type D in (12) becomes 

( )
1 1

ˆd d ( ) ( ).
n n

D i Di j Dji j
t w N t w Y t

= =
Λ =∑ ∑  

Ties in the observed times to event of the same type can be 

handled using the calculation that Efron uses to adjust the 

partial likelihood for ties [14, 17 Section 10.2.2.]. If k subjects 

(for notational convenience, denote them as subjects 

1, 2, , )i k= …  have events of type ε  simultaneously at time t, 

we replace each of the terms ( )Tˆexp β z ( ) , 1,2, , ,i iw t i kε ε = …  

in the numerator and denominator of (11) and the denominator 

of (12) by the average value ( )T

1

ˆexp β z ( )
k

j jj
w t kε ε=∑ , and 

we replace each of the k weights iw in the numerator of (12) 

by 
1

.
k

ii
w k

=∑  

3. Estimation of the Absolute Risk with 

Multiple Competing Risks 

If we have an event of interest M and several competing risk 

event types 1 2, , , ,KD D D…  one option is to combine the 

competing risk events into a single event D with time to event 

{ }
{1,2, , }
min .

kD D
k K

T T
∈

=
…

 This requires the covariate vector 

functions to be identical for all the competing risk event types 

1 2, , , ,KD D D… which may not be desirable. For example, if 

the event of interest was distant cancer recurrence in breast 

cancer patients and there were two competing risks, 

local/regional breast cancer recurrence and death without 

cancer recurrence, we would likely want to use different 

covariates for the two competing risks. 

Fortunately, there is no need to combine competing risk 

event types, as the methods described above generalize easily 

to the case of multiple competing risks. Denote by z
kD  the 

covariate vector for event type .kD  The absolute risk at time 

0t  is estimated consistently by 
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arguments used previously show that the variance of 

( )0
ˆ ;zMCIF t  is estimated consistently by 

( ){ } ( ){ } ( ){ }T

ˆ ˆ0 0 0β β
ˆ ˆ ˆ ˆˆVar ;z ;z V ;z= ∇ ∇

M M
M M M MCIF t CIF t CIF t  

( ){ } ( ){ }T

ˆ ˆ0 0β β
1

ˆ ˆ ˆ; z V ;z
kD Dk k

K

M D M

k

CIF t CIF t

=

+ ∇ ∇∑  

( ) ( )

( ) ( )

2

0

1

2

0

1 1

ˆ ;z
d

d ( )

ˆ ;z
d ,

d ( ) k k

k k

n
M

Mi Mi
Mi Mii

K n
M

D i D i
D i D ik i

CIF t
N t

N t

CIF t
N t

N t

=

= =

 ∂ +  ∂  

 ∂ +  ∂  

∑

∑∑

     (13) 

with, for all 1,2, , ,k K= …  
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This formulation permits the use of different covariates for 

different competing risk event types. The practitioner can thus 

avoid using covariates that theoretically or empirically are not 

related to a particular event type. 

With multiple competing risks, we should restrict the 

times included in the analysis to when there is concurrent 

follow-up for all event types. If we apply a window to the 

main event type, we count the first event among the 

competing risks that occurs within that window, if any; 

otherwise, all competing risk events are considered 

censored at the end of the window. The recoding of 

censoring times in an analysis of multiple competing risks 

is diagrammed schematically in Figure 1. 

 

Figure 1. Schematic showing recoding of censoring status and times for analysis in six different scenarios. In each scenario, the first line represents the event of 

interest (M). The next lines represent competing risks 1 2 3( , , ).D D D  The dotted vertical line shows the edge of the window within which occurrence of a 

competing risk is assumed to be the reason for censoring of the event of interest. 

4. Stratified Analyses 

Sometimes it is appropriate to stratify the study population 

and allow different cause-specific baseline hazard functions 

across strata. (Note that this concept is distinct from stratified 

cohort sampling, which we discussed earlier. Stratified 

analyses can be done without stratified cohort sampling, and 

the reverse is also true.) For example, in a study of cancer 

patients, we might stratify on the stage of cancer. Stratified 

proportional cause-specific hazard regression models are 

easily accommodated using the methods described above. All 

the derivations hold except that the baseline hazard estimator 

and the subject-specific hazard estimators (12) and (21) are 

based solely on observations within each stratum. Letting 

1 2, , , LS S S…  be the exhaustive, mutually exclusive subsets 

of the sample population {1, 2, , }n…  created by the joint 

distribution of the stratification variables in the study sample, 

and letting { }li SI ∈  be the indicator function for membership in 

subset ,lS  the baseline cumulative hazard estimator for 

stratum lS  is  
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and the patient-specific hazard estimator for stratum lS  is 
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5. Relationship of the Absolute and 

Conditional Risk Estimates 

Recall that if the competing risk events times and the 

censoring time are assumed to be independent of the time to 

the event of interest, the risk estimate obtained by censoring 

on the competing risks has the interpretation of the probability 

of the event of interest in the scenario that none of the other 

event types occurs. We call such risk estimates “conditional”. 

As is often pointed out (see, for example, [8]), the 

independence assumption is generally not testable from the 

data. However, the assumption might be reasonable in some 

circumstances, for example if disease recurrence was the 

event of interest M  and the competing risk D  was death 

from unrelated causes. 

The true absolute risk is always less than or equal to the true 

conditional risk. Consistent with this inequality, within limits 

of approximations due to the discreteness of the estimated 

cumulative hazard function, the proportional CSH regression 

estimate of the absolute risk at a given time is less than or 

equal to the corresponding conditional risk estimate at the 

same time, since 
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( ) ( )0 0
ˆ ˆ1 ;z ;z ,M M M MS t r t= − =  

where ( )ˆ ;zM MS t  is the Breslow-method estimate of the 

survival function for event M, censoring on occurrence of the 

competing risks 1 2, , , ,KD D D… so ( )0
ˆ ;zM Mr t is the 

conditional risk estimate for event M at time 0t  under the 

scenario that no competing risk event has yet occurred. The 

approximation 

( ){ } ( ) ( ){ }0

0
0

ˆ ˆ ˆexp ;z d ;z 1 exp ;z
t

M M M M M Mt t t−Λ Λ ≈ − −Λ∫  

is not exact because the empirical cumulative hazard function 

estimate is not continuous. The near approximation allows the 

estimated CIF to be very slightly higher than the conditional 

risk estimate when the competing risks are highly unlikely. 

Absolute risk estimates produced by methods other than 

CSH may be noticeably higher than the corresponding 

conditional risk estimates, as illustrated by the example 

calculation in the next section. 

6. Example Calculation with Comparison 

to Methods Based on the 

Subdistribution Hazard 

For an example calculation, we use the data from the 

National Cancer Institute for 506 Stage 3 and 4 prostate 

cancer patients described by Byar and Green [18]. Andrews 

and Herzberg published the data [19]. The patients were 

randomly assigned to four treatments: placebo, 0.2 mg 

diethylstilbestrol (DES), 1 mg DES, or 5 mg DES. We 

followed the recommendation of Byar and Green [18] to 

combine the placebo and 0.2 mg groups as “low dose DES” 

and the 1 and 5 mg groups as “high dose DES”. Patients were 

followed for survival, with cause of death categorized as 

prostate cancer, heart or vascular disease, cerebrovascular 

accident, pulmonary embolus, other cancer, respiratory 

disease, or other. There are several covariates in the data set, 

including patient age at study entry, size of primary tumor in 

cm
2
 as estimated from a digital rectal exam, and history of 

cardiovascular disease. Our analysis excluded observations 

with missing covariate values. We considered prostate cancer 

death (PCD) as the event of interest M (129 events), CV 

death (heart or vascular disease or cerebrovascular accident) 

as competing risk 1D  (126 events), and death from any 

other cause as competing risk 2D  (96 events). The 

proportional regression of cause-specific hazards used the 

following factors: 

1) For PCD: tumor size as a linear covariate with separate 

effects for each stage, high or low dose DES, and an 

external time-dependent factor for stage with the 

time-dependence described by a 2-degree-of-freedom 

natural cubic spline applied to follow-up time with knots 

at 0, 2, and 7 years. Time-dependent modeling for stage 

was chosen because the diagnostic method of Lin and 

colleagues [22] suggested a departure from constant 

proportional hazards for this factor. 

2) For the competing risk of CV death: a time-invariant 

factor for prior history of cardiovascular disease. 

3) For the competing risk of death due to any other cause: 

an external time-dependent effect for current patient age, 

defined as age at entry plus the current follow-up time. 

Figure 2 shows estimates and pointwise 95% confidence 

intervals for the one-year risk of PCD from the CSH-method 

competing risks model and corresponding conditional risk 

estimates for PCD censoring on death due to causes other than 

prostate cancer. Patients with a history of cardiovascular 

disease are at higher risk for cardiovascular death, so the 

absolute risk of prostate cancer death is lower for those 

patients relative to patients without prior cardiovascular 

disease. Similarly, as patient age at study entry increases, the 

absolute risk of prostate cancer death decreases due to 

increasing mortality from other causes. The case of a 30-year 

old stage 4 patient provides an example in which the absolute 

risk estimate is slightly higher than the conditional risk 

estimate due to the discreteness of the empirical cumulative 

hazard function estimate. 
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Figure 2. Estimates and 95% confidence intervals for the one-year risk of death due to prostate cancer using CSH analysis of competing risks (black) and the 

conditional estimate censoring on other causes of death (gray), for prostate cancer patients taking low-dose DES. 
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Among the patients with stage 3 disease, 35 experienced PCD 

and 257 did not. For stage 4 disease, 95 experienced PCD and 

119 did not. To illustrate the analysis of a stratified cohort 

sampling study, we randomly sampled 100 of the 257 stage 3 

patients without PCD and included them in the analysis with a 

weight of 257 /100 2.57.=  All other patients were assigned a 

weight of 1. The results are shown in Figure 3. The risk estimates 

are similar to the estimates using the full cohort, and the 

confidence intervals are slightly wider. With this relatively small 

data and the resulting wide confidence intervals, repeated 

sampling of the non-event patients produces estimates with 

substantial variability about the full-sample estimates. 

 

Figure 3. Estimates and 95% confidence intervals for the one-year risk of death due to prostate cancer using CSH analysis of competing risks (black) and the 

conditional estimate censoring on other causes of death (gray), for prostate cancer patients taking low-dose DES. Stratified cohort sampling of the 100 / 257 

stage 3 patients without prostate cancer death. 



68 Michael Richard Crager and Jerome Victor Braun:  Interval Estimation of the Absolute Risk of an Event with Competing Risks  

Using Proportional Regression of Cause-Specific Hazards with Stratified Cohort Sampling and Time-Dependent Covariates 

 

Figure 4. Estimates and 95% confidence intervals for the one-year risk of death due to prostate cancer using the Fine-Gray method with time-invariant effect for 

stage for the analysis of competing risks (black), and the conditional risk estimate with the same covariates censoring on other causes of death (gray), for stage 

3 patients taking low-dose DES. 
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Figure 5. Estimates and 95% confidence intervals for the one-year risk of death due to prostate cancer using the CSH method with time-invariant effect for stage 

for the analysis of competing risks (black), and the conditional risk estimate with the same covariates censoring on other causes of death (gray), for prostate 

cancer patients taking low-dose DES. 
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Fine and Gray (1999) developed an alternative to the 

cause-specific hazard approach to proportional hazards 

regression analysis in the presence of competing risks. They 

defined the “subdistribution hazard” for event type M as 

{ }( ;z) ( ;z) 1 ( ;z) ,M M Mt CIF t CIF tλ ′= −  where ( ; z)MCIF t′  

is the derivative of the CIF with respect to time, and applied 

the proportional regression model 

( )T
0( ;z) ( ;z)exp β z .M Mt tλ λ=  Geskus developed a method of 

fitting this model using ordinary Cox proportional hazards 

regression with time-dependent weights [21]. To fit the 

Fine-Gray model, the usual proportional hazards regression 

partial likelihood is modified by keeping subjects who 

experience the competing risk event in the risk set until the 

future time at which they would have been censored, if this is 

known (for example, if only administrative censoring is 

present), or using time-dependent weights in the presence of 

random censoring. 

The proportional subdistribution hazard assumption of the 

Fine-Gray model imposes a different constraint on the relation 

between the covariates and the risk of the event of interest than 

does the model of proportional cause specific hazards. This 

can lead to differences in the absolute risk point and interval 

estimates produced by the two methods. 

Figure 4 shows one-year PCD risk estimates from the 

Fine-Gray model applied to the example data set with 

time-invariant covariates for high dose DES, stage, tumor size 

(separate effect for each stage), history of CVD, and patient 

age at study entry. Figure 5 shows estimates from the CSH 

method using the same covariates as for the analysis that 

generated Figure 2, except that a time-invariant effect was 

used for stage. The risk estimates with time-invariant effect 

for stage 3 tend to be higher than with time-dependent stage 

effect, suggesting a potential bias due to non-proportional 

hazards. Some of the Fine-Gray model risk estimates for the 

absolute risk are substantially higher than the corresponding 

conditional risk estimates. 

7. Simulation Studies 

The confidence intervals described here use asymptotic 

approximations assuming large samples. To examine their 

small- and moderate-sample coverage probabilities, we 

performed a series of simulation studies. Details of the 

simulation methods and results are given in the Supplemental 

Material. Covariate vectors zMi and z , 1, 2, ,Di i n= …  for M 

and D events were generated from multivariate normal 

distributions. True log hazard ratio vectors βM  and βD  

were set. For each simulated observation ,i  times to M and D 

events were generated from the exponential distribution with 

intensity parameters ( )T
0 exp β zM M Miλ  and ( )T

0 exp β z ,D D Diλ  

with a random censoring time from an independent 

exponential distribution. The sample size n was varied to give 

a wide range of expected events counts. Individual simulated 

data sets were included in the summaries only if they had at 

least 2 first events of type M and at least 2 first events of type 

D. For covariate values of zM  and z ,D  the true CIF at a 

fixed time 0t was calculated as ( )0 ;zCIF t =

( ) ( ){ } ( )0 T T T
0 0 0

0

ˆ ˆexp exp β z exp β z exp β z d .
t

M M M D D D M M Mt t tλ λ λ− −∫  

We generated 1000 replications of each scenario, giving a 

standard error of 0.7% for coverage probabilities close to the 

nominal level. 

Scenarios examined by simulation had (I) 3 covariates for 

M, 1 covariate for D, (II), 6 covariates for M, 2 covariates for 

D, and (III) 1 covariate for M and no covariate for D. The 

covariate covariance matrices, true log hazard ratio vectors, 

and covariate values (designated as Case 1, 2, and 3) at which 

to estimate the risk of M are specified in the Supplemental 

Material. Simulations using 3 covariates for M-type events 

and 1 covariate for D-type events (Scenario I) were conducted 

for situations in which the D-type and M-type events occurred 

with similar frequency (Appendix A3 Figure A1) and when 

the D-type event was substantially less frequent than the 

M-type event (Appendix A3 Figure A2). 

The model-based and Lin-Wei robust estimators of the 

cause-specific log hazard ratio covariance matrices gave 

similar coverage probabilities. The simulation study results 

indicate that the “log-log” and “linear” method confidence 

intervals have actual coverage close to the nominal level even 

for small sample sizes. In contrast, the “log” method 

confidence intervals have lower-than-nominal coverage 

probability even for moderate sample sizes, tending to “miss 

low”, with the upper limit below the true value. 

Simulations using 6 covariates for M-type events and 2 

covariates for D-type events (Scenario II) showed 95% 

confidence interval coverage probabilities close to the 

nominal level using the “log-log” and “linear” methods, 

provided the mean number of events was at least 10 times the 

number of covariates (Appendix A3 Figure A3). This is a 

reminder that the ratio of events to covariates in proportional 

hazards regression models should be at least 10:1 [22]. The 

“log-log” and “linear” confidence interval methods again gave 

better coverage than the “log” method. Scenario III simulation 

results using a single covariate for M events and none for D 

events were similar (Appendix A3 Figure A4). 

Simulations using stratified cohort sampling were 

conducted using the covariate distributions of Scenario I (3 

covariates for M-type events, 1 covariate for D-type events). 

Within each replication of the simulation, a random sample 

was drawn from the simulated observations without either an 

M-type or a D-type event. The ratio of the number of 

non-event observations sampled to the number of 

observations with events varied from 1:1 to 4:1. The results 

are shown in Appendix A3 Figures A5 and A6. The true 

coverage probabilities are close to the nominal level for ratios 

of 3:1 and 4:1. Coverage probabilities for some of the 

covariate cases were slightly below the nominal level for the 

ratio 2:1 and substantially below nominal level for ratio 1:1. 

This appears to be due primarily to minor biases in the 

regression parameter estimators, which decrease as the sample 

size increases. At the 2:1 ratio, the relative bias (the bias 
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divided by the true value) in one of the three covariates was 

8.4% for the smallest samples and 2.4% for the largest 

samples in the simulation. For the 3:1 ratio, the bias was 

reduced to 1.1% for the largest samples and for 4:1 it was less 

than 1%. To understand how this bias might arise, recall that 

the regression parameter estimators are obtained by 

maximizing the pseudolikelihood (1), which is equivalent to 

finding the regression parameter vector values at which the 

associated score function is 0. The weighting gives a 

consistent estimator of the true regression parameter vector 

β ε  for each event type ε  because the score function,  
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where { }1, 2, ,C n⊂ɶ …  denotes the stratified random sample 

of the cohort, is an unbiased estimator of the score function 

using the full cohort without sampling, 
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Observations without an event contribute heavily to the last 

term of (22), which is a weighted average of the covariate 

vector values among all observations in the risk set at time .it  

Therefore, particularly for smaller sample sizes, the variance 

of ( ) ( )( ) β βwU Uε ε ε ε−  increases as the number of non-event 

observations in the stratified cohort sample Cɶ  decreases due 

to lowering the sampling fraction. The score function 

( )( ) βwUε ε is a non-linear function of the regression parameter 

vector β ε and in general, for d 0,≠

( ) ( )( ) ( )β d βw wU Uε ε ε ε+ − ( ) ( )( ) ( )β β d .w wU Uε ε ε ε≠ − −  

Therefore, although ( )( ) βwUε ε  is unbiased for ( )β ,Uε ε  the 

increased variability in ( )( ) βwUε ε  due to a lower sampling 

fraction might well induce a non-negligible bias in the 

maximum partial pseudolikelihood estimator β̂ε  obtained 

by solving the score equation ( )( ) β 0.wUε ε =  However, the 

results of this simulation study indicate that if the number of 

sampled subjects without events is at least twice the number of 

subjects with events, the bias is small enough that the 

coverage probability of the CSH-method confidence intervals 

for the absolute risk is close to the nominal level. 

Information on the bias of the CSH point estimator of 

absolute risk and its estimated standard error was also 

captured from the simulation studies. The relative bias was 

defined as the mean difference between the estimated and true 

absolute risks divided by the true absolute risk. The 

performance of variance estimators was summarized as the 

ratio of the mean estimated standard error of the absolute risk 

to the standard deviation of the absolute risk estimates in the 

population of 1000 simulations. 

The relative bias of the CSH point estimator is described in 

Appendix A3 Figure A7 for studies without cohort sampling. 

Relative biases were generally in the range of 1-2% except for 

small sample sizes, where some relative biases approached 

10%. Relative biases of the CSH point estimator in cohort 

sampling studies (Appendix A3 Figure A8) were similar 

except that more notable relative biases occurred for 

non-event: event ratios of 2:1 and 1:1. 

The standard error estimates for non-cohort sampling 

studies were close to the true standard deviation, with a ratio 

generally remaining within the range 0.95-1.05 when there 

were at least 10 events per covariate (Appendix A3 Figure A9). 

Similar results were obtained for cohort sampling studies with 

non-event:event ratios of 3:1 or higher. More substantial 

differences between the estimated and true standard errors 

were noted for lower non-event:event ratios, particularly for 

the 1:1 ratio, in which the standard errors for small samples in 

some cases were more than 10% below the true value. 

8. Discussion 

Confidence intervals computed on the cumulative hazard 

scale (“log” method intervals) consistently performed worse 

than the confidence intervals computed on the log cumulative 

hazard scale (“log-log” method intervals) or the risk scale 

(“linear” method intervals) in our simulation studies. We 

therefore recommend using either the “log-log” or the “linear” 

intervals. The “log-log” intervals may be preferable since the 

confidence interval limits always lie within the unit interval. 

For time-invariant covariates in studies without cohort 

sampling, expression (4) reduces to the calculation given by 

Cheng and colleagues [10]. In the absence of a competing risk 

D and without stratified cohort sampling or time-dependent 

covariates, expression (4) reduces to the expressions given by 

Tsiatis [16] for the variance of a risk estimator from Cox 

regression. The confidence interval widths for the conditional 

and absolute risks in our example calculations are similar. This 

is because the D-type events influence the CIF only through 

the function ( )ˆ ;z ,D DS t  which is relatively stable if there are 

few D-type events. 

An important feature of the CSH model is that different 

covariates may be used for the event of interest and the various 

competing risks. For example, covariates related to cancer are 

not generally useful for predicting the risk of death to other 

causes and need not be included in the model for the 

competing risk. In general, it is better to avoid using 

non-informative covariates, as they add noise to the 

estimation. 

In contrast to the proportional CSH regression model, the 

Fine-Gray proportional subdistribution hazard model provides 

a single measure, the subdistribution hazard ratio, of the 
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strength of association of the covariate with the event of 

interest, accounting for the competing risks. The value of the 

subdistribution hazard ratio corresponds to the estimates of 

risk of the event of interest as a function of the covariate in a 

familiar way [8, 20]. If a proportional CSH regression model 

is fit using the same covariate for both the event of interest and 

the competing risk and the covariate has a strong association 

with both event types, the estimated risk of the event of 

interest as a function of the covariate value may not 

correspond to the hazard ratio for the event of interest viewed 

in isolation. The hazard ratios for both the event of interest and 

the competing risk are required to understand absolute risk 

estimates derived from proportional CSH regression. It is 

possible to construct a standardized subdistribution hazard 

ratio estimate using the CSH method (see Appendix A2). 

However, if estimation of the subdistribution hazard ratio is a 

primary goal of the analysis, it is probably best to obtain the 

estimate using the Fine-Gray method. 

In a clinical setting, the conditional risk of an event may 

better reflect a patient’s understanding than absolute risk. For 

example, a patient’s risk of cancer recurrence within 10 years 

assuming the patient’s survival for that period would seem 

more intuitive to the patient than the absolute risk, which is 

discounted for the probability of non-cancer death. From an 

epidemiologic perspective or in a health economic analysis, 

however, the absolute risk may be more relevant, as it 

provides an estimate of the population rate of cancer 

recurrence. 

If both the conditional and absolute risk estimates are 

computed, the CSH method absolute risk estimate will be less 

than or equal to the conditional risk estimate using the same 

covariates for the event of interest (or, at most, very slightly 

higher due to approximation of the continuous baseline 

cumulative hazard with the discrete empirical estimate). As 

shown in Figure 2, the Fine-Gray method based on 

proportional regression of the subdistribution hazard may 

occasionally produce absolute risk estimates that are 

substantially higher than the corresponding conditional risk 

estimates. When this occurs, the most likely explanation is 

misspecification of either the proportional hazards model used 

to estimate the conditional risk or the proportional 

subdistribution hazards model used to estimate the absolute 

risk (or both). Diagnostic tests for non-proportional hazards 

might indicate which model is mis-specified. Although 

mis-specified models will not cause inconsistency between 

the conditional and absolute risk estimates using proportional 

CSH regression, the model assumptions should still be 

checked. Martingale residual methods (for example, [20]) can 

be used for the event of interest and each of the competing 

risks, censoring each on the occurrence of events of other 

types. 

9. Software 

A SAS macro that calculates the proportional CSH 

regression interval estimate of absolute risk using these 

methods is available in the repository 

https://mcrager.github.io/SAS-macros/. The calculations are 

also available in the R package cshCIF. Example calculations 

with the Fine-Gray model used base SAS Version 9.4 with 

SAS/STAT version 14.1 [25]. 

10. Conclusions 

We have provided closed form, pointwise confidence 

intervals for the absolute risk (cumulative incidence function 

at a fixed time point) using proportional cause-specific hazard 

regression, accommodating stratified cohort sampling designs, 

external time-dependent covariates and multiple censoring 

mechanisms. The CSH model allows different covariates for 

the event of interest and the various competing risks. In 

contrast to methods using subdistribution hazard regression, 

the CSH regression model always gives absolute risk 

estimates that are less than or approximately equal to the 

corresponding risk estimates conditional on non-occurrence of 

competing risks obtained by censoring the event of interest on 

occurrence of a competing risk. Simulation studies indicate 

that the proportional CSH regression confidence intervals for 

the CIF computed on the log cumulative hazard scale 

(“log-log” intervals) or the risk scale (“linear” intervals) have 

coverage probabilities that approximate nominal levels for 

small and moderate samples, provided there are at least 10 

events per covariate and, with stratified cohort sampling, the 

ratio of non-events to events is at least 2:1. Software to 

perform the calculations is freely available. 
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Appendix 

Appendix A1. Asymptotic Approximation for the Variance of the Absolute Risk Estimator 

Define for ,M Dε =  the estimated cause-specific cumulative hazard function estimators 
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and the hazard function estimators 
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This is a consistent estimator of the expected value of the covariate vector given the occurrence of an event [23]. 

The gradient of the baseline cumulative hazard estimator with respect to the regression parameter estimate vector is 
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We first account for the variability in the regression parameter estimates. The gradient of ( )ˆ ;zM MS t  with respect to the 

parameter estimate β̂M  is 
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We can pass the gradient under the integral sign because the integrand is continuously differentiable (or alternately, because 

the Stieltjes integrals actually represent finite sums). 

Using the same methods for the D event type, we have 

( ) ( ) ( )
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D D D D D DS t S t t∇ = −  

where 
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The gradient of ( )0
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These gradients will be combined with the estimated 

covariance matrices of the regression parameter estimates to 

capture the contribution of the variances of the regression 

parameter vector estimators to the variance of the cumulative 

incidence function. 

Next, we account for the variability in the number of jumps 

d ( )Mi MiN t  in the cumulative hazard function estimate for event 

M. Since these jumps are based on a random sample of subjects, 

the d ( )Mi MiN t are independent random variables. We can locally 

approximate the counting process 
10
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a Poisson process, for which the mean and variance are equal, so 

the method of moments estimate of both the mean and variance is 

( )d Mi MiN t  [14]. Hence, a consistent estimate for this 

contribution to the variance of the CIF is 
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Accounting for the variance of the jumps d ( )Di DiN t in the estimated cumulative hazard function for the competing risk event 
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The M and D counting processes jump at the same time with probability 0, so they are orthogonal [15]. The parameter 

estimates β̂M  and β̂D are asymptotically independent of the jumps d ( )Mi MiN t  and d ( )Di DiN t  [6, 16]. Hence the variance of 

( )0
ˆ ;zMCIF t is consistently estimated by 
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which is equation (4) in the main text. Equations (5)–(12) are 

derived above. 

Appendix A2. Estimating the Time-Dependent Standardized 

Subdistribution Hazard Ratio from the CSH Model 

It is possible to use the CSH model to construct a measure 

similar to a standardized Fine-Gray subdistribution hazard 

ratio. In contrast to the Fine-Gray subdistribution hazard ratio, 

the CSH measure would be time-dependent. In a conventional 

Cox proportional hazards regression, the absolute 

standardized log hazard ratio is the standard deviation of the 

risk score Tβ̂ z  in the study population, where β̂ is the 

regression parameter estimate vector, and z is the covariate 

vector [24]. Transforming the cumulative incidence function 

to the log cumulative hazard scale, define the CSH 

time-averaged absolute standardized subdistribution log 
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hazard ratio at time 0t  as 
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where SD denotes the standard deviation. Averaging over time 

occurs here even if all the covariates are time-invariant, since 

the CIF is influenced by the survival curves for the M and kD  

event types. A consistent estimator of ( )0MB tσ is 
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If the covariates modulate the hazard for the event of 

interest and the competing risks similarly, resulting in very 

little differentiation of risk in the population, then ( )0
ˆ

MB tσ  

will tend to be close to 0. The estimate of the time-dependent 

average absolute standardized subdistribution hazard ratio is 

( ){ }0
ˆ

exp .MB tσ  

Appendix A3. Details of Simulation Studies 

Simulation scenarios used the following true log hazard 

ratio vectors and covariate covariance matrices with absolute 

risk estimated at specified covariate values designated as Case 

1, 2, and 3: 

I. ( ) ( )z z

0.2 1 0.5 0

β 0.3 , Σ 0.5 1 0 ,β 0.2 , Σ 1

0.4 0 0 1
M DM D

−   
   = − = − = =   
   
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Case 1: ( )T
z 1, 0.5,1 ,z (0)M D= − =  

Case 2: ( )T
z 2,1, 1 , z (1)M D= − =  

Case 3: ( )T
z 0,0,0 ,z ( 1)M D= = −  

II. z z

0.3 1 0.5 0 0 0 0

0.3 0.5 1 0 0 0 0

0.4 0 0 1 0.6 0 0 0.1 1 0
β , Σ ,β , Σ

0.4 0 0 0.6 1 0 0 0.2 0 1

0.5 0 0 0 0 1 0.7

0.5 0 0 0 0 0.7 1

M DM D

   
   
   
   −    

= = = =       − −       
   
      
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Case 1: ( )T Tz 1,1.2,0.7, 0.8,0.1,0.2 ,z (1.5, 0.4)M D= − = −  

Case 2: ( )T Tz 1.4, 1.3,0.2,0.4, 0.3,0.2 ,z (0.7, 0.6)M D= − − = −  

Case 3: ( )T Tz 0,0,0,0,0,0 , z (0,0)M D= =  

III. ( ) ( )z
β 0.4 , Σ 1 ,

MM
= =  no covariate for D 

Case 1: 1Mz = −  

Case 2: 0Mz =  

Case 3: 2Mz =  

The results of the simulation studies are given in Figures A1 

through A6. Actual coverage probabilities of the 95% 

confidence intervals are plotted throughout as a function of the 

total sample size. The left column in each figure shows results 

using the model-based (Fisher information) variance estimate; 

the right column shows results using the Lin-Wei (1989) 

robust variance estimate. The plot at the bottom center of each 

page shows the mean number of M and D events as a function 

of the total sample size. 
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Figure A1. Coverage probabilities of 95% confidence intervals in simulation studies. Similar expected event counts for M and D. Three (3) covariates for M 

events, one (1) covariate for D events. 
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Figure A2. Coverage probabilities of 95% confidence intervals in simulation studies. D events expected to be less frequent than M events. Three (3) covariates 

for M events, one (1) covariate for D events. 
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Figure A3. Coverage probabilities of 95% confidence intervals in simulation studies. D events expected to be less frequent than M events. Six (6) covariates for 

M events, 2 covariates for D events. 
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Figure A4. Coverage probabilities of 95% confidence intervals in simulation studies. D events expected to be less frequent than M events. One (1) covariate for 

M events, none for D events. 
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Figure A5. Coverage probabilities of 95% confidence intervals in simulation studies. D events expected to be less frequent than M events. Three (3) covariates 

for M events, 1 covariate for D events. Cohort sampling with ratio of non-events to events 1:1 (left column) and 2:1 (right column). The horizontal axis shows the 

size of the full cohort before sampling. 
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Figure A6. Coverage probabilities of 95% confidence intervals in simulation studies. D events expected to be less frequent than M events. Three (3) covariates 

for M events, 1 covariate for D events. Cohort sampling with ratio of non-events to events 3:1 (left column) and 4:1 (right column). The horizontal axis shows the 

size of the full cohort before sampling. 
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Figure A7. Relative bias of the point estimate for risk as a percentage of the true value in simulations. D events expected to be less frequent than M events. Three 

(3) covariates for M events, 1 covariate for D events. The horizontal axis shows the size of the full cohort before sampling. 

  

  

 

Figure A8. Relative bias of the point estimate for risk as a percentage of the true value in simulations. D events expected to be less frequent than M events. Three 

(3) covariates for M events, 1 covariate for D events. Cohort sampling with ratio of non-events to events specified. The horizontal axis shows the size of the full 

cohort before sampling. 
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Figure A9. Ratios of estimated standard errors of the estimate to true standard errors in simulations. D events expected to be less frequent than M events. Three 

(3) covariates for M events, 1 covariate for D events. Cohort sampling with ratio of non-events to events specified. The horizontal axis shows the size of the full 

cohort before sampling. 
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