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Abstract: There is always a demand in the industry sector to increase the efficiency of machine components to reduce wear 

and tear. This paper presents the numerical solution to the study of Elastohydrodynamic lubrication point contact for 

sliding/rolling bearing where the viscosity of the lubricant is non-Newtonian. The assumption that a lubricant is Newtonian 

reduces validation of the model hence the Reynolds-Eyring model in this research will incorporate the non-Newtonian nature of 

the lubricant of the bearing. The mathematical model comprises of Reynold-Eyring equation, film thickness, load balance, 

lubricant viscosity and lubricant density equations together with their boundary conditions. The Reynolds-Eyring equation 

governing the flow is non-linear hence the finite difference method numerical technique is used to discretize it together with the 

other two dimensional equations. These equations are solved simultaneously and Matlab software is used simulate the results. 

The film thickness and pressure profiles with various loads and speeds are presented. The findings note that an increase in load 

lowers the pressure and film thickness while an increase in the speed results to a direct increase in pressure and film thickness. A 

pressure spike is also noted at the exit of the bearing. 
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1. Introduction 

Lubrication is an important aspect for modern machine so 

that they can work efficiently and have long life. The use of a 

lubricant between two surfaces in contact reduces the friction 

and the wear. Elastohydrodynamic lubrication (EHL) is an 

important aspect of research in lubrication theory primarily in 

heavily loaded contacts. This type of lubrication considers 

deformation of the bearing contacts. Goodyer [1] in his 

research in adaptive numerical methods for 

elastohydrodynamic lubrication was able to get numerical 

solutions for his mathematical model using the Reynolds 

equation. The Reynolds equation which was derived by 

Osborn combines both the continuity and momentum 

equations to a single equation that describes the pressure of 

fluid [2]. 

Most lubricants are non-Newtonian. Most research has 

modelled using Newtonian lubricants because of the 

straightforward and simple constitutional expression in the 

Reynolds equation. Previous research has shown that 

non-Newtonian lubricants greatly affect the film thickness 

[3]. Many rheological models have been proposed to 

incorporate the non-Newtonian nature of lubricants during 

mathematical modelling. They include the 

Reynolds-Eyring model, Johnson-Tevaarwerk model, 

power-law model among others [4]. Most researchers have 

recommended the Reynolds-Eyring model for traction 

studies and lubrication performance studies [5]. Liu [6] in 

his research was able to derive the Reynolds-Eyring 

equation for line contacts. This research extends his work 

to point contacts. 

Since EHL experiments are still expensive and difficult to 
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conduct in the lab, numerical simulations have been 

important tool for research in EHL. There are many 

numerical techniques which have been used to solve EHL 

problems. The direct method, inverse method, finite element 

method, finite difference method, multigrid method, 

computer fluid dynamics (CFD), among others [7, 8, 9]. The 

study [10] used the numerical finite difference technique to 

discretise the Reynolds equation and the viscosity equation 

for the rheology model in their research. The research study 

[11] solved both the Reynolds and energy equation using the 

finite difference method. The numerical study [12] and [13] 

in their research of hydrodynamic lubrication of an inclined 

pad thrust bearing used the finite difference method to solve 

both the pressure and energy equations. Thus in this paper, 

the Reynolds-Eyring model will be solved using the finite 

difference method. 

2. Mathematical Formulation 

The Analysis of Non-Newtonian Elastohydrodynamic 

lubrication flow for point contacts has not been analyzed 

extensively. This research focusses on two dimensional (point 

contacts) numerical solution for Elastohydrodynamic lubrication 

for a sliding/rolling bearing where the non-Newtonian aspect of 

the lubricant will be put into consideration. The lubricant flow is 

considered to be in the x and y direction as demonstrated in figure 

1. Due to heavy loads and pressure, the bearing surfaces deforms 

as illustrated in figure 2. 

 

Figure 1. Geometry before deformation. 

 

Figure 2. Geometry after deformation. 

3. Governing Equations 

The main equations governing the flow are the 

Reynold-Eyring, film thickness, lubricant viscosity, lubricant 

density equations. Point contact Elastohydrodynamic 

lubrication analysis is considered in this research. In 

rectangular coordinates, the general equations for the flow are 

given by 

3.1. Non-Newtonian Model 

In this paper, to incorporate non-Newtonian nature of the 

lubricant the Eyring model is used [6]. 

� � ��
� ���	 
 �

���                (1) 

The Eyring model in both the x and y direction can be given 

by, 

�

�� � ��

� ���	 
����� � , ���� � ��
� ���	 
����� �       (2) 

3.2. Reynolds-Eyring Equation 

The Navier stokes equation with the usual assumptions in 

the x and y direction reduces to, 

��
�� � ������

�� , ���� � ������
��               (3) 

If we assume that pressure is a function of x alone, we 

integrate the first equation of (3) with respect to z to get 

��� � ��
�� � � ��                   (4) 

where C1 is a constant of integration 

Substituting equation (4) in the first equation of equations 

(2) 

�

�� � ��

� sinh " ��� 
���� � � ���#           (5) 

Integrating equation (5) with respect to u and z with C2 as a 

constant of integration 

$ � ��%
�&'&�

()�	 " ��� 
���� � � ���# � �*       (6) 

Now applying the boundary condition on the lower plate i.e. 

at z=0; u=U1, equation (6) becomes 

+� � ��%
�&'&�

()�	 "	-.��	# � �*             (7) 

Substituting the value of C2 given by equation (7) into 

equation (6) 

$ � +� � ��%
�&'&�

/()�	 " ��� 
���� � � ���# 0 ()�	 "	-.��	#1   (8) 

Taking �2 to be the shear stress of the mid plane at z=0.5h 

and from equation (4) 
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�2 � 3
*
��
�� � � ��               (9) 

With 

4 � 3
*��

��
�� , 5 = 3*�� ����           (10) 

Substituting equations (9) and (10) into equation (8) 

$ = +� + 3��*�6 /()�ℎ "�7�� − 4 + *�63 # − ()�ℎ "	�7�� − 4#1   (11) 

Similarly, in the y-direction we get 

8 = 9� + 3��*�: /()�ℎ "�7�� − 5 + *�:3 # − ()�ℎ "	�7�� − 5#1   (12) 

Applying the boundary condition at the upper plate i.e. z=h; 

u=U2 and v=V2 on equation (11) and equation (12) we get 

+* = +� + 3��*�6 /()�ℎ "�7�� + 4# − ()�ℎ "	�7�� − 4#1    (13) 

9* = 9� + 3��*�: /()�ℎ "�7�� + 5# − ()�ℎ "	�7�� − 5#1    (14) 

Applying the following identity 

cosh�= + >� − cosh�= − >� = 2 sinh�=� sinh	�>� 
in equation (13) and (14), we get the following, respectively 

sinh 
�7�� � sinh�4� = �6��3 �+* − +��       (15) 

sinh 
�7�� � sinh�5� = �:��3 �9* − 9��       (16) 

Substituting the values of u and v from equations (11) into 

two dimensional continuity equation 

�@�A + ��@
��� + ��@���� = 0           (17) 

��� CD+� + @3��*�6 /()�ℎ "�7�� − 4 + *�63 # − ()�ℎ "	�7�� − 4#1E + ��� CD9� + @3��*�: /()�ℎ "�7�� − 5 + *�:3 # − ()�ℎ "	�7�� − 5#1E + �@�A = 0	 (18) 

Now, integrating equation (18) with respect to z from z=0 to z=h and using the identity 

cosh�F − G� = cosh�F� cosh�G� − sinh�F� sinh	�G� 
then substituting equations (14) we get 

HDℎHI − HH= JDℎK12M HNH= C3�4 cosh�4� − sinh�4��4K ()�ℎ P	�2�Q RES − HH> JDℎK12M HNH> C3�5 cosh�5� − sinh�5��5K ()�ℎ P	�2�Q RES + 

��� "T.UT%* Dℎ# + ��� "V.UV%* Dℎ# = 0                                      (19) 

Assuming that there is no tangential direction and Um=U1+U2 and Vm=V1+V2, the Reynold's-Eyring equation becomes 

��� "@3W�*� ���� X�=�# + ��� "@3W�*� ���� 	Y�>�# = T7* ��@3��� + V7* ��@3��� + �@3�A                     (20) 

Where 

X�=� = 3�4 cosh�4� − sinh�4��4K ()�ℎ P	�2�Q R 
Y�>� = 3�5 cosh�5� − sinh�5��5K ()�ℎ P	�2�Q R 

The shear stress �Q represents the change of the lubricant from Newtonian to non-Newtonian. As �Q approaches infinity, the 

parameters 4 and 5 approach zero and by L’ Hopitals rule S (x) and Q (y) will be unitary. Thus Equation (20) becomes 

Reynolds Newtonian equation. 

Substituting into equation (15) and (16) the hyperbolic identity 

���ℎ*= = 1 + ()�ℎ*= 

()�ℎ "	�7�� # = Z1 + "��T%[T.���3 6\]^_	�6�#*                                 (21) 

Substituting equation (21) into S (x) and Q (y) above 
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X�=� � K�6 `a\_�6�[\]^_�6��
6W Z1 � "��T%[T.���3

6
\]^_	�6�#

*
                           (22) 

Y�>� � K�: `a\_�:�[\]^_�:��
:W Z1 � "��V%[V.���3

:
\]^_	�:�#

*
                           (23) 

3.3. Film Thickness Equation 

The film thickness equation for point contact with surface roughness 

	�=, >� = ℎQQ + �%*b + �%*b + �c�=, >� + *def g g ���f,�f�h��[�f�%U��[�f�% i=j	i>jk[kk[k                  (24) 

3.4. Lubricant Viscosity Equation 

The lubricant viscosity is assumed to be dependent on pressure which is given by Roelands [14] 

M = MQlm^����Un.pq[[�Us�Ut.�×�Qvw��xy                                (25) 

3.5. Lubricant Density Equation 

Due to high pressures, the compressibility of the lubricant has to be considered. The lubricant density is assumed to be 

dependent on pressure hence most the Barus model is used since it is valid even for high pressures [15]. 

D = DQ "1 + Q.p×�Qvw��U�.q×�Qvw�#                                    (26) 

3.6. Non-Dimensionalization 

The equations are non-dimensionalized using the Hertzian dry contact variables below [16]. 

D̅ = DDQ , M̅ = M�Q , { = NN3 , | = =} , ~ = >} , � = ℎ�}* , 
	� = I$2} , �QQ = ℎQQ�}* , + = $2MQ��j , 9 = 82MQ��j , R = �c�}*  

3.6.1. Dimensionless Reynold-Eyring Equation 

Applying the above non-dimensionless variables to the Reynold-Eyring equation becomes and assuming the rolling speed 

Um=Vm in the x and y direction is the same we have, 

��� "@��W
�� ���� X�|�# + ��� "@��W

�� ���� 	Y�|�# = � "��@����� + ��@����� + �@���� #                     (27) 

With 

X�=� = 3�4 cosh�4� − sinh�4��4K �1 + P��QM̅�+* − +���Q�}* 4sinh	�4�R
*
 

Y�>� = 3�5 cosh�5� − sinh�5��5K �1 + P��QM̅�9* − 9���Q�}* 5sinh	�5�R
*
 

� = 6MQ+�*N3}K , 4 = �}N32��Q H{H| , 5 = �}N32��Q H{H~ 

If we let  

� = D̅�KM̅  

The Reynold-Eyring equation (27) becomes 

��� "� ���� X�|�# + ��� "� ���� 	Y�|�# = � "��@����� + 92 ��@����� + �@���� #                         (28) 
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3.6.2. Dimensionless Film Thickness Equation 

��=, >� = �QQ + �%
* + �%* + R	�|, ~� + *d% g g ���f,�f�h��[�f�%U��[�f�% i|j	i~jk[kk[k                  (29) 

3.6.3. Dimensionless Lubricant Viscosity Equation 

M̅ = lm^����Un.pq[[�Us�Ut.�×�Qvw����xy                                     (30) 

3.6.4. Dimensionless Lubricants Density Equation 

D̅ = "1 + Q.p×�Qvw����U�.q×�Qvw���#                                         (31) 

3.7. Boundary Conditions 

The model equations are discretised on a rectangular domain |�� ≤ | ≤ |��� and ~�� ≤ ~ ≤ ~���  

The boundary conditions in accordance to [18] are given by 

{�|�� , ~� = 0, {�|��� , ~� = 0, {�|, ~��� = 0, {�|, ~���� = 0 

H{H|��� = H{H~��� = 0 

4. Numerical Solution 

The Reynolds-Eyring equation is non-linear partial 

differential equation which cannot be solved analytically. 

Therefore, the finite difference numerical method is used to 

approximate the solutions of this equation together with other 

equations affecting the flow of lubricant. The partial 

derivatives are replaced by two dimensional finite-sized 

difference nodes at particular locations of a solution mesh. 

This reduces the problem to a system of linear equations 

which can be solved by an iteratively [17]. Reynolds-Eyring 

equation after discretization after and making {�,�  the subject 

of the formula becomes 

{�,� =
���
�� 1�i=�* ���[�*,,�{�[�,�X�[�*,� + ��U�*,�{�U�X�U�*,�� + 1�i>�* ���,�[�*{�,�[�X�,�[�* + ��,�U�*{�,�U�X�,�U�*�

− �i= s��,�D̅�,�−��[�,�D̅�[�,�� − �i> s��,�D̅�,�−��,�[�D̅�,�[�� − �iI s��,��U�D̅�,��U�−��,�� D̅�,�� � ���
� 
 

÷ P �����% ���[.%,,�X�[.%,� + ��U.%,�X�U.%,�� + �����% ���,�[.%X�,�[.% + ��,�U.%X�,�U.%�R                   (32) 

Film thickness equation in discrete form 

��,� = �QQ + �¢,£%* + �¢,£%* + R�,� + *d%∑ ∑ ¥c,�,¦,�{c¦��[�¦§Q��[�c§Q                            (33) 

Where 

¥c,�,¦,� = ¨|�¨���ℎ[� �~�|�� + ¨~�¨���ℎ[� �|�~�� − ||2|���ℎ[� � ~�|2� + ¨~�¨���ℎ[� �|2~� � 

−¨|�¨���ℎ[� �~2|�� + |~2|���ℎ[� �|�~2� + ||2|���ℎ[� �~2|2� + |~2|���ℎ[� �|2~2 � 

|� = |� − |c + i=2 , 	|2 = |� − |c − i=2 , 	~� = ~� − ~¦ + i>2 , 	~2 = ~� − ~¦ − i>2  

Lubricant viscosity equation in discrete form 

M̅�,� = lm^����Un.pq[[�Us�Ut.�×�Qvw�¢,£���xy                            (34) 

Lubricant density equation in discrete form 

D̅�,� = P1 + Q.p×�Qvw�¢,£���U�.q×�Qvw�¢,£��R                                  (35) 
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5. Results and Discussion 

The following graphs of pressure and film thickness 

illustrates the effects of several parameters and variables.  

5.1. Pressure Profile 

It is noted from the figures 3, figure 4 and figure 6 that the 

pressure increases gradually from the entrance of the bearing. 

At the centre of the sliding/ rolling bearing, the pressure 

achieves maximum pressure. Then the pressure decreases 

steadily at the exit contact. At the centre of the bearing there is 

greater contact between the rolling element and surface hence 

higher pressure. The pressure spike occurs at the exit of the 

sliding/rolling bearing due to cavitation. The cavitation is a 

result of sudden reduction in pressure which causes the 

lubricant to form air bubbles. 

 

Figure 3. Effects of Eyring Parameter on Pressure. 

 

Figure 4. Effects of Speed on Pressure. 

 

Figure 5. Effects of Speed on Film Thickness. 

 

Figure 6. Effects of Load on pressure. 

 

Figure 7. Effects of Load on Film Thickness. 
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5.2. Effect of Eyring Parameter on Pressure 

For the Reynolds-Eyring model, the effective viscosity in 

the x coordinate is given by M�ªª � �
«���. Thus a decrease in 

the non-Newtonian Parameter S(x) results in the increase of 

effective viscosity. As shown in Figure 3, this reduction results 

to increase in the pressure. An increase in the viscosity of the 

lubricant leads to an increase in the height of the film 

thickness which in turn increases the pressure. No one 

lubricant is Newtonian, hence the non-Newtonian model 

gives better realistic results due to the changes in the 

viscosity of the lubricant. 

5.3. Effects of Speed on Pressure and Film thickness 

It is noted from figure 4 that as the speed increases of the 

rolling element, the pressure also increases. This can be 

attributed to the fact that the film thickness becomes thicker as 

the speed of the rolling element increases. It is also known that 

the relative sliding between the contact surface and rolling 

element causes temperature increase which affect the 

components and lubricant properties of the bearing. Thus 

when the speed of the rolling element increases it leads to the 

height of the film thickness increasing due to thermal rise. 

The film thickness becomes thicker with increase in speed 

hence an increase in the film thickness as shown in figure 5. 

As the rolling speed increases, the friction reduces which 

results to increase in the film thickness and pressure. 

5.4. Effects of Load on Pressure and Film Thickness 

The figure 6 shows that as the load increases the pressure 

decreases. Moreover, as the load increases it leads to a 

reduction in the film thickness height (the film thickness 

becomes thinner) as shown in figure 7. Increase in load results 

to decrease in the viscosity of the lubricant which in turn 

reduces the load carrying capacity ability of the bearing. That 

at high load the film thickness becomes thinner than at light 

load. This is due to the fact that as the load increases, the 

friction of the contact region increases which in turn affects 

the pressure and film thickness.  

The results in this research were compared and validated 

with other numerical and experimental work in the area of 

elastohydrodynamic lubrication such as [14, 19-21]. The 

results obtained agree and compares well. That the film 

thickness and pressure are affected when the speed and load in 

the bearing is varied and a pressure peak is noted in the 

pressure profiles. 

6. Conclusion 

The numerical solution of Elastohydrodynamic lubrication 

for sliding/ rolling bearing using non-Newtonian lubricant 

has been investigated. To incorporate the non-Newtonian 

nature of the lubricant, the Reynold-Eyring equation has been 

used. The effects of rolling speed and load on pressure and 

film thickness have then been discussed. In conclusion, the 

pressure increases with increase in speed while reduces with 

increase in load. The film thickness increases with increase in 

speed of the rolling element and reduces with increase in load. 

The pressure peak is a result of cavitation. 

Nomenclature 

�  Eyring parameter M  The viscosity of the lubricant MQ  The viscosity at reference pressure D  The density of the lubricant DQ  Density at reference pressure �  Shear stress �Q  Eyring shear stress ¬  Viscosity pressure index =  Distance along x direction >  Distance along y direction $  Velocity along x direction $2  mean velocity 8  Velocity along y direction }  Hertzian radius I  Time N  Pressure N3   Maximum Hertzian pressure 	  Film thickness 	QQ  Minimum film thickness �c   Surface roughness �′  Young Modulus �  Radius of rolling element 
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