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Abstract: In this work we considered a nonlinear deterministic dynamical system to study the dynamics of HIV/AIDS with 

age structure and different mode of transmissions in Ethiopia. We found that the diseases free equilibrium point and endemic 

equilibrium points exist and we perform their local stability and global stability analysis using nonlinear stability methods. We 

found that the basic reproduction number of the considered dynamical system depends on the considered parameters and using 

real data collected from different health sectors in Ethiopia we found the numerical value of the reproduction number is 

R_0=1.05>1. This shows that the considered disease spreads in the community.  From the sensitivity index of the dynamical 

system we found that the most sensitive parameter is the transmission rate of unaware infective humans to aware infective θ. 

We also showed that the effect of all parameters on the basic reproduction number using numerical simulation.   
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1. Introduction 

HIV/AIDS remains a major global health problem 

affecting approximately 70 million people worldwide causing 

significant morbidity and mortality [1]. 

In Ethiopia in 2018, 690 000 people were living with HIV. 

HIV incidence per 1000 uninfected the number of new HIV 

infections among the uninfected population over one year 

among all people of all ages was 0.24. 23 000 people were 

newly infected with HIV and 11 000 people died from an 

AIDS-related illness. There has been progress in the number 

of AIDS-related deaths since 2010, with a 45% decrease, 

from 20 000 deaths to 11 000 deaths. The number of new 

HIV infections has also decreased, from 29 000 to 23 000 in 

the same period. The 90–90–90 targets envision that, by 2020, 

90% of people living with HIV will know their HIV status, 

90% of people who know their HIV-positive status will be 

accessing treatment and 90% of people on treatment will 

have suppressed viral loads. In terms of all people living with 

HIV, reaching the 90–90–90 targets means that 81% of all 

people living with HIV are on treatment and 73% of all 

people living with HIV are virally suppressed. In 2018 in 

Ethiopia 79% of people living with HIV knew their status 

and 65% of people living with HIV were on treatment [2]. 

The Human Immunodeficiency Virus (HIV) infects cells of 

immune system such as helper T cells (specifically CD4+ T 

cells), macrophages, and dendritic cells. HIV compromises 

the human immune system and reduces the ability of the 

body to fight back infections and diseases. The most 

advanced stages of HIV infection is usually called Acquired 

Immunodeficiency Syndrome (AIDS). AIDS is one of the 

leading causes of death worldwide that is affecting virtually 

every nation. Even if HIV/AIDS is not permanently curable, 

main methods used to fight against it are preventive 

mechanisms (which include: abstinence, faithfulness and 

protection) which mainly rely on the level of behavioral 

change of the population, and providing Antiretroviral 

Therapy (ART) for those infected [3]. 

Mathematical models have played a major role in 

increasing our understanding of the dynamics of infectious 

diseases. Several models have been proposed to study the 

effects of some factors on the transmission dynamics of these 
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infectious diseases including HIV/AIDS and to provide 

guidelines as to how the spread can be controlled. Among 

these models include those of Anderson et al. [4] who 

presented a preliminary study of the transmission dynamics 

of HIV by proposing a model to study the effects of various 

factors on the transmission of the disease, Stilianakis et al. 

[5]. who proposed and gave a detailed analysis of a 

dynamical model that describes the pathogenesis of HIV, and 

Tripathi et al. [6] who proposed a model to study the effects 

of screening of unaware infective on the transmission 

dynamics of HIV/AIDS. Several other models proposed to 

study dynamics of HIV/AIDS can be found in ([7- 15], and 

the references therein). 

This paper presents a deterministic model for age structure, 

the combined effect of unaware infective immigrants, 

different mode of transmissions and aware infective 

immigrants, for predicting the epidemiological trends of HIV 

that exploits HIV surveillance data to model the disease 

evolution in Ethiopia. The results are presented graphically 

and discussed qualitatively in the following sections. 

2. The Mathematical Model 

Our initial model [16] is represented by five ordinary 

differential equations. Our extended model is represented by 

seven ordinary differential equations by adding two more 

compartments based on the following basic assumptions. For 

this dynamical system we considered susceptible classes as 

sexually mature S��t� and sexually immature S��t�, Unaware 

infective class I��t�, Aware infective class I��t�, Pre-AIDS 

class P�t�, AIDS class A�t� and Seropositive/treatment class 

S��t� . Individuals will join the susceptible mature 

compartment S��t� by immigrants. Some of these people will 

leave this compartment due to natural deaths and some others 

will go to I��t�  compartment after getting infected. The 

remaining people will stay in the S��t� compartment itself. 

People of S��t� compartment are likely to get infected by the 

people of I��t� , I��t�  and P�t�  compartments only. 

Individuals will join the susceptible immature compartment 

S��t�  by birth. Some of these people will leave this 

compartment due to natural deaths and some others will go to 

I��t�  compartment after getting infected. The remaining 

people will stay in the S��t� compartment itself. People of 

S��t� compartment are likely to get infected by the people of 

I��t�, I��t� and P�t�  compartments only. But the people of 

AIDS compartment A�t�  being physically too weak to 

participate in sexual activities, cannot transfer infection to 

susceptible people. In this study we considered that, the 

transfer of HIV from infected people to susceptible people is 

by sexual intercourse, vertical transmission and transferring 

HIV by any other means like sharing needles; blood 

transfusion. 

The population under this study is heterogeneous and 

varying with time, the whole human population is divided in 

to seven classes, the HIV can be transmitted by the sexual 

intercourse with infective peoples, vertical transmission and 

blood borne transmission. The full blown AIDS class is 

sexually inactive, the seropositive class could not transmit 

the disease, all the new infected people are assumed to be 

initially unaware of the infection and the probability of 

transferring the disease to susceptible population by Pre-

AIDS class person is more than unaware infected and aware 

infected person i. e.�
 � ��, ��. The Pre-AIDS class people 

grow to AIDS much faster than unaware and aware infected 

people i. e. �
 � ��, ��. 

Based on these assumptions we construct the following 

flow chart which shows the movement of individuals from 

compartment to compartment. 

 
Figure 1. The flow chart of the model. 

Based on the above basic assumptions and flow chart we 

do have the following corresponding dynamical system 

represented by seven non-linear ordinary differential 

equations. 
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With initial conditions 

 ��0� �  �1,   �(0) =  �1,  ��(0) = ��1, ��(0) = ��1, �(0) =�1,  ,(0) =  ,1 and /(0) = /1           (8) 

Theorem-1: /positivity/ 

The solutions of the dynamical system (1) - (7) with initial 

conditions satisfy   �(2) > 0,  �(2) > 0, ��(2) > 0, ��(2) >0,  ,(2) > 0, �(2) > 0/(2) > 0 345 677 2 > 0 . The region Ω ⊂ ℝ;<  is positively invariant and attracting with respect to 

system (1) - (7). 

Proof 

By considering the seven ordinary differential equations 

and after taking some steps on finding their solutions we do 

have 

i. the first differential equation 
����� = �� − [���� +���� + �
�] ��� − �[�� + �� + �] ��� − � � 

ii. Whose solution is  �(2) =  �(0)=>?(�);?(1)>@� + A ��=B?(C)>?(�)D;@(C>�)EF�1 , 

since  �(0) > 0, �� > 0 and the exponential function always 

positive. 

iii. the second differential equation E �E2 = �� − �[�� + �� + �]  �G − � � 

whose solution is  �(2) =  �(0)=>?(�);?(1)>@� +A ��=B?(C)>?(�)D;@(C>�)EF�1 ,  �(0) > 0 , �� > 0  and the 

exponential function always positive. 

iv. the third differential equation 
�"��� = [���� + ���� +�
�] ��� + �[�� + �� + �] ��� + �[�� + �� + �] �!� +#��� +  (1 − %)&�� − ('� + ( + �� + � + )�)�� 

Whose solution is ��(2) = ��(0)=>H�;(I�;J)?(�)>(I�;J)?(1);JK(�)>K(1) +A L(�� + �) "!��� + (�
 + �) *��� + �(�� +�1�) �!� M =HC>H�;(I�;J)?(�)>(I�;J)?(C);JK(�)>JK(C)EF , since ��(0) ≥ 0 and the exponential function always positive. 

v. the fourth differential equation 
�"!�� = #��� + (�� −('� + �� + � + )�)��  whose solution is ��(2) =��(0)=>O� + =>O� A =OC(��EF�1  since ��(0) ≥ 0 , and 

the exponential function always positive. 

vi. the fifth differential equation 
�*�� = )��� + )��� −(�
 + '
 + �)�  whose solution is �(2) =�(0)=>(PQ;RQ;@)� +=>(PQ;RQ;@)� A =(PQ;RQ;@)C()��� + )���)EF�1 , since �(0) ≥ 0 and the exponential function always positive. 

vii. the fifth differential equation 
��+�� = '��� + '��� +

'
� − � ,  whose solution is  ,(2) =  ,(0)=>@� +=>@� A =@C('��� + '��� + '
�)EF�1 , since  ,(0) ≥ 0 

and the exponential function always positive. 

viii. the fifth differential equation 
�-�� = ���� + ���� +�
� − (. + �)/  whose solution is /(2) =/(0)=>(S;@)� + =>(S;@)� A =(S;@)C(���� + ���� +�1�
�)EF, since /(0) ≥ 0 and the exponential function 

always positive. 

Theorem-2: /Boundedness/ 

The feasible region Ω of the dynamical system (1) - (7) is 

defined as: Ω =TU �(2),  �(2), ��(2), ��(2), �(2),  ,(2), /(2)V %ℜ;< : 0 <G(2) ≤ ?�;?!@ [ is bounded. 

Proof 

Assume that all state variables and parameters are positive. 

Here we have G =  � +  � + �� + �� +  , + � + /  then ���� = ����� + ��!�� + �"��� + �"!�� + �*�� + ��+�� + �-��  and thus we have #��� + (1 − %)&�� + #��� ≤ ./  we obtain 
���� ≤ �� + �� −�G. Which implies 

��?�;?!>@� ≤ E2. After some simplification 

in the integration process we get G(2) ≤ ?�;?!@ + G(0)=>@�. 

And hence as 2 → ∞  we have 0 < G(2) ≤ ?�;?!@  which 

shows that the total population is bounded. 

3. Equilibrium Points of the Dynamical 

System 

3.1. Disease Free Equilibrium Point /DFE/ 

The disease free equilibrium point is obtained by setting 

the right hand side of the dynamical system (1) - (7) equal to 

zero with assumptions there are neither infective people nor 

AIDS patients, that is �� = �� = / = � = 0 . And thus we 

obtain the disease free equilibrium point of the dynamical 

system is ^1 = (?�@ , ?!@ , 0, 0, 0, 0, 0). 

3.1.1. Basic Reproduction Number _` 

The basic reproduction number is defined as the average 

number of secondary infections that occur when one infective 

is introduced into a completely susceptible host population 

[17]. 

We can calculate the basic reproduction number, a1, using 

the next generation approach proposed by van den Driessche 

and Watmough [18]. According to this approach, in order to 

compute the basic reproduction number, it is important to 

distinguish new infections from all other class transitions in 

the population. The infected classes are ��, ��, 6bE �. We can 

write system (1)-(7) as: cd  =  ℱ(c) −  f (c),, f =  f> − f;, 

where c =  ( �,  �, ��, ��, �,  ,, / ) . ℱ  is the rate of 

appearance of new infection in each class, f is the rate of 

transfer into each class by all other means, and f; is the rate 

of transfer of the infectious individuals out of each class. 

The associated matrices, ℱ(c) for the new infection terms, 
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and f(c) for the remaining transition terms are respectively given by, 
 

ℱ(c) =
g
hhh
hi

[���� + ���� + �
�] ��� + �[�� + �� + �] ��� + �[�� + �� + �] �!�000000 j
kkk
kl

                         (9) 

f(c) =
g
hhh
hi

('� + ( + �� + � + )�)�� − #��� −  (1 − %)&��('� + �� + � + )�)�� − #��� − (��(�
 + '
 + �)� − )��� − )���(. + �)/ − ���� − ���� − �
�� , − '��� − '��� − '
�� � − ��� � − �� j
kkk
kl

 (10) 

Evaluating the partial derivatives of (9) and bearing in 

mind that system (1) - (7) has three infected classes, 

namely ��, �� 6bE �, we obtain 

m = n(�� + �)  �G + �  �G (�� + �)  �G + �  �G (�
 + �)  �G + �  �G0 0 00 0 0 o 

At disease free equilibrium point we have  � +  � ≈ G . 

Thus 

m = n��  � � +  � + � ��  � � +  � + � �
  � � +  � + �0 0 00 0 0 o 

⇒ m = n�� ���� + �� + � �� ���� + �� + � �
 ���� + �� + �0 0 00 0 0 o 

Similarly, the partial derivatives of (10) with respect to ��, �� 6bE � at ^1 gives 

r = s('� + ( + �� + � + )� − #� −  (1 − %)&) 0 0−( ('� + �� + � + )� − #�) 0−)� −)� (�
 + '
 + �)t 

The spectral radius or the largest eigenvalue of the next 

generation matrix mr>  is the required basic reproduction 

number and is computed as 

a1 = /� 1∇� + /� (∇�∇� + /
 ()� + )�∇�∇�∇�∇
  

Where /� = �� ?�?�;?! + �, /� = �� ?�?�;?! + �, /
 =�
 ?�?�;?! + �, ∇�= ('� + ( + �� + � + )� − #� −  (1 − %)&), ∇�= ('� + �� + � + )� − #�) and ∇
= (�
 + '
 + �) 

3.1.2. Local Stability of the Disease Free Equilibrium Point v` 

Theorem-3: 

The disease free equilibrium point ^1  of the dynamical 

system (1) - (7) is locally asymptotically stable if a1 < 1 and 

unstable if a1 > 1. 

Proof 

The Jacobean matrix of the dynamical system (1) - (7) at 

the DFE point ^1 = (?�@ , ?!@ , 0, 0, 0, 0, 0) is: 

w(^1) =
xyy
yyy
yz−� 0 −(�� + �) ?�?�;?! −(�� + �) ?�?�;?! −(�
 + �) ?�?�;?! 00 −� −� ?!?�;?! −� ?!?�;?! −� ?!?�;?! 00 0 /� − ∇� /� /
 00 0 ( −∇� 0 00 0 )� )� −∇
 00 0 '� '� '
 −�{||

|||
|}
  

The corresponding characteristic equation for the 

eigenvalue ~ is with 

 

�
�−� − ~ 0 −(�� + �) ?�?�;?! −(�� + �) ?�?�;?! −(�
 + �) ?�?�;?! 00 −� − ~ −� ?!?�;?! −� ?!?�;?! −� ?!?�;?! 00 0 /� − ∇� − ~ /� /
 00 0 ( −∇� − ~ 0 00 0 )� )� −∇
 − ~ 00 0 '� '� '
 −� − ~�

� = 0  
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After some calculations using Routh Hurwitz stability 

criterion we found that all roots of the characteristic equation 

have negative real part. Hence the disease free equilibrium 

point is locally asymptotically stable. 

3.1.3. Global Stability of Disease-free Equilibrium Point 

Theorem-4: 

The disease free equilibrium point ^1  is globally 

asymptotically stable if a1 < 1. 

Proof 

We construct a Liapunov function by r = .��� + .��� +.
� + .� , + .�/ and thus we get r is continuous function 

and has first order partial derivatives and r has minimum at ^1 = (?�@ , ?!@ , 0, 0, 0, 0, 0) which is r(U?�@ , ?!@ , 0, 0, 0, 0, 0V) =0. Finally we calculate the time derivative of r  along the 

solution path yields ErE2 = .� E��E2 + .� E��E2 + .
 E�E2 + .� E ,E2 + .� E/E2  

= .� �[���� + ���� + �
�]  �G + �[�� + �� + �]  �G+ �[�� + �� + �]  �G − ∇����+ .�(#��� + (�� − ('� + �� + � + )�)��)+ .
()��� + )��� − (�
 + '
 + �)�)+ .�B'��� + '��� + '
� − � ,D + .�(����+ ���� + �
� − (. + �)/) 

Take the coefficients of ��, �,  ,  and / are equal to zero. 

Then we get −.�(. + �)/ = 0 ⇒ .� = 0 −.�� , = 0 ⇒ .� = 0 .�/
 − .
(�
 + '
 + �) + .��
 = 0⇒ .�/
 − .
(�
 + '
 + �) = 0 ⇒ .�/
 = .
(�
 + '
 + �) 

⇒ .
 = .�/
(�
 + '
 + �) = .�/
∇
  

⇒ .�/� + .�B#� − ('� + �� + � + )�)D + .
)� = 0 

⇒ .�/� + .�B#� − ('� + �� + � + )�)D + .�/
∇
 )� = 0 

⇒ .�/�∇
 + .�/
)�∇
 − .�∇�= 0 

⇒ .� = .�[/�∇
 + /
)�]∇�∇
  

Then ErE2 ≤ [.�(/� − ∇�) + .�( + .
)� + .�'� + .���]�� 

⇒ ErE2 ≤ [.�(/� − ∇�) + .�( + .
)�]�� 

⇒ ErE2 ≤ �.�∇� �/�∇�∇
 + /�(∇
 + /
[)�∇� + ()�]∇�∇�∇
− 1�� �� 

⇒ ErE2 ≤ [.�∇�(a1 − 1)]�� 

We note that 
���� ≤ 0 if a1 < 1. Furthermore, 

���� = 0 if and 

only if �� = �� = � =  , = / = 0 . Therefore, the largest 

compact invariant set in B �,  �, ��, ��, �,  ,, /D ∈ Ω: ���� =0, where a1 < 1  is the singleton {^1} . LaSalle’s (1976) 

invariance principle then implies that ^1 is globally stable in Ω if a1 < 1 otherwise it is unstable. 

3.2. Endemic Equilibrium Point 

The endemic equilibrium point is obtained by setting the 

right hand side of the dynamical system (1)-(7) equal to zero. 

Thus we get the endemic equilibrium point is ^∗ =( �∗,  �∗, ��∗, ��∗, �∗,  ,∗, /∗) where 

��∗ = −(�� + ��)(Φ�∇� + Φ�∇� − Φ�Φ�) ± �((�� + ��)(Φ�∇� + Φ�∇� − Φ�Φ�))� − 4Φ�Φ�∇�∇�(�� + ��)�(1 − a1)2Φ�Φ�∇�  

 �∗ = ?�(����∗�∗ ;@),  �∗ = ?!(�!��∗�∗ ;@), ��∗ = �∇! ��∗, �∗ = U��∇!;�!�∇!∇Q V ��∗, 

 ,∗ = �R�;R! �∇!;RQU��∇!��!�∇!∇Q Vμ � ��∗ and /∗ = �P�;P! �∇!;PQU��∇!��!�∇!∇Q V(�;μ) � ��∗ 

Φ� = (�� + �) + (�� + �) �∇! + (�
 + �) U��∇!;�!�∇!∇Q V, Φ� = �(1 + �∇! + U��∇!;�!�∇!∇Q V) 

3.2.1. Local Stability of Endemic Equilibrium Point 

Theorem-5: 

The positive endemic equilibrium point ^∗ of the system of equations (1) - (7) is locally asymptotically stable if a1 > 1. 

Proof 

The Jacobian matrix of the system of equations (1) - (7) at the endemic equilibrium point is 
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w(^∗) =
g
hhh
i��� 0 ��
 ��� ��� 0 00 ��� ��
 ��� ��� 0 0Λ�∗ Λ�∗ �

 − ∇� �
� �
� 0 00 0 ( −∇� 0 0 00 0 )� )� −∇
 0 00 0 '� '� '
 −� 00 0 �� �� �
 0 −(. + �)j

kkk
l

 

Where ��� = −(Λ� + �), ��
 = − UI�;J� V  �, ��� = − UI!;J� V  �, ��� = − UIQ;J� V  � 

��� = −(Λ� + �), ��
 = −�  �G , ��� = −�  �G , ��� = −�  �G , 
�

 = ��� + �G �  � + �  �G , �
� = ��� + �G �  � + �  �G , �
� = ��
 + �G �  � + �  �G  

The corresponding characteristic equation is 

�
���� − ~ 0 ��
 ��� ��� 0 00 ��� − ~ ��
 ��� ��� 0 0Λ�∗ Λ�∗ �

 − ∇� − ~ �
� �
� 0 00 0 ( −∇� − ~ 0 0 00 0 )� )� −∇
 − ~ 0 00 0 '� '� '
 −� − ~ 00 0 �� �� �
 0 −(. + �) − ~�

� = 0 

After some calculations using Routh Hurwitz stability 

criterion we found that all roots of the characteristic equation 

have negative real part, therefore the endemic equilibrium 

point is locally asymptotically stable. 

3.2.2. Global Stability of Endemic Equilibrium Point 

Theorem-6: 

The endemic equilibrium point ^∗  is globally 

asymptotically stable if � < �, where 

� =  �((�� + ∆���∗) +  �()��� + )��� + ∇
�∗) +  
B'��� + '��� + '
� + � ,∗D + ��� + �G∗ � ��∗ � + ��� + �G∗ � ��∗ � + ��
 + �G∗ � �∗ � + ��� + �G � �� �∗+ ��� + �G � �� �∗ + ��
 + �G � � �∗ + �G∗ ��∗ � + �G∗ ��∗ � + �G∗ �∗ � + �G �� �∗ + �G �� �∗ + �G � �∗ 

And 

� = −[� �∗ U2 − ����∗ − ��∗��V + � �∗ U2 − �!�!∗ − �!∗�!V + U2 − ��∗�� − ����∗V UI�;J�∗ V ��∗ �∗ + U2 − ��∗�� − ����∗V UI!;J�∗ V ��∗ �∗ + U2 − ��∗�� − ����∗V UIQ;J�∗ V �∗ �∗ +U2 − �!∗�! − �!�!∗V J�∗ ��∗ �∗ + U2 − �!∗�! − �!�!∗V J�∗ ��∗ �∗ + U2 − �!∗�! − �!�!∗V J�∗ �∗ �∗]  
− ¢UI�;J� V ��∗ � + UI!;J� V "�∗"� �� � + UIQ;J� V "�∗"� � � + J� ��∗ � + J� "�∗"� �� � + J� "�∗"� � � + ∆��� +  � U( "!∗"! �� + ∆���V +  � U)� *∗* �� +)� *∗* �� + ∇
�V +  
 �'� �+∗�+ �� + '� �+∗�+ �� + '
 �+∗�+ � + � ,�£  

Proof 

We defined a Liapunov function by r = ( � −  �∗7b �) + ( � −  �∗7b �) + (�� − ��∗7b��) +  �(�� − ��∗7b��) +  �B� −  ,∗7b�D +  
B , −  ,∗7b ,D +  �(/ −/∗7b/)  

and thus we get r is continuous function and has first order partial derivatives and r has minimum at ^∗. Finally we calculate 

the time derivative of r along the solution path yields 

���� = U1 − ��∗��V ����� + U1 − �!∗�!V ��!�� + U1 − "�∗"�V �"��� +  � U1 − "!∗"!V �"!�� +  � U1 − *∗* V �*�� +  
 �1 − �+∗�+� ��+�� +  � U1 − -∗- V �-��   

Substituting the expressions for the derivatives in 
���� , it follows that 
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ErE2 = �1 −  �∗ �� ¢�� − ¢��� + �G � �� + ��� + �G � �� + ��
 + �G � �£  � − � �£ 

+ �1 −  �∗ �� L�� − �G [�� + �� + �] � − � �M 

+ �1 − ��∗��� ¤¢��� + �G � �� + ��� + �G � �� + ��
 + �G � �£  � + �G [�� + �� + �] � − ∆���¥ 
+ � �1 − ��∗��� [(�� − ∆���] +  � �1 − �∗� � [)��� + )��� − ∇
�] 

+ 
 �1 −  ,∗ ,� ¦'��� + '��� + '
� − � ,§  +  � �1 − /∗/ � [���� + ���� + �
� − (. + �)/] 
⇒ ���� = � − �. Hence, if � < � then, 

����  will be negative 

definite, implying that 
���� < 0 . Also 

���� = 0  if and only if  � =  �∗,  � =  �∗, �� = ��∗,  �� = ��∗, � = �∗,  , =  ,∗ 6bE / =/∗. 

Therefore the endemic equilibrium point ^∗  is globally 

asymptotically stable in Ω if � < �. 

4. Parameter Values for Numerical 

Simulation and Sensitivity Analysis 

To perform numerical simulation and sensitivity analysis 

we collected the following parameter values from different 

data sources. 

Table 1. Parameter descriptions and values. 

Parameter Parameter Description Value Data Source �� Recruitment in to sexual mature population 230000 [19] �� Recruitment in to sexual immature population 330465 [20] �� The horizontal transmission rate of unaware infective to susceptible individuals 0.83 [21] �� The horizontal transmission rate of aware infective to susceptible individuals 0.7 [21] �
 The horizontal transmission rate of Pre-AIDS to susceptible individuals 0.9 [21] � Rate of transmission through blood borne, 0.03 [22] �� Rate at which unaware infective develop full blown AIDS 0.06 [23] �� Rate at which aware infective develop full blown AIDS 0.06 [23] �
 Progression rate of pre-AIDS individuals to full blown AIDS 0.4621 [24] � Natural mortality 0.0065 [25] ( Rate of status awareness due to screening method 0.79 [2] '� Rate of treatment of unaware infective 0.02 [2] '� Rate of treatment of aware infective 0.65 [2] '
 Rate of treatment of Pre-AIDS 0.65 [2] #� Rate of unaware infective immigrants 0.016 [19] #� Rate of aware infective immigrants 0.013 [19] )� Rate of progress to Pre-AIDS from unaware infective 0.36 [24] )� Rate of progress to Pre-AIDS from aware infective 0.57 [24] & Rate of vertical transmission 0.45 [26] % Probability of death at birth 0.0281 [27] . AIDS induced death rate 0.0159 [20] 

4.1. Estimation of Basic Reproduction Number _` 

a1 = ��� ���� + �� + �� 1∇� + ��� ���� + �� + �� (∇�∇� + ��
 ���� + �� + �� ()� + )�∇�∇�∇�∇
 = 1.0498 

4.2. Numerical Simulations 

The numerical analysis is obtained from the graphs of 

basic reproduction number with respect to the parameters 

obtained and given in Table 1. 

Rate of transmission of the disease from unaware & aware 

infective classes 
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Figure 2. Reproduction number versus the horizontal transmission rate of 

unaware infective. 

 
Figure 3. Reproduction number versus the horizontal transmission rate of 

aware infective. 

Figure 2. it is graphical representation of the basic 

reproduction number a1  versus rate of transmission of the 

disease from unaware infective class ��  and keeping other 

parameters constant. This figure shows that an increase in the 

rate of horizontal transmission of unaware infective, �� , 

makes an increase in the reproduction number, a1 . If �� > 0.7349096  the reproduction number a1 � 1  that 

indicates the disease persists. When �� Y 0.7349096  the 

reproduction number a1 Y 1 this indicates that the disease 

not persists. 

Figure 3. it is graphical representation of the basic 

reproduction number a1  versus rate of transmission of the 

disease from aware infective class ��  and keeping other 

parameters constant. This figure shows that an increase in the 

rate of horizontal transmission of aware infective, ��, makes 

an increase in the reproduction number, a1 . If �� �

0.546716 the reproduction number a1 � 1 that indicates the 

disease persists. When �� Y 0.546716  the reproduction 

number a1 Y 1 this indicates that the disease not persists. 

Rate of transmission of the disease from Pre-AIDS class & 

blood born transmission 

 
Figure 4. Reproduction number versus the horizontal transmission rate of 

Pre-AIDS. 

 
Figure 5. Reproduction number versus Blood born transmission. 

Figure 4. it is graphical representation of the basic 

reproduction number a1  versus rate of transmission of the 

disease from Pre-AIDS class �
  and keeping other 

parameters constant. This figure shows that an increase in the 

rate of horizontal transmission of Pre-AIDS, makes an 

increase in the reproduction number. For �
 � 0.750956 we 

can see the reproduction number a1 � 1 that indicates the 

disease persists. When �� Y 0.546716  the reproduction 

number a1 Y 1 and this indicates that the disease not persists. 

Figure 5. it is graphical representation of the basic 

reproduction number a1  versus rate of blood born 

transmission � and keeping other parameters constant. This 

figure shows that an increase in the rate of blood born 

transmission between the parametric values 0 and 0.01272 

makes an increase in the reproduction number with a1 Y 1 

and this indicates that the disease not persists. For � �

0.01272  we can see the reproduction number a1 � 1  that 

indicates the disease persists. 

Rate of progress of unaware infective to AIDS class & rate 

of transmission of Pre-AIDS individuals to seropositive class 

 
Figure 6. Reproduction number versus the rate of progress of unaware 

infective to AIDS. 
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Figure 7. Reproduction number versus the rate of transmission of Pre-AIDS 

to seropositive class. 

Figure 6. it is graphical representation of the basic 

reproduction number a1 versus rate of progress of unaware 

infective to AIDS, �� and keeping other parameters constant. 

This figure shows that an increase in the rate of progress of 

unaware infective to AIDS, between the parametric values 0 

and 0.099024 makes a decrease in the reproduction number 

but the reproduction number is greater than one that indicates 

the disease persists. If the parameter value of �� greater than 

0.099024 , then the reproduction number decreases and 

becomes less than one where the disease not persists. 

Figure 7. it is graphical representation of the basic 

reproduction number a1 versus rate of transmission of Pre-

AIDS to seropositive class, '
 and keeping other parameters 

constant. This figure shows that an increase in the rate of 

transmission of Pre-AIDS to seropositive class between the 

parametric values 0  and 0.85235  makes a decrease in the 

reproduction number but the reproduction number is greater 

than one that indicates the disease persists with a decreasing 

rate. If the parameter value of '
 greater than 0.85235, then 

the reproduction number is less than one and we can say the 

disease not persists. 

Rate of progress of Pre-AIDS to AIDS & rate of 

transmission of unaware infective to aware infective 

 
Figure 8. Reproduction number versus the rate of progress of Pre-AIDS to 

AIDS. 

 
Figure 9. Reproduction number versus the rate of transmission of unaware 

infective to aware infective. 

Figure 8. it is graphical representation of the basic 

reproduction number a1 versus rate of progress of Pre-AIDS 

to AIDS, �
  and keeping other parameters constant. This 

figure shows that an increase in the rate of progress of Pre-

AIDS to AIDS between the parametric values 0 and 0.66445 

makes a decrease in the reproduction number but the 

reproduction number is greater than one that indicates the 

disease persists with a decreasing rate. If the parameter value 

of �
  greater than 0.66445 , then the reproduction number 

decreases and becomes less than one where the not persists. 

Figure 9. it is graphical representation of the basic 

reproduction number a1  versus rate of transmission of 

unaware infective to aware infective, (  and keeping other 

parameters constant. This figure shows that the rate of 

transmission of unaware infective to aware infective between 

the parametric values 0 and 0.921330 makes a decrease in 

the reproduction number but the reproduction number is 

greater than one that indicates the disease persists with a 

decreasing rate. If the parameter value of (  greater than 

0.921330 , then the reproduction number decreases and 

becomes less than one where the not persists. 

Rate of transmission of unaware & and aware infective to 

seropositive class 

 
Figure 10. Reproduction number versus the rate of transmission of unaware 

infective to seropositive class. 

 
Figure 11. Reproduction number versus the rate of transmission of aware 

infective to seropositive class. 

Figure 10. it is graphical representation of the basic 

reproduction number a1  versus rate of transmission of 

unaware infective to seropositive class, '� and keeping other 

parameters constant. This figure shows that an increase in the 

rate of transmission of unaware infective to seropositive class 

between the parametric values 0  and 0.059024  makes a 



 American Journal of Applied Mathematics 2020; 8(3): 145-157 154 

 

decrease in the reproduction number, but the reproduction 

number is greater than one that indicates the disease persists 

with a decreasing rate. If the parameter value of '� greater 

than 0.059024, then the reproduction number decreases and 

becomes less than one where the disease dies out. 

Figure 11. it is graphical representation of the basic 

reproduction number a1 versus rate of transmission of aware 

infective to seropositive class, '�  and keeping other 

parameters constant. This figure shows that an increase in the 

rate of transmission of aware infective to seropositive 

class, '� , between the parametric values 0  and 0.01822 

makes a decrease in the reproduction number, a1 , but the 

reproduction number is greater than one that indicates the 

disease persists with a decreasing rate. If the parameter value 

of '� greater than 0.01822, then the reproduction number is 

less than one and almost constant in value. 

Rate of aware infective immigrants & rate of progress of 

unaware infective to Pre-AIDS 

 
Figure 12. Reproduction number versus the rate of aware infective 

immigrants. 

 
Figure 13. Reproduction number versus rate of progress of unaware 

infective to Pre-AIDS. 

Figure 12. it is graphical representation of the basic 

reproduction number a1 versus rate of transmission of aware 

infective immigrants, #�  and keeping other parameters 

constant. This figure shows an increase in the rate of aware 

infective immigrants between the parametric values 0  and 

0.177813 makes an increase in the reproduction number but 

the reproduction number is less than one that indicates the 

disease not persists. If the rate of aware infective immigrants 

between 0.177  and 1.2865  makes an increase in the 

reproduction number with, a1 � 1  and tell us the disease 

persists. Whereas, the rate of aware infective immigrants 

greater than 1.2865, makes an increase in the reproduction 

number, a1 Y 1, and tell us the disease not persists. 

Figure 13. it is graphical representation of the basic 

reproduction number a1 versus rate of progress of unaware 

infective to Pre-AIDS, )�  and keeping other parameters 

constant. This figure shows an increase in the rate of progress 

of unaware infective to Pre-AIDS between the parametric 

values 0 and 0.420598 makes a decrease in the reproduction 

number but the reproduction number is greater than one that 

indicates the disease persists with a decreasing rate. If the 

parameter value of )�  greater than 0.420598 , then the 

reproduction number is less than one and we can say the 

disease not persists. 

Rate of vertical transmission & natural mortality 

 
Figure 14. Reproduction number versus rate of vertical transmission. 

 
Figure 15. Reproduction number versus Natural mortality. 

Figure 14. it is graphical representation of the basic 

reproduction number a1 versus rate of vertical transmission, 

& and keeping other parameters constant. This figure shows 

that an increase in the rate of vertical transmission between 

the parametric values 0 and 0.409848 makes an increase in 

the reproduction number but the reproduction number is less 

than one that indicates the disease not persists. Whereas, the 

rate of vertical transmission greater than 0.409848, makes an 

increase in the reproduction number with a1 � 1, and tell us 

the disease persists. 

Figure 15. it is graphical representation of the basic 

reproduction number a1  versus natural mortality, �  and 

keeping other parameters constant. This figure shows an 

increase in natural mortality between the parametric values 0 

and 1.25185 makes a decrease in the reproduction number 

but the reproduction number is greater than one that indicates 

the disease persists with a decreasing rate. If the parameter 

value of �  greater than 1.25185 , then the reproduction 

number is less than one and we can say the disease not 

persists. 
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4.3. Sensitivity Analysis 

The parameter values and assumptions of any model are 

subject to change and error. Sensitivity analysis is the 

investigation of these potential changes & errors and their 

impacts on conclusions to be drawn from the model. Here we 

use it to discover parameters that have a high impact on 

reproduction number a1 . We calculate the normalized 

forward sensitivity index of a variable )  that depends 

differentiable on a parameter # is defined by  �(#) =
¯�

¯,
°

,

�
. 

After some simplifications and numerical calculation we 

get values of sensitivity index for the important parameters 

mentioned by the table below: 

Table 2. Sensitivity indices. 

Parameter Sensitivity Index 

( −0.61584077 & 0.5584598 �� 0.414282153 )� −0.30336838 �
 0.286573535 �� 0.216742618 '� −0.200544214 '
 −0.180049296 �
 −0.1280012 � 0.076614165 �� −0.076614165 )� 0.072372159 '� −0.025538055 #� 0.020430444 �� −0.018511774 % −0.016146435 � −0.0121058 #� 0.004010884 �� 0.000002469 �� −0.000001719 

5. Results and Discussion 

Results from Numerical simulation show that as the 

transmission rate of unaware infective humans to aware 

infective increases, the basic reproduction number decreases. 

This will result in decreasing on the transmission of 

HIV/AIDS. An increase in the rate of horizontal transmission 

of unaware infective, �� , makes an increase in the 

reproduction number, a1 . If �� > 0.7349096  the 

reproduction number a1 > 1  that indicates the disease 

persists. When �� < 0.7349096  the reproduction number a1 < 1 this indicates that the disease not persists. 

An increase in the rate of horizontal transmission of aware 

infective, ��, makes an increase in the reproduction number, a1 . If �� > 0.546716 the reproduction number a1 > 1 that 

indicates the disease persists. When �� < 0.546716  the 

reproduction number a1 < 1 this indicates that the disease 

not persists. We can also observe that an increase in the rate 

of horizontal transmission of Pre-AIDS, �
 , makes an 

increase in the reproduction number, a1. For �
 > 0.750956 

we can see the reproduction number a1 > 1 that indicates the 

disease persists. When �
 < 0.750956  the reproduction 

number a1 < 1 and this indicates that the disease not persists. 

Similarly we can see that an increase in the rate of progress 

of unaware infective to AIDS, �� , between the parametric 

values 0 and 0.099024 makes a decrease in the reproduction 

number, a1, but the reproduction number is greater than one 

that indicates the disease persists. If the parameter value of ��  greater than 0.099024 , then the reproduction number 

decreases and becomes less than one where the disease not 

persists. 

We can see that an increase in the rate of progress of Pre-

AIDS to AIDS, �
 , between the parametric values 0  and 0.66445 makes a decrease in the reproduction number, a1, 

but the reproduction number is greater than one that indicates 

the disease persists with a decreasing rate. If the parameter 

value of �
  greater than 0.66445 , then the reproduction 

number decreases and becomes less than one where the 

disease not persists. For an increase in the rate of 

transmission of unaware infective to aware infective,  ( , 

between the parametric values 0  and 0.921330  makes a 

decrease in the reproduction number, a1 , but the 

reproduction number is greater than one that indicates the 

disease persists with a decreasing rate. If the parameter value 

of (  greater than 0.921330 , then the reproduction number 

decreases and becomes less than one where the not persists. 

An increase in the rate of transmission of aware infective 

to seropositive class,'�, between the parametric values 0 and 0.01822 makes a decrease in the reproduction number, a1, 

but the reproduction number is greater than one that indicates 

the disease persists with a decreasing rate. If the parameter 

value of '�  greater than 0.01822 , then the reproduction 

number is less than one and almost constant in value this 

indicates the disease not persists. An increase in the rate of 

progress of unaware infective to Pre-AIDS, )�, between the 

parametric values 0 and 0.420598 makes a decrease in the 

reproduction number, a1 , but the reproduction number is 

greater than one that indicates the disease persists with a 

decreasing rate. If the parameter value of )�  greater than 0.420598, then the reproduction number is less than one and 

we can say the disease not persists. We can also observe that 

an increase in the rate of vertical transmission, &, between 

the parametric values 0 and 0.409848 makes an increase in 

the reproduction number, a1, but the reproduction number is 

less than one that indicates the disease not persists. Whereas, 

the rate of vertical transmission greater than 0.409848 , 

makes an increase in the reproduction number, a1 > 1, and 

tell us the disease persists. 

From sensitive analysis we observed that the most 

sensitive parameter is the transmission rate of unaware 

infective humans to aware infective, ( and the least sensitive 

parameter is the recruitment into sexually immature class, ��. 

The indices having positive signs increase the value of a1 as 

one increase them and those having negative signs decrease 

the value of a1, when they are increased. 

6. Conclusion 

In this study we have developed a deterministic 

mathematical model for Age structure and Inflow Infective 

Immigrants on the Dynamics of HIV/AIDS: dividing 

susceptible individuals in to sexually immature (i.e age 

below 15 years) and sexually mature (i.e age 15 years and 
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above), aware and unaware infective, infective immigrants, 

Pre-AIDS individuals and treatments of infectious 

individuals. The stability analysis on the model shows that 

the disease -free equilibrium point ^1  is to be locally 

asymptotically stable and globally asymptotically stable 

when a1 Y 1 and the positive endemic equilibrium point ^∗ 

is shown to be locally asymptotically stable and globally 

asymptotically stable for  � < � . Results from Numerical 

simulation show that as the transmission rate of unaware 

infective humans to aware infective increases, the basic 

reproduction number decreases. This will result in decreasing 

on the transmission of HIV/AIDS. We evaluated the 

numerical value of the basic reproduction number. 

Consequently, a1 = 1.0498 that shows the HIV/AIDS 

disease spread in the community. A sensitivity analysis of the 

basic reproduction number indicates that the transmission 

rate of unaware infective humans to aware infective, the rate 

of vertical transmission and horizontal transmission rate are 

the most sensitive parameters that can be used to control the 

spread of the disease. 

7. Recommendation 

From the above results and discussion we would like to 

recommend the following to control the spread of HIV/AIDS: 

the most sensitive parameters like transmission rate of 

unaware infective humans to aware infective, vertical 

transmission rate, and horizontal transmission rate of 

unaware infective and Pre-AIDS individuals are those that 

should be targeted most by policymakers in the fight against 

the disease. 
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