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Abstract: Investigating the heat transfer in aquifer thermal energy storage system is of interest since a deeper understanding of 

this phenomenon can be used to improve the behavior of a building, including relevant thermal parameters such as heating, 

cooling, and control systems. In this paper, we have presented a pair of coupled partial differential equations, which characterize 

the temperature distribution within the aquifer thermal energy storage system during the thermal injection process. The heat 

transfer equation is considered when the temperature difference between the solid and fluid phases is very small. We showed the 

solution to the model is positive and bounded. Simulations have been carried out for a constant Peclet number of 0.5, 500 and 100. 

Hot water is considered being injected throughout the depth of a single injection well into the aquifer at one end of the domain and 

the temperature of the hot water is assumed to be constant throughout the whole injection period. The finite element method has 

been utilized to solve the governing equations numerically. The results showed that the temperature front of injected hot water 

passes through the aquifer from left to right and the temperature of the aquifer increases gradually with the passage of injection 

time. Furthermore, if the Peclet number is very high the temperature of injected hot water makes a high change on the aquifer 

temperature, while if Peclet number is less than 1 there is a little change on the aquifer temperature as time t increases. 

Keywords: Porous Media, Heat Transfer, Fluid Flow, Finite Element Method,  

Homogeneous Aquifer Thermal Energy Storage System 

 

1. Introduction 

Thermal energy storage systems around the world are 

often utilized to provide economical and environmental 

solutions to the energy problems [1]. Among various types 

and sizes of storage media, soil or underground aquifers, 

known as underground thermal energy storage are mostly 

used for seasonal heat/cold storage due to their large thermal 

capacity and thermal inertia [2]. One of the more common 

storage types among underground thermal energy storage 

systems is aquifer thermal energy storage system in which 

groundwater is used to carry the thermal energy into and out 

of an aquifer [3]. An aquifer [4] is an underground layer of 

water-bearing permeable rock, rock fractures or 

unconsolidated materials (gravel, sand, or silt) from which 

groundwater can be extracted using a water well. 

Aquifer thermal energy storage system has become a well-

known energy storage technology around the world for the 

seasonal storage of heat and cold energy for heating and 

cooling buildings [1, 5-7]. Storage and recovery of thermal 

energy are achieved by extraction and injection of 

groundwater from aquifers using groundwater wells. 

Aquifer thermal energy storage can serve as a cost-

effective technology to reduce the primary energy 

consumption of a building and associated	��� . One of the 

basic theories of this system is injecting the hot or cold water 

into an aquifer for long term storage and extracting that in the 

time of demand. An aquifer thermal energy storage system 

operates in a full cycle consisting of mainly four stages. The 

injection of hot/cold water into the aquifer, storage of the 
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hot/cold water, production and the heating/cooling of 

buildings [8]. 

The use of aquifer for storing energy for long term started 

from the early 1970s. R. T. Rabbimov, G. Y. Umarov, R. A. 

Zakhidov [9], C. F. Meyer, D. K. Todd [10], did some early 

studies on this topic which mainly present analytical and 

semi-analytical solutions and economic considerations. Other 

analytical models and solutions on this topic were developed 

by Sauty J. P., Gringarten A. C., Menjoz A., Landel P. A. 

[11], Chen C.-S. D., Reddell L., [12], Voigt H. D., Haefner F. 

[13], Ziagos J. P., Blackwell D. D [14], Li K.-Y., Yang S.-Y., 

Yeh H.-D. [15], Yang S.-Y., Yeh H.-D. [16], which present 

solutions for idealistic systems under simplifying 

assumptions or qualitative estimations. Another analytical 

solution was developed by Bödvarsson G. S., Tsang C. F. 

[17], to investigate the movement of the cold water thermal 

front through subsurface media with equally spaced 

horizontal fractures. 

Birhanu, Z. K., Kitterød, N.-O., Krogstad, H., Kværnø 

[23], presented analytical and numerical radial solutions of 

the differential equations for heat transport in water-saturated 

porous media and used analytical solutions to understand the 

quality of numerical simulations by doing simple numerical 

experiments. One of the experiments was an idealized aquifer 

thermal energy storage production sequence consisting of 

repeated injection and pumping of hot water in a confined 

aquifer. Another numerical model study was performed by 

Ganguly, S., Mohan Kumar, M. S., Date, A., Akbarzadeh 

[24], on a general 3D coupled thermo-hydro geological 

numerical model of an aquifer thermal energy storage system 

operating in cyclic mode to predict the 3D transient 

temperature distribution in the aquifer thermal energy storage 

system due to injection of hot water into the aquifer during 

summer and cold water in winter. They analyzed the 

movements of the hot water thermal front with time which is 

generated due to continuous injection. 

Gao, L., Zhao, J., An, Q., Wang, J., Liu, X [25], reviewed 

system performance studies of aquifer thermal energy storage 

to facilitate the designers and users. Both the thermal 

performance and the economic and environmental 

performance were included. The thermal performance 

indicators and their definitions were summarized and 

influence factors were presented in their study. In another 

recent paper Ganguly, S., Kumar, M. S. M [26], developed a 

coupled thermo-hydro geological numerical model for an 

aquifer thermal energy storage system consisting of a 

confined porous aquifer underlain and overlain by 

impermeable rock media with different thermo-hydro 

geological properties. Ganguly, S., Tan, L., Date, A., Kumar, 

M [27] developed a coupled thermo-hydrogeological nodel 

for temperature distribution in a heterogeneous geothermal 

reservoir due to thermal injection. The objective of the 

present study is to develop a two dimensional numerical 

model for the transient temperature distribution due to 

thermal injection process in a homogeneous aquifer thermal 

energy storage system. 

2. Mathematical Model 

Let Ω ⊂ 	ℜ� be a bounded simply connected open domain 

in ℜ�  with a Lipchitz continuous boundary 	∂Ω . The 

governing partial differential equation of aquifer thermal 

energy storage model is given by the heat transfer and fluid 

flow equation that are coupled through the fluid velocity q 

[18]. The system of equation is 

	
 ���
 + ∇ ∙ � = �,                        (1) 

���
 + ∇�T ∙ �� = ��� ∇�� + �,               (2) 

where ℎ is a piezometric (hydraulic) head, � is temperature 

and �	 = 	− 	 · 	∇ℎ  is the Darcy velocity.   is hydraulic 

conductivity, 	
 is specific storage coefficient defined as the 

volume of water released from storage per unit change in 

head per unit volume of porous material, � is volumetric flux 

per unit volume representing fluid injection and production 

and � is an external heat source. Equation (1)-(2) must be 

completed by assigning an initial condition 

ℎ�", #, 0� = ℎ%�", #�, �", #� ∈ Ω, ��", #, 0� = �%�", #�, �", #� ∈ Ω, 
together with boundary conditions, which can take the form 

��", #, '� = (�", #, '� and ℎ�", #, '� = ��", #, '�, �", #� ∈)Ω*, t > 0, 
���- = .�", #, '� and 

���- = /�", #, '�, �", #� ∈ )Ω0, t > 0, 
where �%, ℎ%, (, �, .  and /  are given functions and 1)Ω*, )Ω02 provides a boundary partition. )Ω* is boundary 

condition and )Ω0 is Neumann boundary condition. 

The problem cannot be formulated in terms of second 

derivatives (which may not exist throughout the solution 

space), and an integral form is used in which the solution 

belongs to the Sobolev space ���Ω�  with the underlying 

space being	3��Ω�. 3��Ω� is defined as [19] 

3��Ω� = 45: 7|5�", #�|�9Ω	 < 	∞.
=

>, 
and the Sobolov space ���Ω� as 

���Ω� = ?5 ∈ 3��Ω�: )5)" ∈ 3��Ω�, )5)# ∈ 3��Ω�@, 
equipped with the norm 

‖5‖BC�=� = DE|5|�BC�=�F��. 
For vanishing boundary values, we define 

��%�Ω� = D5 ∈ �1�Ω�: 5|�=H = (�", #�F. 
We shall often use Sobolev's embedding, for any real 

number	(	 ≥ 	1, there exist constants 	J and 	%J	such that 
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∀5 ∈ ���Ω�, ‖5‖LM�=� ≥ 	J‖5‖BC�=�, 
and 

∀5 ∈ ��%�Ω�, ‖5‖LM�=� ≥ 	%J‖5‖BC�=�. 
When	( = 2, then it reduces to Poincare inequality. 

3. Finite Element Method 

To solve the system of the partial differential equation (1)-

(2) numerically using finite element method, we will 

introduce a weak formulation and proceed formally, by 

multiplying for each ' > 	0 by a test function 5	 = 	5�", #� 
and integrating on 	Ω . We set O	 = 	�1�Ω�  and for each '	 > 	0 we seek ℎ�'�, ��'� ∈ O such that 

P �	
 ���
 59Ω + ∇ ∙ �5�9Ω.= = P �59Ω.= ,             (3) 

P ���
 59Ω.= + P ∇�T ∙ ��59Ω.= = ��� P ∇��59Ω.= + P �59Ω,.=  (4) 

By putting �	 = 	− 	 · 	∇ℎ  into (3)-(4) and applying the 

Green’s theorem stated in [20] we have 

	
 P ���
 59Ω.= + a�h, v� = P �59Ω.= + P 5 ���- 9/.T= ,       (5) 

P ���
 59Ω.= + b�T, v� = P HvdΩ.= + P 5 ���- 9/.T= ,        (6) 

where X�ℎ, 5� = ∫
Ω

 ∇ℎ∇59Ω  and 

Y��, 5� = ∫
Ω

�∇�59Ω + ��� ∫
Ω

∇�∇59Ω  with ��0� = �% 

and ℎ�0� = ℎ%. Writing 〈. , . 〉 for the 3�	�Ω� inner product we 

may write the weak formulation (5)-(6) as 

〈���
 , 5〉 + 	a�h, v� = 〈�, 5〉 + ∫Ω∂ 5 ���- 9/,               (7) 

〈���
 , 5〉 + 	b�T, v� = 〈�, 5〉 + ∫Ω∂ 5 ���- 9/.              (8) 

We now consider the Galerkin approximation of problem 

(7)-(8) for each '	 > 	0 and let O\ 	be the space of Lagrange 

finite elements of degree . vanishing on the boundary with 

respect to a mesh of Ω of mesh size ], and define ℎ\ 	and �\  to 

be the finite element solution, ℎ\ , �\ ∈ O\ such that 

〈��^�
 , 5\〉 + 	a�ℎ\ , 5\� = 〈�, 5\〉 + ∫
Ω∂

5\ ��^�- 9/, (9) 

〈��^�
 , 5\〉 + 	b��\ , 5\� = 〈�, 5\〉 + ∫
Ω∂

5\ ��^�- 9/        (10) 

with �\�0� = 	�%\and ℎ\�0� = 	ℎ%\where O\ ⊂ O is a suitable 

space of a finite dimension and �%\  and ℎ%\  is a convenient 

approximation of �% and ℎ% in the space O\ 	respectively. 

3.1. Existence and Uniqueness 

Since ��	�Ω�  is separable, therefore, it has a countable 

basis 1_`2`a�  Let O\ 	be space spanned by the first ]  basis 

functions, 1_`2�b`b\ . The reduced problem (10) is discretized 

in Oc	by the square system of equations. That is finding �\ = ∑ �̀�b`b\ _` ∈ O\ solution of 

〈��^�
 , 5\〉 + 	b��\, 5\� = 〈�, 5\〉 + ∫
Ω∂

5\ ��^�- 9/, 〈�\�0�, 5\〉 = 	 〈�%\ , 5\〉. (11) 

The guarantee for existence and uniqueness of the solution 

of the weak formulation equation (8) is Picard-Lindelof 

Theorem which is stated in [21] as: 

Theorem 1. Picard-Lindelof Theorem: Let O  and �  be 

separable Hilbert spaces with O ⊂ �, O dense in � and ‖5‖ =e‖5‖f. Assume that there are constants g� ≥ g� > 0 with 

Y�5, 5� = g�‖5‖�f , ∀5 ∈ O                 (12) 

and 

|Y�h, 5�| ≤ g�‖h‖f‖5‖f , ∀5, h ∈ O          (13) 

Then there exists a unique solution � ∈ 3��j0, �kl, O� of 

the initial value problem 

〈)��'�)' , 5〉 + Y���'�, 5� = 〈�, 5〉, ��0� = �%, 5 ∈ O. 
Condition (12) is often referred to as coercivity or 

positivity, while (13) is called continuity of boundedness. 

Further, let Y�h, 5� = 	e�h, 5� + 9�h, 5�  where 

Ω∇∇= ∫
Ω

dvw
Pe

vwc
1

),(  and ∫
Ω

Ω∇= wvdqvwd ),( . Now, we 

went to check whether our problem satisfies condition (12) 

and (13). 

Coercivity/Positivity 

To ensure that Y�5, 5�  is positive we must put some 

restriction on the flow velocities. That is we need 

|9�5, 5�| ≤ |Y�5, 5�| 
and assume the bounded velocities ‖�‖m . Using Poincare 

inequality ‖5‖BCn ≤ �=‖5‖BC  where �=  is some constant 

[21]. 

Now if �=‖�‖m ≤ o ��� with o < 1 we obtain 

Y�5, 5� = ∫
Ω

1pq ∇5∇59Ω + ∫
Ω

�∇559Ω ≥ 1pq ‖5‖BC‖5‖BC − ‖�‖m‖5‖BC‖5‖BnC ≥ r 1pq − �=‖�‖ms ‖5‖BC‖5‖BC
≥ t 1pq �1 − o�u ‖5‖�BC ≥ g�‖5‖�BC , 
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since o < 1 , hence g� = ��� �1 − o� > 0 . Therefore, Y�5, 5� ≥ g�‖5‖�BC . Hence positivity condition is satisfied. 

Continuity/Boundedness 

The second condition the boundedness follows by 

applying Cauchy Schwartz inequality, Y�h, 5� =
∫
Ω

��� ∇h∇59Ω + ∫
Ω

�∇h59Ω ≤ ��� ‖h‖BC‖5‖BC +
‖�‖m‖5‖BC‖5‖BnC ≤ v ��� + �=‖�‖mw ‖h‖BC‖5‖BC ≥g�‖h‖BC‖5‖BC , 
whereg� = v ��� + �=‖�‖mw > 0. Hence continuity condition 

satisfied. Therefore, the solution of the weak formulation of 

our problem exists and unique. 

3.2. Approximate Solution 

let q denotes the element number in a region Ω. To provide 

an algebraic interpretation of (9)-(10) we introduce a basis _x 
for O\ , and we observe that it suffices that (9)-(10) are 

verified for the basis functions to be satisfied by all the 

functions of the subspace. Moreover, as for each '	 > 	0, the 

solution to the finite element problem belongs to the 

subspace as well, we will have 

ℎ\��", #, '� =Eℎx��'�_x�", #�
y^
xz�  

and 

�\��", #, '� = E�x��'�_x�", #�
y^
xz� , 

where the ℎx��'�  and �x��'�  coefficients represent the 

unknowns of the problem (9)-(10) on the element q  and {\ = 3,	since the elements are triangular. 

Denoting by ℎ}x��'�	 and �}x��'�  the derivatives of the 

function ℎx��'� and �x��'�	respectively with respect to time, 

a system of equation (9)-(10) on the element q	becomes 

7E	
ℎ}x��'�	ϕ�ϕ�dΩ� + a�Eℎ}x��'�	ϕ�ϕ�dΩ�
y^
�z� �y^

xz�
.

=�
= 7�ϕ�dΩ�.

=�
+ 7 ϕ�s�x, y�ds.

T=�
, i = 1,2,3, … ,{\ , 

7E�}x��'�	ϕ�ϕ�dΩ� + b�E�}x��'�	ϕ�ϕ�dΩ�
y^
�z� �y^

xz�
.

=�
= 7�ϕ�dΩ�.

=�
+ 7 ϕ�r�x, y�ds,.
T=�

	i = 1,2,3, … , {\ . 
Then after some implementation, the system can be 

rewritten in the form 

	
��ℎ} � + ��ℎ� = ��                    (14) 

���} � + ���� = .�                        (15) 

where 

1. �� , ��  and �� 	3 × 3 matrix whose elements are given 

below respectively 

��x` = 7_x_`.
=�

9Ω� , X�x` = 7�∇_x∇_`.
=�

9Ω� , 
Y�x` = 7�∇_x_`.

=�
9Ω� + 1pq 7∇_x∇_`

.
=�

9Ω� . 
2. ��  and .�  column vector whose elements are given 

below respectively 

��` = 7�ϕ�dΩ�.
=�

+ 7 ϕ�s�x, y�ds.
T=�

, 
.�` = 7�ϕ�dΩ�.

=�
+ 7 ϕ�r�x, y�ds.

T=�
, 

The matrix �	�is called the local stiffness matrix and �� is 

called the local mass matrix. Now by assembling process 

(14)-(15) will be used to get the overall approximate solution 

and after some algebraic manipulation, which will follow 

shortly, allows to be put into the form 

	
�ℎ} + �ℎ = �,                            (16) 

��} + �� = .,                              (17) 

in which ℎ = �ℎ�, ℎ�, … , ℎy�� , � = ���, ��, … , �y��	 and the { × { matrix � is a global mass matrix, the { × { matrix � 

is the global stiffness matrix, and the vector �	and � are the 

globalized force vector. Here { denotes the total number of 

nodes in the problem as a whole, and the components of ℎ 

and � are now labelled by their global node numbers. For the 

numerical solution of the ODE system (16)-(17), many 

methods are available from that we have observed backward 

Euler method of the form 

	
� ���C���∆
 + �ℎ��� = ����,        (18) 

� ���C���∆
 + ����� = .���,           (19) 

which is first order accurate with respect to ∆' = '��� − '�. 
4. Error Analysis 

4.1. Prior Error Analysis 

Consider the weak formulation of the governing equation 
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(10) of heat transfer in porous media. Before analyzing a 

weak formulation (10), we analyze its convergence, since it is 

less involved. The key to the analysis of the weak 

formulation is to compare �\  not directly to �, but rather to an 

appropriate representative h\ ∈ ��j�0, �k�, O\l . For h\ we 

choose the elliptic projection of �, defined by 

Y�h\ , 5� = Y��, 5�, 5 ∈ O\ 	0 ≤ ' ≤ �k .           (20) 

From [22] the finite element method for elliptic problems, 

we have the 3� estimate 

‖��'� − h\�'�‖ ≤ (]���‖��'�‖���, 0 ≤ ' ≤ �k 	   (21) 

for some constant (. If we differentiate (20), we see that 
� ^�
  

is the elliptic projection of 
���
 , 

so  

¡���
 �'� − � ^�
 �'�¡ ≤ (]��� ¡���
 �'�¡��� , 0 ≤ ' ≤ �k (22) 

Now, 

〈� ^�
 , 5〉 + Y�h\ , 5� = 〈� ^�
 , 5〉 + Y��, 5� = 〈�� ^����
 , 5〉 +〈�, 5〉, 5 ∈ O\ , 0 ≤ ' ≤ �k .                (23) 

Let	#\ = h\ − �\. Subtracting (10) from (23), we get 

〈)#\)' , 5〉 + Y�#\ , 5� = 〈)�h\ − ��)' , 5〉 , 5 ∈ O\ , 0 ≤ ' ≤ �k . 
Now, for each ' we choose 5 = #\�'� ∈ O\ . Note that for 

any function # ∈ ����0, ��; 3��Ω��, 
‖#‖ 99' ‖#‖ = 12 99' ‖#‖� = 〈)#)' , #〉. 

Thus we obtain 

‖#\‖ ££
 ‖#\‖ + Y�#\ , #\� = 〈�� ^����
 , #\〉 ≤ ¡�� ^����
 ¡‖#\‖, (24) 

cancelling the same expression on both sides of (24) we 

obtain 

99' ‖#\‖ ≤ ¤)�h\ − ��)' ¤ ≤ (]��� ¤)�)' �'�¤���. 
This holds for each '. Integrating over �0, '�,	we get 

‖#\�'�‖ ≤ ‖�h\�'� − ��'�‖≤ ‖#\�0�‖ + (]���‖��'�‖LCj�%,��;B¥�C�=�l. 
For #\�0� we have 

‖#\�0�‖ ≤ ‖h\�0� − �\�0�‖ ≤ ‖h\�'� − ��0�‖ + ‖�% − �\�0�‖≤ (]���‖�%‖��� + ‖�% − �\�0�‖ 
Thus, assuming that the exact solution is sufficiently 

smooth and the initial data �\�0�  is chosen so that ‖�% −�\�0�‖ = ��]����, we have 

‖#\‖L¦j�%,��;L§�=�l = ��]����. 
Combining this estimate with the elliptic estimate (21) we 

get an estimate on the error 

‖� − �\‖L¦j�%,��;L§�=�l = ��]����. 
4.2. Posterior Error Estimate 

Now we turn to the error analysis of a fully discrete 

scheme, which is finite elements in space and backward 

Euler in time. Writing �\ x for �\�·, ¨©� (with © the time step), 

the scheme is 

〈�^ª�C��^ª� , 5〉 + Yj�\ x��, 5l = 〈�x��, 5〉, 5 ∈ O\ , ¨ =0,1,2, … ,�.                                 (25) 

To analyze this scheme, we proceed as we did for the 

semidiscrete scheme, with some extra complications coming 

from the time discretization. In particular, we continue to use 

the elliptic projection h\  as a representative of �. Thus the 

consistency error is given by 

« = 〈h\ x�� −h\ x© , 5〉 + Yjh\ x��, 5l − 〈�x��, 5〉 
= 〈�x�� − �x© , 5〉 + Yj�x��, 5l − 〈�x��, 5〉

+ 〈�h\ x�� − �x��� − �h\ x − �x�© , 5〉 
= 〈�x�� − �x© − )�x��)' , 5〉 + 〈�h\ x�� − �x��� − �h\ x − �x�© , 5〉= 〈¬x , 5〉, 

where the last line defines ¬x . Next, we estimate the two 

terms that comprise ¬x, in 3�. First, we have 

­�x�� − �x© − )�x��)' ­ ≤ ©2 ­)��)'�­L¦�L§�, 
by Taylor's theorem. Next, 

�h\ x�� − �x��� − �h\ x − �x�©
= 1© 7 ))' �h\�/� − ��/��9/,

�x����
x�

 

so 

­�h\ x�� − �x��� − �h\ x − �x�© ­
= (]��� ¤)�)'¤L¦��x�,�x�����,B¥�C�=��. 

Thus we have obtained abound on the consistency error: 
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« = 〈h\ x�� − h\ x© , 5〉 � Y�h\ x��, 5� � 〈�x��, 5〉 � 〈¬x , 5〉, 5∈ O\ , ¨ � 0,1,2, … ,�, 
with 

®¬x® � (�© ­)��)'�­L¦j�%,�¯�,B¥�C�=�l
� ]��� ¤)�)'¤L¦j�%,�¯�,B¥�C�=�l�. 

Combining with the scheme (25), we get (for #\ � h\ ��\), 
〈#\ x�� � #\ x© , 5〉 � Y�#\ x��, 5� � 〈¬x , 5〉, 5 ∈ O\ . 

We conclude the argument with a stability argument. 

Choose 5 � #\ x�� ∈ O\ .	This becomes: 

®#\ x��®� � ©Y�#\ x��, #\ x��� � 〈#\ x � ©¬x , #\ x��〉, 
so 

®#\ x��® i ®#\ x® � ©«, ¨ � 0,1,2, … ,�, 
and, by iteration, 

max%bxb±®#\ x® i ‖#\%‖ � �« , ¨ � 0,1,2, … ,�, 
where � � ©�  and «  is consistency error. In this way, we 

prove that 

max%bxb±¡�x � �\ x¡ � ��© � ]���� , ¨ � 0,1,2, … ,�. 
5. Numerical Results and Discussion 

In this section, we demonstrate the numerical results of 

heat transfer in aquifer thermal energy storage due to hot 

water injection. We assume the governing equation of 

Aquifer Thermal Energy Storage model as local thermal 

equilibrium which states the temperature of each phase 

present in a representative elementary volume equals to the 

average temperature of the representative fixed control 

volume element. We also assume no internal sinks or sources. 

Moreover, we assume the aquifer to be homogeneous and 

isotropic, thus K (hydraulic conductivity) has a constant 

scalar value. Consider the depth and width of the aquifer are 

to be constant and equal to 1. 

Hot water is considered being injected throughout the 

depth of a single injection well into the aquifer at one end of 

the domain. Assume the bottom of the aquifer is given to be 

impermeable and there is no infiltration through the top 

boundary. The temperature of the hot water is assumed to be 

300%  which is kept constant throughout the whole injection 

period. The initial temperature of the aquifer water before the 

injection is assumed to be 273% . A fixed injection water 

temperature of 300%  is considered as a boundary condition 

at injection end and initial aquifer temperature of 273%  is 

taken as the second boundary condition at a long distance 

away from the injection point. The top and bottom 

boundaries are considered as fixed temperature boundaries 

with the temperature of both top and bottom boundary are 

equals to 273% . 

Assume the hot water is injected into the well with rate ³ 

through the screen located between "´ and "µ  as shown in 

figure 1. We consider the boundary condition and initial 

condition as �	 � 	1  and at the well (boundary) " � 	0  we 

consider 

)�)# � D��	"´ i " i "µ0, ¶'�q.h·/q,  

where the flux is � � ¸¹º�¹». 
The whole system is schematically presented in figure 1. 

The numerical simulations of the study have been performed 

using the finite element method. 

In this experiment for simplicity, we set fluid and solid 

heat capacities as 1¼/�©� !  � , thermal conductivities are 

equal to 1¾/�� !  � and the specific storage		
 � 1/�. For 

all the numerical results the well screen is located between "´ � 0.6667 and "µ � 0.3333. 

 

Figure 1. Schematic diagram of the homogeneous porous medium due to an 

injection well installed. 

By real-life experiences, if heat is applied to the material 

with low thermal conductivity, the expected result would be 

that the heat concentrates at the applied spot and doesn't 

spread out very far throughout the specimen. As shown in 

figure 2, we can see that heat concentrates highly at the left 

side of the injection well (highest of 300 degrees between the 

well screen) and spreading to the right. 

In Figures 3 and 4 we can see how the temperature front of 

injected hot water passes through the aquifer from left to 

right. The plot shows that continuous injection of hot water 

into cold aquifer environment a thermal interface or the 

thermal front is set up which propagates through the aquifer 

with time. 
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Figure 2. The temperature distribution at t = 100. 

The temperature of the aquifer also increases gradually 

with the passage of injection time due to the advancement of 

the thermal front. As the thermal front enters and enters in a 

homogeneous aquifer, a change in trend in the temperature 

distribution is observed and sharp points are noticed on the 

temperature distribution plot. Also, as time increases the 

temperature of porous aquifer increase. 

 

Figure 3. The temperature distribution in the aquifer for the different final time. Plots correspond to Peclet number of 50. 

Figure 3 illustrates the heat flow when the heat transfer by 

the motion of a fluid (advection) has a stronger influence on 

the behaviour of a heat expansion than molecular motion 

(conduction). In this case, we set a Peclet number equals 50. 

Figure 4, on the contrary, shows the solution of the heat 

transfer equation when conduction dominates over 

convection, here the Peclet number equals to 0.5. The 

conductive term in equation (2) dominates when the Peclet 

number is less than 1. If the value of the Peclet number is 

very high, then advection strongly dominates over 

conduction or diffusion see figure 5 for Peclet number equal 

to 100. This shows if the Peclet number is very high the 

temperature of injected hot water makes a high change on the 

aquifer temperature as time t increase, while if Peclet number 

is less than 1 there is a little bit change on the aquifer 

temperature. 

 

Figure 4. The temperature distribution in the aquifer for a different final time. Plots correspond to a Peclet number of 0.5. 
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Figure 5. The temperature distribution in the aquifer for a different final time. Plots correspond to Peclet number of 100. 

6. Conclusion 

A two dimensional numerical model for heat transport in the 

aquifer thermal energy storage system during hot water 

injection in a single wall was presented considering constant 

injection rate. The primary target was to model the movement 

of the thermal front with time, which is generated in the 

aquifer due to the thermal injection. In general, we conclude 

from our numerical results that with the injection of hot water 

in a single wall thermal front are set up in the aquifer and 

proceeds with injection time. The aquifer temperature thus 

increases gradually with time at a fixed distance. The present 

two-dimensional models give some insight into the problem of 

transient heat transport phenomenon in a homogeneous porous 

aquifer due to hot water injection into it. 

The advective flux of heat transfer is proportional to the 

volumetric injection rate of hot water to in an advection 

dominated system like the present one since the advective 

velocity of groundwater flow enhances due to increased 

injection rate. The results of the simulation give some 

preliminary results on the performance of aquifer thermal 

energy storage and their use in underground energy storage. 

Thus fluctuation of temperature could be seen during the 

injection of hot water in a homogeneous porous aquifer. 

The heat loss from the aquifer plays a crucial role in the 

transient heat transport phenomenon in an aquifer thermal 

energy storage system. Due to heat loss, the advancement of 

the thermal front is always lesser in an aquifer with heat loss 

than that without it. Large heat loss from an aquifer makes it 

inefficient for the usage of long term thermal energy storage. 
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