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Abstract: In this paper, a mathematical model has been formulated to describe the population dynamics of human cells 

pertaining to the HIV/AIDS disease with ART as treatment and is analyzed. The human cells have been divided into four 

compartments Susceptible – Asymptomatic – Symptomatic – AIDS (SAIV). The well posedness of the four dimensional 

dynamical system is proved and the steady states of the model are identified. Additionally, parametric expression for the basic 

reproduction number is constructed following next generation matrix method and analyzed its stability using Routh Hurwitz 

criterion. From the analytical and numerical simulation studies it is observed that if the basic reproduction is less than one unit 

then the solution converges to the disease free steady state i.e., disease will wipe out and thus the treatment is said to be 

successful. On the other hand, if the basic reproduction number is greater than one then the solution converges to endemic 

equilibrium point and thus the infectious cells continue to replicate i.e., disease will persist and thus the treatment is said to be 

unsuccessful. Sensitivity analysis of the model parameters is conducted and their impact on the reproduction number is 

analyzed. Finally, the model of the present study simulated using MATLAB. The results and observations have been included 

in the text of this paper lucidly. 
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1. Introduction 

The Human Immunodeficiency Virus HIV infects cells of 

the immune system as well as that of the central nervous 

system inhuman body. The T-helper lymphocytes are the 

main type of cells that will be infected by HIV disease. It is 

well known that the role of these T-helper lymphocytes cells 

in the immune system is to coordinate with the actions of 

other immune system cells. A large reduction in the number 

of these cells results in weakening the immune system [1, 2]. 

HIV infects the T-helper cells because it has the protein 

called CD4+ on its surface, which HIV uses to attach itself to 

cells before entering to them. That is why the T-helper cell is 

referred to as a CD4+T lymphocyte. Once it attaches itself 

into a cell, HIV produces new copies which are capable of 

infecting other cells. 

According to WHO clinical staging of HIV/AIDS, HIV 

infection has four distinct stages viz., acute stage, 

Asymptomatic stage, Asymptomatic stage and Advanced 

AIDS stage [3]. These four stages of the disease have been 

introduced in what follows. 

Stage 1 (Primary HIV infection): First stage of HIV 

infection is called primary infection stage. Primary infection 

begins shortly after an individual becomes infected with HIV 

for the first time. This stage lasts for a few weeks. During 

this period, individuals experience Flu like symptoms. Very 

few individuals seek treatment during this stage and those are 

usually misdiagnosed as if they are suffering from general 

viral infection. It is common that whenever an HIV test is 

performed in a medical lab then the result may come out to 

be negative. The reason for such negative results is 

antibodies which are yet not produced by the individual’s 

immune system. Since antibodies have not yet been 

developed, HIV continues to replicate, resulting in a very 

high level of the virus [4]. Few weeks after getting the 

infection, the infected individuals become highly infectious. 

At this stage there would be a large amount of HIV in the 

peripheral blood amounting around 106 copies of virus per 

micro-litter µl of blood. Peripheral blood is the blood which 

is in the circulating system but not in the lymphatic system, 
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bone marrow, liver. Antibodies and cytotoxic lymphocyte 

start getting produced in response to the virus which is 

known as sero-conversion. At this stage about 20 percent of 

people who are HIV positive show symptoms which are not 

mild. However, any diagnosis for detecting HIV infection at 

this stage will go wrong as already mentioned. Those who 

believe that they were exposed to HIV should repeat the 

medical test after six months. 

Stage 2 (Asymptomatic HIV): In the second stage, individuals 

become free from all types of symptoms of HIV although there 

will be some swollen glands. The HIV appears in blood in a 

very low Level, but is detectable. If an HIV test is performed, 

the result will come out to be positive. While the individuals 

remain asymptomatic, the HIV in their blood continues to 

reproduce constantly. This stage lasts for about ten years. 

However, the period of second stage can be much longer or 

shorter depending on the individual and is also characterized by 

a CD4+count whose normal count is around 500 cells per µl. 

Stage 3 Symptomatic HIV: In the third stage, symptoms 

start appearing and the immune system becomes so damaged 

by HIV. Further, it leads to greater destruction ofCD4+ cell 

and the immune system will not able to replace them. By 

now the immune system fails and as a result the symptoms 

start developing [3]. Symptoms are typically mild initially 

and they gradually become more severe. Opportunistic 

infections, infections that take advantage of the vulnerable 

immune system, begin to occur. These infections affect 

almost all the systems of the body and include both infections 

and cancers. Some common opportunistic infections include 

tuberculosis, cytomegalovirus, and shingles. In this stage 

HIV infection is often characterized by multi-system diseases 

and infections in body. Treatment for a particular infection or 

cancer is often carried out. However, the main cause is the 

action of HIV as it attacks the immune system. Unless HIV is 

reduced the immune suppression will continue to be weaker. 

Stage 4 (Acquired Immune Deficiency Syndrome AIDS): In 

fourth and last stage, a person can be medically tested 

positive as having AIDS. The progression to AIDS can be 

characterized by CD4+ count which is 200 per ml or below 

in a patient, while it is around 1000 per ml in a normal 

person. At this stage, the infected individual is likely to 

develop opportunistic infections in their respiratory system, 

gastro-intestinal system, central nervous system and on the 

skin as well. Once a person is diagnosed with AIDS, the 

AIDS status is permanent. A blood test can determine if a 

person is infected with HIV, but if a person tests positive for 

HIV, it does not necessarily mean that the person has AIDS. 

A diagnosis of AIDS is made by a physician according to the 

CDC AIDS Case definition. 

Organization of the paper: In Section 2, assumptions of the 

model are stated and based on which a mathematical model 

for describing the population dynamics of human body cells 

pertaining to the HIV/AIDS disease is formulated. 

In section 3, well possedness of the model formulation, 

stability analysis of the equilibrium points and reproduction 

number are included. 

In Section 4, numerical simulation studies of the model 

equations are performed by assigning various sets of 

numerical values to the model parameters. 

In Section 5 sensitivity analysis of model parameters 

towards the reproduction number is carried out. 

In section 6 Result and Discussion are presented. Finally in 

Section 7, conclusions are stated. 

2. Model Formulation 

In the present model describing Human Immunodeficiency 

virus (HIV) with treatment the total human body cells are 

divided into four classes: (i) Susceptible cells class. It is 

denoted by ���� . These susceptible cells are capable of 

becoming infected cells in future. These include new cells 

that not infected yet. (ii) Asymptomatic cells class. It is 

denoted by ���� . This class consists of cells which are 

infected with virus but shows no signs of infections. These 

cells are active to transmit infections to other cells but they 

still continue as normal. (iii) Symptomatic cells class. It is 

denoted by ����. This class consists of infectious cells and 

they show signs of infections. Such cells manifest their 

weakness as they harmed by virus. (iv) AIDS cells class. It is 

denoted by ����. They are cells that highly contains virus 

that weakens T-helper cells. This categorical cell requires 

high medications and cares. 

Here, a mathematical model of the Human 

Immunodeficiency virus (HIV) is constructed based on the 

following assumptions made on the human body cells: 

i. The total population size of human body cells is 

assumed to be constant. 

ii. Both the numbers of births and deaths of cells are equal. 

iii. Human Immunodeficiency virus (HIV) model 

classifies the cell population into four compartments 

SAIV at any time. 

iv. Susceptible cells are recruited into the compartment ���� at a constant rate �. 

v. Susceptible cells are infected when they come into 

effective contact with asymptomatic cells and join 

asymptomatic cells class at a rate 	. 

vi. Asymptomatic cells join symptomatic cells at a 

rate	�	and AIDS cells at arate �. 

vii. The symptomatic cells join AIDS cells class at a rate 
. 

viii. All types of cells suffer natural mortality with a rate �. 

ix. AIDS cells die of infection at a rate �. 

x. Symptomatic cells die due at the rate of�  due to 

disease. 

xi. Asymptomatic cells die due to disease at the rate of �. 

xii. Asymptomatic and Symptomatic cells are treated 

All parameters used in the model are positive. 

Table 1. Notations and description of model variables. 

Variable Description S�t�	 Population size of susceptible cells A�t�	 Population size of asymptomatic cells I�t�	 Population size of symptomatic cells V�t�	 Population size of AIDS cells 
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Table 2. Notations and description of model parameters. 

Parameter Description � Recruitment rate of susceptible cells. With this rate new cells will born and they will enter into susceptible class. 	 Transmission rate of infection cells. With this rate cells transfer from compartment �	to	�. � Rate of cells transferring from compartment �	to	�. 
 Rate of cells transferring from compartment �	to	�. � Treatment rate of	�. � Death rate of cells due to infection. With this rate cells of � compartment die of the disease. � Natural death rate. With this rate cells of all compartments die naturally. � Treatment rate of asymptomatic cells	�. � Death rate of symptomatic cells � due to disease. 

Based on the basic assumptions together with the description of both model variables and parameters the schematic diagram 

of the model compartments and the cell flow directions can be given as in Figure 1. 

 

Figure 1. Schematic diagram of compartmental structure of the model. 

Based on the model assumptions, the notations of variables 

and parameters and the schematic diagram, the model 

equations are formulated and are given as follows: �� ��⁄ = � − �	�� �⁄ � − ��                   (1) �� ��⁄ = �	�� �⁄ � − �� + � + � + � − ���        (2) �� ��⁄ = �� − �
 + � + � − ∅��               (3) �� ��⁄ = �� + 
� − �� + ���                 (4) 

The non-negative initial conditions of the model equations 

(1) – (4) are denoted by ��0� > 0, ��0� ≥ 0, ��0� ≥0, ��0� ≥ 0. This system consists of four first order non-

linear ordinary differential equations. 

3. Mathematical Analysis of the Model 

In this section mathematical analysis of the present 

improved and modified model is conducted. The analysis 

consists of the features including (i) existence, positivity and 

boundedness of solutions (ii) steady states (iii) disease free 

equilibrium points (iv) endemic equilibrium points (v) basic 

reproduction number (vi) stability analysis of the disease free 

equilibrium points (vii) local stability of disease free 

equilibrium point (viii) global stability of disease free 

equilibrium point (ix) stability analysis of endemic 

equilibrium point and (x) local stability of endemic 

equilibrium point. These mathematical aspects of the model 

are presented and discussed in the following sub-sections 

respectively. 

3.1. Existence, Positivity and Boundedness of Solution 

In order to show that the model is biologically valid, it is 

required to prove that the solutions of the system of 

differential equations (1) – (4) exist and are both positive and 

bounded for all time. It is done starting with proving Lemma 

1. 

Lemma 1 (Positivity) Solutions of the model equations (1) 

– (4) together with the initial conditions ��0� ≥ 0, ��0� ≥0, ��0� ≥ 0, ��0� ≥ 0  are always positive (OR) the model 

variables ����, ����, ����,	and ���� are positive for all �  and 

will remain in ℝ%& . 

Proof Positivity of the solutions of model equations is 

shown separately for each of the model variables 
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����, ����, ����, and ����. 
Positivity of ���� : The model equation (1) given by �� ��⁄ = � − �	�� �⁄ � − �� can be expressed without loss 

of generality, after eliminating the positive term�	appearing 

on the right hand side, as an inequality as �� ��⁄ ≥−'� + �	� �⁄ �(�. Using variables separable method and on 

applying integration, the solution of the foregoing 

differentially inequality can be obtained as ���� ≥��0�)*+,*- ./�,�0, . Recall that an exponential function is 

always non–negative irrespective of the sign of the exponent 

i.e. the exponential function )*+,*- ./�,�0, is a non-negative 

quantity. Hence, it can be concluded that ���� ≥ 0. 

Positivity of ���� : The model equation (2) given by �� ��⁄ = �	�� �⁄ � − �� + � + � + � − ���  can be 

expressed without loss of generality, after eliminating 

positive term �	�� �⁄ � and �� which are appearing on the 

right hand side, as an inequality as �� ��⁄ ≥ −�� + � + � +��� . Using variables separable method and on applying 

integration, the solution of the foregoing differentially 

inequality can be obtained as ���� ≥ ��0�)*�1%+%2%3�, . 

Recall that an exponential function is always non–negative 

irrespective of the sign of the exponent i.e. the exponential 

function )*�1%+%2%3�,  is a non-negative quantity. Hence, it 

can be concluded that ���� ≥ 0. 

Positivity of ���� : The model equation (3) given by 	�� ��⁄ = �� − �
 + � + � − ∅�� can be expressed without 

loss of generality, after eliminating the positive terms ���� 
and ���� which are appearing on the right hand side, as an 

inequality as �� ��⁄ ≥ −�
 + � + ��� . Using variables 

separable method and on applying integration, the solution of 

the foregoing differentially inequality can be obtained as ���� ≥ ��0�)*�4%+%5�,. Recall that an exponential function is 

always non–negative irrespective of the sign of the exponent 

i.e. the exponential function )*�4%+%5�,  is a non-negative 

quantity. Hence, it can be concluded that ���� ≥ 0. 

Positivity of ���� : The model equation (4) given by �� ��⁄ = �� + 
� − �� + ���  can be expressed without 

loss of generality, after eliminating the positive terms ��, 
�, 
and ��  which are appearing on the right hand side, as an 

inequality as �� ��⁄ ≥ −�� + ��� . Using variables 

separable method and on applying integration, the solution of 

the foregoing differentially inequality can be obtained as ���� ≥ ��0�)*�+%6�,. Recall that an exponential function is 

always non–negative irrespective of the sign of the exponent 

i.e. the exponential function )*�+%6�,  is a non-negative 

quantity. Hence, it can be concluded that ���� ≥ 0. 

Thus, the model variables ����, ����, ����,  and ���� 
representing population sizes of various types of human body 

cells are positive quantities and will remain in ℝ%	& for all�. 
Lemma 2 (Boundedness) The positive solutions of the 

system of model equations (1) – (4) are bounded. That is the 

model variables ����, ����, ���� and ���� are all bounded for 

all �. 
Proof: Recall that each population size is bounded if and 

only if the total population size is bounded. Hence, in the 

present case it is sufficient to prove that the total population 

size � = ���� + ���� + 	���� + 	���� is bounded for all �. It 

can be begun by showing that all feasible solutions are 

uniformly bounded in a proper subsetΩ ∈ ℝ%&  where the 

feasible region Ω is given by Ω =	 9��, �, �, �� ∈ℝ%& ; 	N ≤ 'τ �μ − η − ϕ�⁄ (A. 
Now, summation of all the four equations (1) – (4) of the 

model gives dN	�t� dt⁄ = τ + ηA + ϕI − μN�t� − θA − ρI −γV . It can be expressed without loss of generality, after 

eliminating the negative terms �−θA − ρI − γV�  which are 

appearing on the right hand side, as an inequality as dN	�t� dt⁄ 	≤ 	 'π	 +	�η + ϕ − μ�	N�t�( . Equivalently this 

inequality can be expressed as a linear ordinary differential 

inequality as 'dN	�t� dt⁄ ( + 	 '�η + ϕ − μ�N�t�( 	≤ 	τ  giving 

general solution upon solving as N�t� ≤ 'τ �μ − η − ϕ�⁄ ( +G)*�H*I*J�,. But, the term ��0� denotes the initial values of 

the respective variable i.e. N�t� = N�0�  at t = 0 . Thus, in 

terms of a new parameter �0 = �μ − η − ϕ� > 0 , the 

particular solution can be expressed as N�t� ≤ �τ �0⁄ � +'N�0� − �τ �0⁄ �()*�K +L⁄ �, . Further, it can be observed that ���� → �τ �0⁄ � as � → ∞. That is, total population size ���� 
takes off from a value N�0� at the initial time t = 0 and ends 

up with a bounded value �τ �0⁄ � as the time �	progresses to 

infinity. Thus, it can be concluded that ���� is bounded as 0 ≤ ���� ≤ �τ �0⁄ �. 
Therefore, �π �0⁄ �  where �0 = �μ − η − ϕ�  is an upper 

bound of ����.  Hence, feasible solution of the system of 

model equations (1) – (4) remains in the region Ω which is 

positively invariant set. Thus, the system is biologically 

meaningful and mathematically well posed in the domainΩ. 

Further, it is sufficient to consider the dynamics of the 

populations represented by the model system (1) – (4) in that 

domain. 

Therefore, it can be summarized the result of Lemma 2 as 

“the model variables ����, ����, ����, and ���� are bounded 

for all �”. Also, here Lemma 2 sets a restriction on the model 

parameters as �μ − η − ϕ� > 0 or equivalently μ > �η + ϕ�. 
Lemma 3 (Existence) Solutions of the model equations (1) 

– (4) together with the initial conditions ��0� > 0, ��0� ≥0, ��0� ≥ 0, ��0� ≥ 0  exist in ℝ%& i.e. the model variables ����, ����, ����, and ���� exist for all �	and will remain inℝ%& . 

Proof: Let the right hand sides of the system of equations 

(1) – (4) are expressed as follows: �� ��⁄ = � − �	�� �⁄ � − �� ≡ QR 	�� ��⁄ = �	�� �⁄ � − �� + � + � + � − ��� ≡ QS �� ��⁄ = �� − �
 + � + � − ∅�� ≡ QT �� ��⁄ = �� + 
� − �� + ��� ≡ Q& 

According to Derrick and Groosman theorem, let Ω denote 

the region Ω = 	 9��, �, �, �� ∈ ℝ%& ; 	N ≤ �π �0⁄ �A. Then 

equations (1) – (4) have a unique solution if �UVW� XUYZ[⁄ :	], ^ = 1, 2, 3, 4  are continuous and bounded 

inΩ. Here, YR = �, YS = �, YT = �, Y& = �. 

The continuity and the boundedness of QR, QS, QT, Q&  are 

verified as here under: 

For QR: |�UQR� �U��⁄ | = |−'� + 	� �⁄ (| < ∞ 



131 Kumama Regassa and Purnachandra Rao Koya:  Modeling and Analysis of Population Dynamics of Human  

Cells Pertaining to HIV/AIDS with Treatment 

|�UQR� �U��⁄ | = |−	� �⁄ | < ∞ |�UQR� �U��⁄ | = 	0 < ∞ |�UQR� �U��⁄ | = 0 < ∞ 

For QS: |�UQS� �U��⁄ | = |	� �⁄ | < ∞ |�UQS� �U��⁄ | = |	� �⁄ − �� + � + � + � − ��| < ∞ |�UQS� �U��⁄ | = 	0 < ∞ |�UQS� �U��⁄ | = 	0 < ∞ 

For QT: |�UQT� �U��⁄ | = 	0 < ∞ |�UQT� �U��⁄ | = |�| < ∞ |�UQT� �U��⁄ | = |−�
 + � + � − ��| < ∞ |�UQT� �U��⁄ | = 	0 < ∞ 

For Q&: |�UQ&� �U��⁄ | = 	0 < ∞ |�UQ&� �U��⁄ | = |�| < ∞ |�UQ&� �U��⁄ | = |
| < ∞ |�UQ&� �U��⁄ | = |−�� + ��| < ∞ 

Thus, all the partial derivatives �UVW� XUYZ[⁄ :	], ^ =1, 2, 3, 4  exist, continuous and bounded in Ω . Hence, by 

Derrick and Groosman theorem, a solution for the model (1) 

– (4) exists and is unique. 

3.2. Steady State Solutions 

In order to understand the dynamics of the model, it is 

necessary to determine equilibrium points of the solution 

region. An equilibrium solution is a steady state solution of 

the model equations (1) – (4) in the sense that if the system 

begins at such a state, it will remain there for all times. In 

other words, the population sizes remain unchanged and thus 

the rate of change for each population vanishes. Equilibrium 

points of the model are found, categorized, stability analysis 

is conducted and the results have been presented in the 

following sub-sections: 

3.2.1. Disease Free Equilibrium Point 

Disease free equilibrium point is a steady state solution 

where there is no disease in the population. Now, absence of 

disease implies that ���� = ���� = ���� = 0 and also setting 

the right hand sides of the model equations equal to zero 

results in giving � − �� = 0 

Solutions of which is the population size of the susceptible 

humans at the disease free equilibrium and is given by 

�e = �τ μ⁄ � 
Thus, the disease free equilibrium point of the model 

equations (1) – (4) is given by fe = 9�e, �e, �e, �eA = 9τ μ⁄ , 0, 0, 0A 
3.2.2. Endemic Equilibrium Point 

The endemic equilibrium point fR = 9�R, �R, �R, �RA 
is a steady state solution when the disease persists in the 

population. The endemic equilibrium point is obtained by 

setting rates of changes of variables with respect to time of 

model equations (1) – (4) to zero. That is, setting �� ��⁄ =�� ��⁄ = �� ��⁄ = �� ��⁄ = 0 the model equations take the 

form as � − �	�� �⁄ � − �� = 0                             (5) �	�� �⁄ � − g�	 = 0                             (6) �� − h�	 = 0                                     (7) �� + 
� − G� = 0                                    (8) 

Here in (5) – (8), the quantities g, h, G	 represent the 

parametric expressions as g = � + � + � + � − �, h = 
 +� + � − ∅, G = � + � . Clearly, solutions of (5) – (8) will 

provide endemic equilibrium of the model equations and that 

is obtained as follows: 

Now, (6) can be rearranged as '�	� �⁄ � − g(� = 0 leading 

to the solutions �	�/�� − g = 0 or � = 0 or both. However, �does not vanish since the disease is assumed to persist. 

Thus, it leads to the only meaningful solution �	�/�� − g =0 or equivalently � = �g� 	⁄ �. That is, the �R component of fR is given by �R = �g� 	⁄ � = �g� 	j0⁄ � = �� �ke⁄ �               (9) 

Similarly, solving (7) and (8) gives expression for �	and �as � = ��� h⁄ �                                        (10) � = ��� G⁄ � + �
� G⁄ �                          (11) 

Further, substitution of equation (9) into (5) gives '� −	�g 	⁄ ���� − ��g 	⁄ �( = 0. But since � = �l �0⁄ � and after 

some algebraic simplifications, an expression for �can be 

obtained as �R = ��� 	�0⁄ ��ke − 1�                          (12) 

Finally, substitution of �R into (10) and (11) respectively 

gives the expressions for �	and �	in terms of parameters as �R = ���� h	�0⁄ ��ke − 1�                          (13) �R = ��� 	�0⁄ �'�� G⁄ � + �
� Gh⁄ �(�ke − 1�     (14) 

Therefore, the endemic equilibrium point is given by fR = 9�R, �R, �R, �RA where �R = �g� 	j0⁄ � = �� �ke⁄ � 
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�R = ��� 	�0⁄ ��ke − 1� �R = ���� h	�0⁄ ��ke − 1� �R = ��� 	�0⁄ �'�� G⁄ � + �
� Gh⁄ �(�ke − 1� 
3.3. Basic Reproduction Number 

The basic reproduction number is denoted by ke  and is 

defined as the expected number of people getting secondary 

infection among the whole susceptible population [13]. This 

number determines the potential for the spread of disease 

within a population. When ke < 1 each infected individual 

produces on average less than one new infected individual so 

that the disease is expected to die out. On the other hand if ke > 1  then each individual produces more than one new 

infected individual so that the disease is expected to continue 

spreading in the population. This means that the threshold 

quantity for eradicating the disease is to reduce the value of ke to less than one. 

The basic reproductive number ke  can be determined 

using the next generation matrix. In this method keis defined 

as the largest eigenvalue of the next generation matrix. The 

formulation of this matrix involves classification of all 

compartments of the model in to two classes: infected and 

non-infected. That is, the basic reproduction number cannot 

be determined from the structure of the mathematical model 

alone but depends on the definition of infected and 

uninfected compartments. 

Assume that there are m	 compartments in the model and of 

which the first n compartments are with infected individuals 

[3]. From the system (1) – (4) the first three equations are 

considered and decomposed into two groups: o	 contains 

newly infected cases and V contains the remaining terms. Let p	 = 	 '�, �, �, �(,  be a column vector and the 

differential equations of the first three compartments are 

rewritten as o�p�	– ��p�. 
Now, let o�p� 	= 	 'oR, oS, oT(, . Here (i) oR =	 �	�� ⁄��  denotes newly infected cases which arrive into the 

asymptomatic compartment, (ii) oS = 0  denotes newly 

infected cases arrived into the infectious compartment, and 

(iii) oT = 0  denotes newly infected case from susceptible 

compartment. Further, let ��p� 	= '�R, �S, �T(, . Here �R = 	g�, �S =	−�� + h�  and �T =	−�� − 
� + �� . Here, 

as it is already mentioned, the parameters g, h, G  denote g = � + � + � + � − �, h = 
 + � + � − ∅, G = � + �. 

The next step is the computation of square matrices o and �  of order n ×n , where n  is the number of infected 

classes, defined by o	 = 	 'UoW�fe�/UYZ(  and �	 =	'U�W�fe�/UYZ(  with 1 ≤ ], ^ ≤ n , such that o  is non-

negative, � is a non-singular matrices and fe  is the disease 

free equilibrium point DFE. 

If o  and V are non-negative and �  is non-singular then �*R	  is non-negative and thus o�*R  is also non-negative. 

Also, the matrix o�*R is called the next generation matrix for 

the model. Finally, the basic reproduction number ke is given 

by ke = ��F�*R�.  In general, ����  denotes the spectral 

radius of matrix � and the spectral radius is the biggest non-

negative eigenvalue of the next generation matrix. 

The Jacobian matrices for o�p� and ��p� with respect to 

��, �, �� can be constructed as 

tu�p� =
vww
wwx
	�� 0 0
0 0 0
0 0 0yzz

zz{	 	t|�p� = vww
wx g 0 0
−� h 0
−� −
 Gyzz

z{
 

The Jacobian of o  and �  at the disease free equilibrium 

point fe takes the form respectively as 

tu�fe� = vww
wx	�0 �⁄ 0 0

0 0 0
0 0 0yzz

z{ 	t|�fe� = vww
wx g 0 0
−� h 0
−� −
 Gyzz

z{
 

It can be verified that the matrix t|�fe� is non-singular as 

its determinant �)�'tu�fe�( = ghG  is non-zero and after 

some algebraic computations its inverse matrix is constructed 

as 

't|�fe�(*R = vww
wx 1 g⁄ 0 0

� gh⁄ 1 h⁄ 0
��
 + h�� �ghG�⁄ 
 hG⁄ 1 G⁄ yzz

z{
 

The product of the matrices tu�fe� and 't|�fe�(*R can be 

computed as 'tu�fe�('t|�fe�(*R
=
vww
wx	�0 �⁄ 0 0

0 0 0
0 0 0yzz

z{
vww
wx �1 g⁄ � 0 0

�� gh⁄ � �1 h⁄ � 0
��
 + h�� �ghG�⁄ 
 hG⁄ �1 G⁄ �yzz

z{
 

=
vww
wx	�0 g⁄ � 0 0

0 0 0
0 0 0yzz

z{
 

Now, it is possible to calculate the eigenvalues of the 

matrix 'tu�fe�('t|�fe�(*R  to determine the basic 

reproduction number ke which is the spectral radius or the 

largest eigenvalue. Thus, the eigenvalues are computed by 

evaluating the characteristic equation �)�}'tu�fe�('t|�fe�(*R − ~�� = 0 or equivalently solving 

��
�	�0 g⁄ �� − ~ 0 0

0 −~ 0
0 0 −~�

� = 0 

It reduces to the cubic equation for ~as ~S'�	�0 g⁄ �� −~( = 0 giving the three eigenvalues as ~R = �	�0 g⁄ ��, ~S = 0, ~T = 0 

However, the largest eigenvalue here is ~R = �	�0 g⁄ �� 
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and is the spectral radius or the threshold value or the basic 

reproductive number. Thus, it can be concluded that the 

reproduction number of the model is given by ke ='�	�0� ��g�⁄ (. 
3.4. Stability Analysis of the Disease Free Equilibrium 

In absence of the infectious disease, the model populations 

have a unique disease free steady state fe. To find the local 

stability of fe, the Jacobian method of the model equations 

evaluated at DEF fe is used. Also, to determine the global 

stability at	fe M-matrix method given in [10] is used. It is 

already shown that the DFE of model (1) – (4) is given 

bfe = 9� �⁄ , 0, 0, 0A. Now, following [5-8] the stability 

analysis of DFE is conducted and the results are presented in 

the form of theorems and proofs in the following. 

3.4.1. Local Stability of Disease Free Equilibrium Point 

Theorem 1: The DFE fe of the system (1) – (4) is locally 

asymptotically stable if ke < 1 and unstable if ke > 1. 

Proof: Consider the right hand side expressions of the 

equations (1) – (4) as functions so as to find the Jacobian 

matrix as follows: ��/�� = � − �	�� �⁄ � − �� ≡ QR��, �, �, �� ��/�� = �	�� �⁄ � − �� + � + � + � − ���	≡ QS��, �, �, �� ��/�� = �� − �
 + � + � − ∅��	 ≡ QT��, �, �, ��	�� ��⁄ = �� + 
� − �� + ��� ≡ Q&��, �, �, �� 
Now, the Jacobian matrix of �QR, QS, QT, Q&�  with 

respect to ��, �, �, �� is given by 

t = �−� − �	� �⁄ � −�	� �⁄ � 0 0�	� �⁄ � �	� �⁄ � − g 0 00 � −h 00 � 
 −G�     (15) 

Furthermore, the Jacobian matrix t of model at the disease 

free equilibrium fe reduces to 

t�fe� = �−� −�	�0 �⁄ � 0 00 X�	�0 �⁄ � − g[ 0 00 � −h 00 � 
 −G� 
Now, the eigenvalues of t�fe� are required to be found. 

The corresponding characteristic equation �)�'t�fe� − ~�( =0 is expanded and simplified as follows: 

�−� − ~ −�	�0 �⁄ � 0 00 X�	�0 �⁄ � − g[ − ~ 0 00 � −h − ~ 00 � 
 −G − ~� =	0 

−�� + ~� �X�	�0 �⁄ � − g[ − ~ 0 0� −h − ~ 0� 
 −G − ~� =	0 

�� + ~��G + ~��h + ~�'~ − �1 − ke�g( = 0 

�� + ~��G + ~��h + ~��'�1 − ke�g − ~( = 0 

Thus, the four eigenvalues of the matrix t�fe�  are 

determined as ~R = −� ~S = −G ~T = −h ~& = �ke − 1�g 

It can be observed that the first two eigenvalues ~R and ~S 

are absolutely negative quantities. However, the remaining 

two ~T  and ~&  are also negatives so long as the following 

restrictions on the parameters are valid: g, h, G  are positive 

and ke < 1. 

Therefore, using [1, 10] it can be concluded that the DFE fe of the system of differential equations (1) – (4) is locally 

asymptotically stable if 	ke < 1 and unstable if ke > 1. 

3.4.2. Global Stability of Disease Free Equilibrium Point 

Theorem 2: The disease free equilibrium point fe  of the 

model is globally asymptotically stable if ke < 1  and 

unstable if ke > 1. 

Proof Using the comparison theorem the rate of change of 

the variables representing the disease classes of the model 

can be rewritten as 

��e�e�e� = �o − �� ����� − �� �����              (16) 

Here in (16), o	and �	represent matrices at the disease free 

equilibrium point fe as 

o = tu�fe� = �	�0 �⁄ 0 00 0 00 0 0� 	� = t|�fe�
= � g 0 0−� h 0−� −
 G� 

Also �  is a non – negative matrix. However, � ='1 − ��e �e⁄ �( = 0  since �e = �� �⁄ �  and �e = �� �⁄ � . 

Therefore, the equation (16) reduces to the simplified form as 

��e�e�e� ≤ �o − �� ����� 
Now, �o − �� can be computed as 

o − � = �	�0 �⁄ 0 00 0 00 0 0� − � g 0 0−� h 0−� −
 −G� =�	�0 �⁄ − g 0 0� −h 0� 
 −G�                    (17) 

The eigenvalues of the matrix (17) are found by evaluating 

the characteristic equation det'�o − �� − ~�( = 0  as 

follows: 
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��	�0 �⁄ − g� − ~ 0 0� −h − ~ 0� 
 −G − ~� = 0 

�	 − g − ~��−h − ~��−G − ~� = 0 '�	�0 �⁄ � − g( − ~ = 0, �−h − ~� = 0, �−G − ~� = 0 ~R = �	�0 �⁄ � − g = �ke − 1�g, ~S = −h, ~T = −G 

Parametric expressions for the notations g, h  have been 

defined earlier. Here it can be observed that all the three 

eigenvalues ~R, ~S, ~T have negative real parts and hence the 

matrix is stable for ke < 1. 
Therefore by the comparison theorem, it follows that 9�, �, �A → 90, 0, 0A and the remaining equations of 

model (1) – (4) give the solutionfe = 9� �⁄ , 0, 0, 0A. 
Thus, the system approaches to the DFE as time progresses 

i.e. 9�, �, �,	�A → fe  as � → ∞ . Hence, the disease free 

equilibrium point fe  is globally asymptotically stable if ke < 1 and unstable if ke > 1. 

3.5. Stability Analysis of Endemic Equilibrium Point 

By definition it is true that at the endemic equilibrium 

point fR = 9�R, �R, �R, �RA  is the point where the 

disease persists or exists. To analyze the local stability offR, 

Jacobian of the model evaluated at that equilibrium point is 

used. Further, recall that the endemic equilibrium point fR = 9�R, �R, �R, �RA  of the given model (1) – (4) is 

already computed. The local stability of endemic equilibrium 

point is stated and proved in Theorem 3. 

Theorem 3: The endemic equilibrium point is locally 

asymptotically stable if ke > 1. 
Proof: The stability analysis of fR  is conducted by 

following the similar procedure adopted as in the case of fe. 

Thus, the procedure starts with the construction of Jacobian 

matrix at fR. Now, the Jacobian matrix of the model given in 

(15) at endemic equilibrium point fR takes the form as �R = �g� 	j0⁄ � = �� �ke⁄ � �R = ��� 	�0⁄ ��ke − 1� �R = ���� h	�0⁄ ��ke − 1� �R = ��� 	�0⁄ �'�� G⁄ � + �
� Gh⁄ �(�ke − 1� 
t =

vw
ww
x−� − �	�R �⁄ � −�	�R �⁄ � 0 0�	�R �⁄ � �	�R �⁄ � − g 0 00 � −h 00 � 
 −Gyz

zz
{
 

t�fR� =
vww
www
x −ke� −g 0 0
��ke − 1� 0 0 0

0 � −h 0
0 � 
 −Gyz

zzz
z{
 

Now the trace of t�fR� = −ke� − h − G  is a negative 

quantity while �)�t�fR� = �ke − 1��ghG��  is a positive 

quantity provided that g, h, G, �, �ke − 1�  are positive 

quantities. Hence, using [1, 10] it can be concluded that the 

endemic equilibrium point fR is locally asymptotically stable 

if ke > 1. 

4. Numerical Simulation 

In this section, numerical simulation study of model 

equations (1) – (4) is carried out using the software 

MATLAB. To conduct the study, a set of physically 

meaningful values are assigned to the model parameters. 

These values are either taken from literature or assumed on 

the basis of reality. These sets of parametric values are given 

under figures. 

The following have been observed in Figure 2: (i) initially 

the population size of susceptible compartment � decreases. 

These cells get infected and migrate to asymptomatic 

compartment. At a later stage these susceptible cells increase 

because the production of new cells continues and the 

conversion of susceptible cells into asymptotic cells reduce 

due to treatment. (ii) Initially the population size of 

asymptomatic compartment �	 increases because body 

immune system has not yet started fighting against the HIV 

virus and as a result the susceptible cells get infected and 

become asymptomatic and joins this compartment. (iii) As 

human immune system start fighting the asymptomatic cells 

began decreasing (iv) Initially the population size of 

asymptomatic compartment �	 is increasing because body 

immune system has not yet started fighting the HIV virus. 

 

Figure 2. Population dynamics of ���� compartments with the parametric 

values �	 = 	20, μ	 = 	0.005,		 = 	0.076, �	 = 	0.008, �	 = 	0.01, �	 =	0.01, � = 0.002,
 = 0.01, � = 0.01,� = 0.002. 

In figure 3, it can be observed that the extinction of the virus 

for many days but finally the virus persists in human cells 

without showing any signs of infections. This happens because 

of treatment properly taken by the patients. The patient lives as 

normal as asymptomatic stage for long period of time. 

The differences and similarities between the existing and 

modified model are given respectively in the tables 3 and 4. 
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Table 3. Differences of existing and modified model. 

Differences 

SN Existing model [11] Modified (Present) model 

1 Has Three compartments Has four compartments 

2 Has health cells, infected cells, and virus cells Has susceptible cells, asymptomatic cells, symptomatic cells, AIDS cells 

3 Assumed only natural mortality Assumed both death due to sickness and natural mortality 

4 Treatments not assumed Assumed ART Treatment 

5 There is no treatment representation as parameter or variable Treatment is taken as parameter 

Table 4. Similarities of existing and modified model. 

Similarities 

Both existing [11] and modified (Present) model have the following similarities 

Transmission rate 

Natural mortality 

Infected cell 

 

 

Figure 3. Population dynamics of ���� compartments with the parametric 

values 	�	 = 	0.46, μ	 = 	0.05, 		 = 	0.2, �	 = 	0.008,�	 = 	0.01, �	 =	0.01, � = 0.02,
 = 0.01, � = 0.01,� = 0.02 F. 

5. Sensitivity Analysis 

Sensitivity analysis is used to determine the sensitivity of 

the model with respect to the parameters involved in it. That 

is, how changes in the value of the parameters of the model 

result in changing the dynamics of the infection. It is used to 

discover parameters that have a high impact on ke  and 

should be targeted by intervention strategies. More precisely, 

sensitivity indices allow measuring the relative change in a 

variable when parameter changes [9]. If the result is negative, 

then the relationship between the parameters and ke is 

inversely proportional. In this case, the modulus of the 

sensitivity index will be taken so that the size of the effect of 

changing that parameter can be deduced. 

On the other hand, a positive sensitivity index means that 

both the function and the parameter are proportional to each 

other i.e. both of them grow or decay together. 

It is already shown that the explicit expression of ke  is 

given by ke = '�	�0� �g��⁄ (. Since,kedepends only on four 

parameters, an analytical expression will be derived for its 

sensitivity to each of the parameters using the normalized 

forward sensitivity index as given by Chitnis [16]. 

Υ-�� = 'Uke U	⁄ ( × '	 ke⁄ ( 
Υ+�� = 'Uke U�⁄ ( × '� ke⁄ ( 
Υ��� = 'Uke U�⁄ ( × '� ke⁄ ( 
Υ1�� = 'Uke U�⁄ ( × '� ke⁄ ( 
Υ��� = 'Uke U�⁄ ( × '� ke⁄ ( 
Υ2�� = 'Uke U�⁄ ( × '� ke⁄ ( 
Υ3�� = 'Uke U�⁄ ( × '� ke⁄ ( 

Table 5. Sensitivity of 	ke evaluated for the parametric values. 

Parameter Sensitivity index � +3.9409 � -1.6553 	 +1 � -0.1379 � -2 � -0.1724 � -0.1724 

From Table 5, it can be observed that the values of two 

parameters �, 	 are positive sensitivity indices and values of 

the remaining five parameters �, �, �, �, �  get negative 

sensitivity indices. 

As it is observed from the table the parameter with large 

magnitude is �. Hence, it can be conclude that � is the most 

sensitive parameter in the model equations. On the other 

hand an increase in these positive parameter values will 

cause an increasing ke  this implies that disease persist in 

human cells. Similarly, a decrease in negative parameter 

values will cause a decrease in ke which means the disease 

die out from human cells. 

6. Result and Discussion 

In this study, a mathematical model describing the 

dynamics of Human Immunodeficiency Virus (HIV) with 

treatment by ART is formulated and analyzed. The model is 
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developed based on biologically reasonable assumptions 

made about Human Immunodeficiency Virus (HIV) and its 

treatment. The mathematical analysis has shown that if the 

reproduction number ke < 1  then the disease free 

equilibrium point is locally and globally asymptotically 

stable implying that the disease wipes out and the treatment 

is successful which is supported by the simulation results 

given in Figure 2. Also, if ke > 1  then the disease free 

equilibrium point is unstable implying that the treatment is 

not successful. These theoretical results have been supported 

by the simulation study as it is shown in Figure 1. 

Furthermore, the endemic equilibrium point is stable if ke > 1  resulting that the infectious cells continue to 

replicate. This fact has also been supported by Figure 1. 

7. Conclusion 

In this study, a mathematical model of Human 

Immunodeficiency Virus HIV using ART as treatment has 

been formulated. Moreover, existence, positivity and 

boundedness of the formulated model are verified to illustrate 

that the model is biologically meaningful and mathematically 

well posed. In particular, the stability analyses of the model 

were investigated using the basic reproduction number and 

Routh Hurwitz criterion. Also, the solution of the model 

equations is numerically simulated and sensitivity analysis of 

the model is conducted. Furthermore, results of the research 

work presented in this paper reveal that the model formulated 

here effectively supports treatment for HIV disease. 
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