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Abstract: In this paper, we study a class of the long-time behavior of solutions to initial-boundary value problems for higher 

order equations with nonlinear source term and strong damping term. First of all, give some space and marks as well as the basic 

assumption of stress and nonlinear source term, take the inner product on both sides of the equation and obtain a priori estimate of 

the global smooth solution of the equation by using Holder inequality, Yong inequality, Poincare inequality and Gronwall 

inequality. Then prove the existence of the global solution of the equation by using the Galerkin finite element method. The 

uniqueness of the global solution of the equation is proved, and then the bounded absorption set of the solution semi-group is 

constructed by a priori estimate. It is proved that the solution semi-group is uniformly bounded and completely continuous in the 

interior, thus the global attractor family of the equation is obtained. Then the original equation is linearized, and the 

differentiability of the solution semi-group is proved, and the line is further proved. The decay of the volume element of the 

sexualization problem is studied, and the finite Hausdorff dimension and Fractal dimension of the global attractor family are 

obtained. 

Keywords: Kirchhoff Equation, The Existence and Uniqueness of Solutions, Global Attractor Family, Hausdorff Dimension, 

Fractal Dimension 

    

1. Introduction 

In this paper, we mainly study the higher order Kirchhoff 

equation with strong nonlinear damping term 
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where 1>m , Ω  is a bounded region on 
nR  with smooth 

Dirichlet boundary Ω∂  and ( )uug
2

 is a non-linear source 

term. 

Since Kirchhoff[1] proposed the Kirchhoff rope model for 

studying the free vibration of elastic strings in 1883, many 

scholars have devoted themselves to the study of Kirchhoff 

equation. In 1997, Kosuke Ono [2] studied the 

initial-boundary value problem of the nonlinear Kirchhoff 

wave equation with strong dissipation term 
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by using the modified potential well method and concave 

method, it is proved that when the initial energy 
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the equation is non-negative and small enough, a unique 

(weak) solution exists globally in time and has a certain 

attenuation characteristic; when the initial energy ( )10 ,uuE  is 
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negative, the solution will explode in a certain time. 

In 2007, Xiaoming Fan and Yaguang Wang [3] studied the 

low-order stochastic wave equation with nonlinear damping 

and white noise existence and fractal dimension of compact 

random attractors. 
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In 2010, Zhijian Yang and Yunqing Wang [4] studied the 

long-term behavior of solutions of low-order Kirchhoff 

equation with strong damping term 
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, when 1=N , the 

equation does not contain dissipation term ut∆-  to describe 

the small vibration of elastic strings. On this basis, in 2011, 

Zhijian Yang and Jianling Cheng [5] once again studied the 

long-term behavior of solutions of low-order Kirchhoff 

equation with strong damping: 
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. For more information on 

Kirchhoff equation, please refer to references [6-20]. 

On the basis of the lower-order Kirchhoff-type equation 

studied by previous scholars, this paper studies the global 

attractor family and its finite dimension estimation for the 

higher-order Kirchhoff-type equation with strong non-linear 

damping terms. The structure of this paper is as follows: The 

first part is mainly about some basic assumptions; the second 

part is to prove the existence and uniqueness of the global 

solution by using prior estimation and Galerkin method, and 

prove that the global solution is unique. In the third part, we 

first prove the differentiability of solution semi-groups, and 

then estimate the finite Hausdorff dimension and Fractal 

dimension of global attractor family. 

2. Basic Assumptions 

For narrative convenience, define the following spaces and 

marks: 
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Let kA  be a weak global attractor family from 0E  to kE , 

and kB0  be a bounded absorption set from 0E  to kE , 

where mk ,2,1 ⋅⋅⋅= . 

Kirchhoff stress term ( )sM  satisfies the following 

condition: 
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Nonlinear term ( )uug
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 satisfies the following condition: 

( )B  Let ( )uug
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 be locally bounded and measurable, 

( ) ( )Ω∈Cug 22
. 

3. Existence of Global Attractor Family 

In this part, we first estimate the solution of problem (1) - (3) 

a priori, then prove the existence and uniqueness of global 

solution by Galerkin method. Finally, problem (1) - (3) 

generates solution semi-groups and obtains global attractor 

family by the properties of solution semi-groups. 

Lemma 1 Assuming that the Kirchhoff stress term ( )sM  
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Proof By taking the inner product of 
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according to Holder inequality, Young inequality and Poincare inequality, there are 
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by assuming ( )B  and Poincare inequality, we have 
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substitute formula (5) - (9) into formula (4), we have 
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Lemma 1 is proved. 

Theorem 1 (Existence and uniqueness of solutions) Under Lemma 1, then the initial boundary value problem (1) - (3) has a 

unique smooth solution ( ) [ )( )kELvu ;,0, +∞∈ ∞ . 

Proof Let ,u v  be the two solutions of equation (1), let w u v= −  be introduced into equation (1) and the inner product with 
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by hypothesis ( )B , Holder inequality, Poincare inequality and differential mean value theorem, we have 
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substitute formula (15) - (18) into formula (14), we conclude that 
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so 0=w , the uniqueness is proved. 

Theorem 2[9] Let E  be a Banach space, and the 

semi-group ( )：S t E E→  satisfy the following conditions: 

(1) The semi-group ( )tS  is uniformly bounded in E , i. e. 

0>∀R , and there exists a constant ( )RC , so that when

Ru
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      (21) 

(2) There exists a bounded absorption set 0B  in E ; 

(3) ( )tS  ( )0≥t  is a fully continuous operator. Then 

semi-group ( )tS  has compact global attractor 0A . 

By replacing Banach space E  in Theorem 2 with Hilbert 

space kE , the following theorem of global attractor family is 

obtained: 

Theorem 3 Supposes that the global smooth solution of the 
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problem (1) - (3) satisfies the condition of lemma 1, then the 

problem (1) - (3) has a global attractor family kA
, that is there 

exists a compact set kA  such that 
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( )tS  is the solution semi-group generated by problem (1) - (3). 

Proof It is necessary to verify the hypotheses of Theorem 2 (1), (2), (3). Under the hypothesis of Theorem 2, there exists a 
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equation has a global attractor family 
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4. Dimension Estimation 

In this part, we first linearize the equation (1), then prove 

the Frechet differentiability of the solution semi-group, and 

finally prove the Haudorff dimension and Fractal dimension 

of the finite dimension of the global attractor family. 
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Lemma 2 is proved. 
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( )t g fεΨ + Λ Ψ + Ψ =                                         (41) 
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where Λ  denotes the outer product, tr  denotes the trace of the operator, and )(τnQ  denotes the orthogonal projection of 
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According to the definition of inner product over kE , Holder inequality and hypothesis ( )B , we can get 
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According (46),(47) and (48), we have 
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then from formulas (53) and (54), we can see that 
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Therefore, the Lyapunov exponent of kA  is uniformly 

bounded 
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where jλ are the eigenvalues of m

kA , and 
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so 
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Then we can get conclusion ( ) ( ) nAdnAd FH
6

7
,
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1 << . 

The proof is complete. 

5. Conclusions 

On the basis of previous studies on global attractors, this 

paper studies the global attractor family on space 

),,2,1( mkEk ⋅⋅⋅= , and further studies the dimension 

estimation of global attractor family. However, the proof of 

the global attractor family in this paper is not sufficient, so the 

proof of the global attractor family needs to be further 

improved. It is suggested to further study and expand the 

global attractor family on this basis. 
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