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Abstract: In this study the infected population is classified into two categories viz., chronic and acute and thus developed a 

five compartmental SEICIAR model. Also, both vaccination and treatments are included and studied their impact on the spread 

of hepatitis B virus. The present model is biologically meaningful and mathematically well posed since the solutions are 

proved to be positive as well as bounded. The basic reproduction number RO of the model is derived using the next generation 

matrix method. Further, the equilibrium points of the model are identified and mathematical analysis pertaining to their 

stability is conducted using Routh – Hurtiz criteria. It is shown that the disease free equilibrium point is locally and globally 

stable If RO＜1. On the other hand, the endemic equilibrium point is proved to be stable if RO＞1. Also, the numerical 

simulation study of the model is carried out using ode45 of MATLAB: Rung – Kutta order four. It is observed that, if the 

vaccination and treatment rates are increased then the infective population size decreases and evenfall to zero over time. 

Hence, it is concluded that the use of vaccination and treatment at the highest possible rates is essential so as to control the 

spread hepatitis B virus. 

Keywords: Hepatitis B Virus, Vaccination, Treatment, Mathematical Model, Basic Reproduction Number,  

Stability Analysis, Numerical Simulation 

 

1. Introduction 

Hepatitis is an infectious disease that causes inflammation 

of the liver in human body. This disease is divided into five 

categories of which one is hepatitis B and it is caused by the 

hepatitis B virus. The hepatitis B infections occur only if the 

virus is able to enter the blood stream and reach the liver. In 

the liver the virus reproduces large numbers of virus and 

releases into blood streams [1]. The hepatitis B infection is 

categorized into two types:(i) Acute hepatitis B which has no 

treatment so far and (ii) Chronic hepatitis B which has 

treatment. 

The acute hepatitis B infection can range in severity from a 

mild illness with few or no symptoms to a serious condition 

requiring hospitalization. For those who are affected by this 

disease, the doctors usually recommend rest, adequate 

nutrition, fluids, and close medical monitoring. However, 

there is no medical treatment for this disease but only 

supportive care [7].  

In contraction, there are several approved medications to 

treat a person who is infected by chronic hepatitis B virus [1]. 

The chronic HBV infection has some complications 

including cirrhosis or primary liver cancer. 

The spread of HBV is one of the major health problems 

in the world. It is a major cause of mortality and morbidity 

globally. According to WHO (2015) over one – third of the 

world’s population i.e., more than 2 billion people, have 

been or are actively infected with HBV and of which 257 

million persons are living with chronic HBV infection in 

the world [2]. However, one million people die each year 

due to this disease. More than 90% of infected adults will 

recover naturally within the first year of infection even 

though some of them will not even show any symptoms of 

the disease [3].  

The prevalence of HBV infection varies from country to 

country, depending upon a complex behavioral, 

environmental and host factors [4]. Africa has the second 
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largest number of chronic HBV carriers, after Asia, and is 

considered as highly endemic. The Africa and western 

pacific regions accounted for 68% of the infected [2]. 

In Ethiopia, hepatitis B affects 240 million people. Each 

year an estimated 650000 people die from liver disease or 

liver cancer caused by HBV [5]. 

Hepatitis B virus is transmitted in many ways. The virus is 

found in the blood or certain body fluids and is spread when 

blood or body fluid from an infected person enters the body 

of a person who is not infected. This can occur in a variety of 

ways including: sex with an infected person;blood to blood 

product; and shared syringes, razors and brushes; mothers 

can pass the infection to their children during pregnancy or 

breast feeding; contact with wounds or skin sores; when an 

infected person bites another person; pre-chewing food for 

babies [6, 7]. 

Many people with hepatitis B do not have symptoms and 

do not know that they are infected [1]. If symptoms occur, 

they can include: fever, feeling tired, not wanting to eat, 

upset stomach, throwing up, dark urine, grey – colored stool, 

joints pain, yellow skin and eyes. 

Moneim and Khalil (2015) study modeling and simulation 

of the spread of HBV disease with infectious latent. The 

authors also studied the global behavior of the spread of the 

disease using a SEIR model with a constant vaccination rate. 

It is assumed that the infectivity during the incubation period 

is considered as a second way of transmission. The basic 

reproduction number ��	is derived as a function of the two 

contact rates ��and	��. The disease free equilibrium point of 

the model is found and shown that it is asymptotically stable 

if		�� < 1. On the other hand, the endemic equilibrium point 

is stable if 	�� > 1 andthat the disease is persisted in the 

population. Simulation study of the model has been 

conducted with varying vaccination parametric values [8]. 

However, there are some gaps in that study: the authors 

considered both the acute and chronic infected populations as 

belong to one compartment; also the study did not consider 

the treatment.  

In the present research, the authors considered that the 

acute and the chronic infected populations belong to two 

separate compartments. Thus, the gaps left in the study [8] 

are filled by replacing 	
���	modelwith a 	
��
���  model. 

That is, in the new and present model the whole human 

population is divided in to five compartments: susceptible	
; 

exposed 	� ; chronic infective 	�
 ; acute infective �� ; and 

recovered 	� . Also the present study considers both 

vaccination and treatment so as to prevent the spread of 

HBV. 

2. Mathematical Formulation of the 

Model 

The present mathematical model is aimed to help in 

understanding the dynamics and spread of hepatitis B virus 

diseases. In this section, a five compartmental 
��
���	model is formulated based on the deterministic 

approach. Also the model assumptions and flow diagram are 

included. Further, the validity of the model is verified by 

proving that all the model variables are both positive and 

bounded. The disease free equilibrium point, endemic 

equilibrium point and the basic reproduction number of the 

model are found. 

2.1. Model Assumptions 

The modified 	
��
���	 modelof the present study is 

constructed based on the following assumptions: 

The population is divided into five classes: the 

susceptible 	
 ; the exposed 	� ; the chronic infective 	�
 ; the 

acute infective	��; and the recovered	�. 

Age, sex, social status and race do not affect the 

probability of getting infected. 

A susceptible individual can be infected only by contacting 

with infectious individuals. 

There is vaccination for newly born babies against 

hepatitis B. 

The chronic carriers are treated.  

Acute infections are not subjected to treatment. But, some 

of them are cured due to natural immunity. 

The exposed individuals are not infectious. That is, they 

are not capable of transmitting virus. 

The susceptible population has not yet infected by the 

disease but likely to get infected infuture. Susceptible 

population increases due to recruit men to find ividuals with 

a rate 	�	�1 − ��  but, reduces due to natural death with a 

rate	μ.  

The exposed population comprises of those individuals 

who are infected but not yet infectious i.e., they are not 

capable of transmitting virus. This shows that the 

transmission rate of the HBV disease is assumed to be the 

contact rate between the susceptible and the infective [9]. 

The exposed class grows with the incidence rate ������ + ����� �⁄ �but decreases due to the natural death rate 

of	μ, due to transfer to �
with a rate 	��, and due to transfer to ��with a rate 	��. 

The chronic infective class comprises those individuals 

who are infected and also capable of transmitting the disease. 

But, this category population has medical treatment. Chronic 

infective class grows with a rate	�� as people flow in fromthe 

exposed class but decrease due to natural death rate	μ, death 

rate due to disease�and by treatment rate��.  

Acute infective class comprises of those who are infected 

and also capable of transmitting the disease. Acute infections 

are not subjected to antiviral treatment but some of them 

have the possibility of being cured due to natural immunity 

[10]. Size of this class increases by a rate �� as people flow in 

from exposed class. But, the class size decrease due to 

natural death rate	μ, death due to virus at the rate �	and at 

recovered rate	��. 

Finally, removed class increases due to a successful cure of 

chronic infected patients at the treatment rate	��; vaccinated 

population with a rate	��; and cure of acute infected patients 

due natural immunity at rate	��. Further, the population size 

decreases due to natural death rate µ. 

The notations and description of both the parameters and 

variables used in the model equations are given in Table 1. 
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Table 1. Descriptions of parameters and variables used in 
��
���	model 

equations. 

Parameter /Variable Description 
��� Size of susceptible population ���� Size of exposed population �
��� Size of chronic infective population ����� Size of acute infective population 	���� Size of recovered population ���� Size of the total population 	�� Transmission rate from	
	to	�
  	�� Transmission rate from 
	to	�� � Recruitment rate  � Death rate in 	�
due to disease �� Treatment rate of 	�
  �� Recovered rate of 	�� �� Rate of transfer from	�	to 	�
  �� Rate of transfer from	�	to 	�� � Natural death rate � Death rate in 	��due to disease 	�	 Vaccination rate 

The compartmental flow chart showing the compartments 

and flow directions of people is given in Figure 1. In that 

figure, the variables, parameters and recruitment, treatment, 

vaccination, transfer and death rates are also indicated. 

 

Figure 1. Flow diagram for 
��
���	model. 

Including the model assumptions and flow of the people 

shown in the model diagram, the system of ODE equations 

representing the 
��
���	 model can be constructed as 

follows:  
  �⁄ ! ��1 � �� �	�����
 � �����
 �⁄ �	– 	�
          (1) 

 �  �⁄ ! ����
 � ����� �⁄ � μ� � ��� � ���	           (2) 

 �
  �⁄ ! ��� � ��
 � ��
 � ���
                     (3) 

 ��  �⁄ ! ��� � ��� � ���#$%����                    (4) 

 �  �⁄ ! ���� � ���
 � 	�� � μ�	                    (5) 

Here, in (1) to (5) the total population size is denoted 

by	�	and hence 
 � � �	�
 �	�� 	� �	 ! 	�. 

2.2. Positivity of the Solution 

In order to show that the modified 
��
��� model 

equations (1) to (5) are to be epidemiologically meaningful 

and well posed, it is needed to prove that all the state 

variables are non negative. This fact has been stated as a 

theorem and the solution is given as a proof as follows: 

Theorem 1 If the initial population sizes of the model are 

positive then the population sizes at any time are non 

negative. In other words, if 	
�0� 	 	0, ��0� ( 	0, 	�
�0� (
	0, ���0� ( 	0, ��0� 		 	0	 thenthe solutions 


���, ����, �
���, �����, ����	 of equations (1) to (5)  

are non negative for all t > 0. 

Proof:  

The positivity of the model variables are proved one by 

one starting with the susceptible population.  

The first equation (1) of the system	 
  �⁄ ! ��1 � �� �
	�����
 � �����
 �⁄ � 	� 	�
	 can be expressed as an 

inequality, without loss of generality, as  
 
⁄ (
�	)�����
 � ����� �⁄ � 	� 	�*	 �. Now, up on integrating on 

both sides of the inequality, the solution is obtained 

as	
��� ( 	
�0�e#, )��-%./0-1.2� 3⁄ �	0	4*56. Since 
�0� 	 0	and 

the exponential function is always non–negative, it is clear 

from the foregoing inequality that 
��� is a positive quantity. 

Hence, the solution or the population size of the susceptible 

compartment 
���is always positive. 

Secondly let us consider the differential equation (2) 

as 	 �  �⁄ ! �����
 � �����
 �⁄ � � μ� � ��� � ���	 can be 

expressed as an inequality, without loss of generality, 

as 	 � �⁄ 	( ��� � �� � ��� �.	Now, up on integrating on 

both sides of the inequality, the solution is obtained as���� (
8#�409%091�6 .	Since ��0� ( 0 and the exponential function is 

always non–negative, it is clear from the foregoing inequality 

that ���� is a positive quantity. Hence, the solution or the 

population size of the exposed compartment ����is always 

positive. 

Thirdly, let as consider the differential equation (3) which 

as  �
  �⁄ ! ��� � ��
 � ��
 � ���
can be expressed as an 

inequality, without loss of generality, as  �
  �⁄ (
��� � � � ��� �.	Now, up on integrating on both sides of 

the inequality, the solution is obtained as 	�
��� (
	�
�0�8

#�:040$%�6	.	 Since �
�0� ( 0  and the exponential 

function is always non–negative, it is clear from the 

foregoing inequality that �
��� is a positive quantity. Hence, 

the solution or the population size of the chronic infective 

compartment �
���is always positive. 

Fourthly, let us consider the differential equation (4) of the 

system which as	  ��  �⁄ ! ��� � ��� � ���#���� can be 

expressed as an inequality, without loss of generality, 

as
5.2
.2

( ��� � � � ��� �. Now, up on integrating on both 

sides of the inequality, the solution is obtained as����� (
���0�e

#�;0<0$1�= . Since, ���0� ( 0  and the exponential 

function is always non–negative, it is clear from the 

foregoing inequality that ����� is a positive quantity. Hence, 

the solution or the population size of the acute infective 

compartment �����is always positive. 

Finally, consider equation (5) which as 	 �  �⁄ ! ���� �
���
 � 	�� � μ�	can be expressed as aninequality, without 

loss of generality, as	 �  �⁄ ( ��	 �. Since, �	�0� 	 0 and 

the exponential function is always non–negative, it is clear 

from the foregoing inequality that ���� is a positive quantity. 

Hence, the solution or the population size of the recover 

compartment ����is always positive. 

Therefore, the solutions )
���, ����, 	�
���, �����, ����* of 
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the system of equations (1) to (5) are non negative for all t > 

0. 

2.3. Boundedness of the Solution Region 

In order to show that the solution of the present model 

equations (1) to (5) is bounded it is needed to prove that the 

total population size ����  is bounded. This fact has been 

stated in Theorem 2 and the proof is give as follows: 

Theorem 2 All the solutions 
���, ����, �
���, 	�����, ���� 
of the system of equations (1) to (5) are bounded. 

Proof: Here, instead of showing that the population size of 

each compartment is bounded separately, it is preferred as it 

is simple and straight forward, to show that the total 

population size is bounded. Now, the total population size, 

given by 	S + E +	 IA +	IB 	+ R	 ! 	N,  upon differentiating 

with respect to time � takes the form as � �  �⁄ � !� 
  �⁄ � + � �  �⁄ � + � �
  �⁄ � + � ��  �⁄ � + � �  �⁄ �. 
On using the equations (1) to (5) and after performing 

some algebraic operations the foregoing equation reduces to 

an inequality and takes the form as � �  �⁄ � 	+ �� ≤ � . 

Integrating both sides of the differential inequality and on 

applying the initial conditions the solution is obtained 

as 	���� 	≤ 	 �� �⁄ �	+ 	���0� − �� �⁄ ��8#4	6 . Thus, as �	 →∞	the solution leads to���� 	≤ 	 �� �⁄ �. This implies that the 

upper boundary for the total population size ���� is�� �⁄ �. 
Therefore, any solution of the system of equations (1) to 

(5) is bounded since 	0 ≤ ���� ≤ �� �⁄ �. Therefore, all the 

feasible solutions of system (1) to (5) form the solution 

regions 	H	 ! {I
���, ����, �
���, �����, ����J ∈	�{0*{L* : I
���, ����, �
 , ��, ����J ≥ 	0; 	���� ≤ �� �⁄ �* . Here it 

can be observed that Ω is a positively invariant set under the 

flow induced by the model system (1) to (5). Hence the 

system is biologically meaningful and mathematically well – 

posed. 

2.4. Disease Free Equilibrium Point of the Model 

Disease free equilibrium points are steady state solutions 

of a mathematical model indicating that there is no disease. 

Hence, in absence of the disease both the exposed and 

infected populations do vanish i.e.,	�∗ ! �
∗ ! ��∗ ! 0. Up on 

substituting these in the model equations (1) to (5) and after 

some algebraic computations the disease free equilibrium 

point �� of the present model is obtained as 	�� !�
∗, �∗, �
∗ , ��∗, �∗� ! 	 {���1 − �� �⁄ �, 0, 0, 0, �� �⁄ �*. 
2.5. Basic Reproduction Number 

The basic reproduction number �� is defined as the 

effective number of secondary infections caused by typical 

infected individual during his entire period of infectiousness 

[11]. The basic reproductive number for the general model 

(1) to (5) can be determined using the next generation matrix 

method [12].  

Thus, mathematically it is defined as 	�� 	! 	Q�RS#�� . 

Here, Q�RS#��  represents the spectral radius of thematrix RS#�and it is given by 

RS#� ! TU	RV�W��U	WX Y TU	SV�W��U	WX Y#� 

Here,	RV	is the rate of appearance of new infections in the 

compartment	Z	and	SV	is the transfer of individuals in and out 

of compartment	Z. That is, SV ! SV# − SV0. HereSV0is the rate 

transfer of individuals into compartment	Z	and SV#is the rate 

of transfer of individuals out of compartment	Z.The rates of 

change of populations in these compartments are given by 

the equations (2), (3) and (4). 

[V = \�����
 + �����
 �⁄ �00 ] and ^V= _ �μ	 +	�� 	+ 	����−���	 + 	��	 + 	μ	 +	����
−���	 + 	��	 + 	μ	 +	�����` 
Differentiating with respect to the variables �, �
 , 	�� and solving them at the disease free equilibrium point�� gives  

R ! \0 ��
∗ �∗⁄ ��
∗ �∗⁄0 0 00 	0 0 ]	and S ! _�μ	 +	�� 	+ 	��� 0 0−�� ��	 + 	μ	 + 	��� 0−�� 0 ��	 + 	μ	 +	���` 
Following the foregoing procedure, the reproduction number for the model (1) to (5) can be obtained as  �� ! �1 − ����� + � + ������� + �� + � + �������� �� + �� + ����� + � + ���	�� + � + ���⁄  

Recall that as per the definition, the condition 	�� < 	1 

indicates that an infected individual produces less than one 

new infected individual over the course of its infectious 

period, and the infection can not spread. On the other hand, �� > 	1 indicates that each infected individual produces on 

average more than one new infections and the disease can 

invade the population. 

 

2.6. Endemic Equilibrium Point 

Endemic equilibriums are steady state solutions when the 

disease persists in the population. Assume that the HBV will 

persist in the population. Thus, the endemic equilibrium of 

the modified model denoted by�� 	! 	 �
,a �,a �
a , ��a , �b� 
is obtained by setting the left hand sides of the equations (1) 

to (5) to zero as follows: 
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c ! d�a�1 − �� ��⁄ e;	�b ! d�1 − ����� − �	�a� ���� + �� + ���⁄ e; 	�
a! d����� − �	�a��� + � + ��� ������ + � + ��� + ������ + � + ���⁄ e; 	��a! d���1 − ����� − �	�a� ���� + � + ����� + �� + ���⁄ e;	�b ! ����� + ���
 + �	� �⁄ �. 
 
3. Stability Analysis of the fghihjk	Model 

In this section, the existence and stability of equilibrium 

points are briefly described using Routh – Hurwitz criterion. 

Also it is shown that the disease free equilibrium points is 

locally and globally stable and endemic equilibrium point is 

locally stable. 

3.1. Local Stability Analysis of Disease Free Equilibrium 

Theorem 3The disease free equilibrium point ��	 of 

equations (1) to (5) is locally a stable if �� < 1	and unstable 

if	�� > 	1. 

Proof: Here, the stability of the disease free equilibrium of 

the system of differential equations (1) to (5) is analyzed. The 

Jacobian matrix is computed at the disease free equilibrium 

and it takes the form as 

|m���� − n�| ! oo
−�p + n�00

0−�q� + n���
−��
∗��
∗−�q� + n�

−��
∗��
∗0
0000 �� 0 	−�qr + n� 	00 0 �� �� 	−�p + n� oo ! 0 

Here in 	m���� − n� , for simplicity some expressions are 

denoted by notations as 	q� 	! 	 �μ	 +	�� 	+ 	���, q� 	! 	 ��	 +	μ	 +	���  and qr !	 ��	 + 	μ	 +	��� andalso 	
∗ ! �
∗ �∗⁄ � . 

The eigenvalues of the matrix m���� are the solutions of the 

characteristic equation |m���� − n�| 	! 0 . Then we obtain n� ! n� ! −�here the parameter�, is positive, we conclude 

that the eigenvalues n�and n�are real distinct and negative 

and the characteristics polynomial is��n� ! nr + �q� + q� +qr�n� + �q�q� + q�qr + q�qr − ����
∗ − ����
∗�n +q�q�qr − ����
∗qr − ����
∗q�. 
By Routh – Hurwitz criteria the polynomial of order to n = 

3takes the form as	��n� ! nr + s�n� + s�n + srwhere the 

coefficients of the characteristics polynomial represent the 

expressions as s� ! �q� + q� + qr�, s� ! �q�q� + q�qr +q�qr − ����
∗ − ����
∗�, 	sr ! q�q�qr − ����
∗qr −����
∗q�. 

Conditions required for Routh – Hurwitz criteria for t	 ! 	3  are (i) s� > 0;  (ii) sr > 0 and (iii) s�s� > sr . 

Since,q� 	! 	 �μ	 + 	�� 	+ 	���, 	q� 	! 	 ��	 + 	μ	 + 	���andqr 	!	��	 + 	μ	 +	���. 
Now, the conditions for Routh – Hurwitz criteria are 

verified as follows: (i) s� 	! 	 �q� 	+ 	q� 	+ 	qr� 	> 	0 . 

Also s� 	! 	 ��μ	 +	�� 	+ 	��� 	+	��	 + 	μ	 +	��� 	+	��	 +	μ	 +	���� 	> 	0 . This implies that 	s� > 	0 . (ii) 	sr 	!	q�q�qr	–	����
∗qr	– 	����
∗q� > 	0 but since, 
∗ !�
∗ �∗⁄ � ! �1	 − 	��implying that�μ	 +	�� 	+ 	�����	 + 	μ	 +	�����	 + 	μ	 +	��� 	> 	 �1	 − 	������� 	+ 	�����  and results 

that sr > 0 and (iii)s�s� > sr. Here, depending on the first 

two conditions it is straight forward thats�s� > sr and thus 

all parameters are positive.  

Therefore, by Routh-Hurwitz criteria the system of 

ordinary differential equation (1)to (5) is locally stable at 

disease free equilibrium point if �� < 1. 

3.2. Global Stability of the Disease Free Equilibrium Point 

Theorem 4 The disease free equilibrium point ��of the 

system of ordinarydifferential equations is globally stable 

if	�� < 1. 

Proof: The rate of change of the variables representing the 

infected components of the model system of differential 

equation (1) to (5) can be re-written as  v  �⁄ 	!R�v, ��; 	 �  �⁄ ! w�v, ��; 	w�v, 0� ! 0.	 Here, v ! �
, �� 
and � ! ��, �
 , ���. If �� < 1 then, the following conditions x�  and x�  must be satisfied to guarantee globally stable: 

Herex�represents v  �⁄ ! R�v, 0�	�� is globally stable; and 

similarly x�	 stands for 	w�v, �� ! y� − w∗�v, ��, w∗�v, �� >0	[z{	�v, �� ∈ Ω.  Where y ! R − S.  Now, the 

matrixw∗�v, �� ! y� − w�v, ��takes the form as  

w∗�v, �� ! \����
 + ������1 − � − �
 �⁄ ��00 ] 
Here, it can be observed that�� + �
 �⁄ �� ≤ 1. Thus, it is 

clear that w∗�v, �� ≥ 	0 and as a consequencex� is satisfied. 

Hence, by comparison theorem [13], the disease-free 

equilibrium ��is globally stable for the model system (1) to 

(5) if �� < 1. 

3.3. Local Stability of Endemic Equilibrium Point 

Theorem 5 The positive endemic equilibrium point ��of 

the system ofequations (1) to (5) is locally asymptotically 

stable, if	�� > 1. 

The Jacobian matrix at ���� is 

m��� − n�� !
|}
}}
~−�� + n�p0

0−�W + n���
−��
∗ 	−��
∗ 	0	��
∗ 	��
∗ 	0−�� + n� 	0 	00 �� 0 	−�� + n� 	00 0 	�� �� 	−�� + n���

��
�
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Here,  � ! ����
∗ � ����
∗ �∗⁄ � � �; 	W ! �� � �� � ���; 	� ! �� � � � ���; 	� ! �� � � � ���; 	p	 ! ����
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Now, the characteristic polynomial is 
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Here in ��n�the polynomial coefficients represent the following expressions: 
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By Routh-Hurwitz criteria the determinant of Hurwitz 

matrix becomes positive if the following conditions hold true: 

s� 	 0;	s� 	 0;	sr 	 0;	s� 	 0;	sL 	 0;	srs� 		s�sL;	 	
	sLs�s� 	 sr;	 and	sL 	 s�s�. But, all the parameters of the 

modified model are positive. 

Thus, all the roots of the characteristic polynomial are 

negative and this verifies that the system (1) to (5) is locally 

asymptotically stable if �� 	 	1. 

4. Numerical Simulation and Discussion 

The numerical simulation study of the model is conducted 

here. For that purpose the sensitive parameters are to be 

assigned certain valid values. The values of some parameters 

are taken from the literature and those of the remaining are 

assumed. However, the list and details are given in Table 2. 

Also, the initial population sizes considered as 	
�0� !
	5000, ��0� ! 	4000, �
�0� ! 	3000, ���0� ! 2000, ��0� 	!
1000. 

Table 2. Values for parameters used for 
	�	�
��� simulation. 

Parameter Value Source 

�� 0.017 [12] 

�� 0.017 [12] 

� 2000 Assumption 

� 0.025 Assumption 

�� 0.025 [20] 

�� 0.024 Assumption 

�� 0.3 Assumption 

�� 0.2 [20] 

� 0.03 [16] 

� 0.015 Assumption 

p 0.4 Assumption 

4.1. Population Sizes of the Compartments with Different 

Reproductive Numbers 

From Figure 2 we see that all compartments accept 

susceptible and recovery converges to zero. In this case the 

value of �� 	! 0.128  which is �� � 1 . This shows all 

comportment converges to disease free equilibrium point. 

Therefore, this provides absence of disease in the population 

and the disease dies out. 

 
Figure 2. Numerical simulation of 
	�	�
���model for �� ! 0.128. 

 
Figure 3. Numerical simulation of 
��
���	model for �� ! 3.5887. 

From Figure 3 we observe that the value of �� 	! 	3.558 

which is	�� 	 	1. For ��greater than one an infective person 

will produce averagely more than one infectious which 

makes the disease to stay endemic and the disease persist in 

the population. 
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4.2. The Role of Vaccination on the Dynamics of the 

Disease 

In Figure 4 it is observed that if the vaccination is 

increased then the chronic infective population is decreased 

accordingly. 

 
Figure 4. The role of vaccination on chronic infective population. 

 
Figure 5. The role of vaccination on acute infective population. 

In Figure 5 it is observed that if the vaccination is 

increased then the acute infective population is decreased. 

The simulation studies in Figures 4, 5 indicate that the 

increase in the vaccination rate results in the decrease of the 

infectious population sizes. Symbolically, the quantities �
  

and ��  will decrease as �	 increase. This simulation study 

indicates that the vaccination can play a great role to prevent 

the spread of hepatitis B virus disease. 

4.3. The Role of Treatment Rate on Chronic Infective 

Population 

 
Figure 6. The role of treatment rate on chronic infective population. 

From Figure 6 it is observed that as the treatment rate is 

increased the chronic infective population size is decreased. 

This shows that the treatment of chronic infective population 

has a great role in eliminating the hepatitis B disease. Thus, 

the public must be educated so that chronic infective people 

will take the medical treatment on time and thus leading to 

elimination of the disease. 

4.4. The Effect of Transmission Rate on Infective 

Population 

 
Figure 7. The effect of transmission rate on chronic infective. 

From figure 7 we observe that as transmission rate	���� 
increase then chronic infective population becomes increase. 

This shows one chronic infective person will produce 

averagely more than one infectious.  

 
Figure 8. The effect of transmission rate on chronic infective. 

From Figure 8 we observe that as transmission rate	���� 
increase acute infective also increase. This shows one acute 

infective person will produce averagely more than one 

infectious. 

Because if the transmission rate increase, then after some 

times the basic reproduction number is increase or	��become 

greater than 1 that is the disease persist in the population and 

infective populationbecomes increase.  

4.5. The Effect of Sensitive Parameters on Basic 

Reproductive Number 

From Figure 9 it can be observed that some of the 

parameters are directly proportional to the basic reproduction 

number since they contribute for its growth while the 

remaining are inversely proportional since they contribute for 

the decay. The parameters 	��, ��, 	��, 	��, have direct 

proportionality with 	�� . In contrast, the 

parameters 	�, �, �, μ, ��, �� have inverse proportionality 

with	��. 
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Figure 9. Effect of the sensitive parameters on the basic reproduction 

number. 

5. Conclusions 

In this study, the existing four – 

compartmental 	
���	model is modified and extended to a 

five compartmental 
��
���	 model to describe the 

population dynamics with respect to HBV disease. The 

spread of HBV by considered with the inclusion of both 

vaccination and treatment rates. The present model is 

mathematically well-posed and biologically meaningful since 

the model variables are proved to be both positive and 

bounded.  

Through the stability analysis it is shown that the disease 

free equilibrium point ��  is locally and globally stable 

if 	�� < 	1 . This means that the transmission of disease is 

under control and because of this reason all individualswill 

survive. On the other hand, the disease frees equilibrium 

point �� is unstable if �� 	 	1 which means that the disease 

invade or persist the population. However, the endemic 

equilibrium point �� is locally stable if	�� 	 1. 

The numerical simulation study shows that if the 

transmission rate increases then both chronic and acute 

infective populations will also increase. Additionally, if the 

vaccination rates increases then the infective population will 

decrease. Furthermore, if the treatment rate�� is increased 

then the chronic infective will decrease. Therefore, in order 

to prevent the spread of hepatitis B virus it is advised to (i) 

increase the vaccination to newly born babies and (ii) 

increase medical treatment to chronic infective population. 

Thus, the mathematical analysis and simulation results of 

this study indicate thatin preventing the spread of hepatitis B 

virus both the vaccination and treatment play a great positive 

role. 
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