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Abstract: In the recent past, linearly independent isotropic tensors of rank up to 6, under the compact rotation groups SO(2),
SO(3) and SO(4) have been studied in some detail. The present paper extends these studies to the case of linearly independent
isotropic tensors under the non-compact rotation groups SO(1, 1), SO(1, 2), SO(1, 3) and SO(2, 2). This is done by using the
direct method of explicitly constructing these tensors, proving their linear independence and counting their numbers.
Interestingly, it is found that these numbers are identical with the corresponding numbers for the case of the compact groups

SO(2), SO(3) and SO(4).
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1. Introduction

Linear invariants and isotropic tensors of the rotation
groups SO(2), SO(3) and SO(4), have recently attracted the
attention of many researchers. Thus Faiz and Riaz [1] have
studied eigenvectors of isotropic tensors while Hirth and
Lothe [2], Juret Schke [3], Hearrmon [4] and Norris [5] have
considered the linear invariants of the stiffness tensor Cjj,
appearing in elasticity, under SO(3). Similarly Zhou et. al.
[6], Lazar [7], Itin et. al. [8] and Gusev and Lurie [9] have
used them in isotropic strain gradient elasticity theory. Next,
Ahmad and Rashid [10] first showed that the number of
linearly independent linear invariants of tensors of any rank
under any rotation group SO(p), is equal to the dimension of
the space of isotropic tensors of SO(p), of that rank, and then
obtained all the linearly independent linear invariants under
SO(2) of tensors up to rank 6 and those under SO(3) also up
to rank 6. They also found the number of linearly
independent linear invariants of a tensor of general rank,
under the group of rotations about a fixed axis, say the 3-
axis. Recently, Naila Amir [11] has found the number of
linearly independent isotropic tensors of ranks r = 2, 4, 6, 8,
under SO(4) and has also obtained explicit expressions for
complete sets of basis elements in the space of isotropic
tensors of these ranks.

After having considered the isotropic tensors under these
compact rotation groups, the question that immediately arises

is: what happens when we move on to the non-compact
rotation groups SO(1, 1), SO(2, 1), SO(3, 1) and SO(2, 2).
This is the motivation for the present work in which, using
the direct method, we explicitly construct a set of isotropic
tensors, of rank up to 6, under each of these non-compact
groups, select a linearly independent subset of each of these
sets, and then show that each of these selected subsets is
complete in the sense that every isotropic tensor of the
relevant type, is a linear combination of elements of this
subset. This means that the current work is an immediate
generalization of the work of Ahmad and Rashid [10] for
SO(2) and SO(3) and of Naila Amir [11] for SO(4). An
interesting fact which appears from this work, is that the
number of elements of a complete set of linearly independent
isotropic tensor of any particular type, under a non-compact
group, is identical with the corresponding number, under the
corresponding compact group. The basic reason for this
appears to be the fact that the metric tensor §; of the
Euclidean spaces and m; of the Minkowski spaces, both
satisfy the identical relations

Sij: 0i Qﬁ_], and Nii— 0, i Qﬁ_]

As in references [10, 11], we denote by d the dimensions
of the space in which rotations take place, and by r the rank
of the tensor. To proceed systematically, we start with the
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case d = 2, and then move on to the higher values of d = 3, 4,
one by one.

2. d = 2; Isotropic Tensors Under
SO, 1)

We take SO(1, 1) to be the set of hyperbolic rotations (with

determinant +1) in the Minkowski space M(1, 1), with metric

x> = on - xlz i.e. the metric tensor n;, i, j = 0, 1, is the

matrix
n={ny}= [(1) _01]-

Then a 2 X 2 matrix a = {aij}, i, j = 0, 1, transforms a
vector
x € M (1, 1) according to the rule

x{ = al']'x]'
and the condition for a to belong to SO(1, 1) is
a'na=neana =,

as can be easily checked.
Note that (1) implies that a tensor

over M(1, 1), transforms under a rotation a € SO(1, 1), to

T! .

lnigende ~ Finfy Figjy o iy

Tj1]'2 ------ Jk> (M

where Einstein’s summation convention has been used. A
tensor over M(1, 1), is said to be ISOTROPIC if it has the
same components in every coordinate system i.e. if

THE CASE r=2:
It is a simple matter to check that the two second rank
tensor

Nij> Eij»

are isotropic; here

is the Levi-Civita symbol i.e. the completely anti-symmetric
tensor of rank k. For

ro_ _ T _ T _
Nij = QiGN = AN Ay = (@ana’i;=ny,

while isotropy of ¢ ; ; follows from the easily verifiable fact
that

€iiy.ig

is isotropic under sl (k, R) (See Appendix A)
THE CASE r=3:
As no tensors of rank 3 can be formed out of 1 and € ;

and g j  is identically zero for d = 2, it follows that there do
not exist any isotropic tensors of rank 3 under SO (1, 1);
obviously, the same will be true for isotropic tensors of any
ODD rank.

THE CASE r = 4:

Here the possible isotropic tensors, are

Nij Nk Niko M1 Mj ko
€ijE€xLEKE 1, E 1€k ?)
Nij€kvNik€vNjk€in
Nit€jrNji€ik Nk i€i j-

However, not all of these are linearly independent as one
can find a number of linear relations between them. To obtain
these relations, one has to use the following result of
Appendix B:

€ . . €i .
01 win—1 1011...jn_1

mOio M jatte M jn-1

MiyjoMigjy - Migjns

=D _ : 3)

nin_1]’0nin_1j1 T nin—ljn—l
Taking n =2, one gets

e e = Nij  Mit
AL I T

=-MijNji-MiuNjk)- “4)
One can similarly obtain expressions for
€ik€ji> €i€jk

in terms of product of 2 n* so that we conclude that each of
the 3 tensors (2.2) can be expressed as a linear combination
of the 3 tensors (2.1).

Next, taking n= 3 in (3), one gets

Nit Mim  Min
Eijk€imn =|Mjt  Njm  Mjn
Nkt Mkm Mkn

= - (Mu€jx€mn - Mim€jx€m + Nin€jk€im)
= - €k (Mu€mn = NimEmn T Nin€im)-
As the LHS is zero for d =2 and €; , # 0, we get
Ni€mn = Nim€in + Nin€im = 0.
Choose now i = j, m = k and then replace n by 1, to get
Nij€k 1 - Nik€ + N = 0
= Nu€ik = - Mij€k — Nik€j1)-

This means that the first tensor of (2.4) is expressible as a
linear combination of the 3 tensors (2.3); as the same will be
true for the other 2 tensors of (2.4), it follows that we have
proved, using an obvious notation, that

“All tensors of the form ne.; and ne,, have been
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expressed as a linear combination of tensors of the form
n Eol”

It therefore follows that all the 12 isotropic tensors (2.1 -
2.4) can be expressed in terms of 6 of them appearing in (2.1,
2.3). It is easy to check that these 6 tensors are linearly
independent; for if

a1 NijM + A2 NigMji + Az NuNjx + AaNij€r + A5 Nig€jy +
agMjk€y =0

then taking i =j =0, k=1=1, one gets a ;= 0, and similarly,
one can show that a , =a 3 = 0. Next, if one takes i=0, j =k =
l1=1, one gets a 4 = 0, and a 4 = a5 = 0 are similarly proved.
Hence the 6 tensors (2.1, 2.3) are indeed linearly
independent. Thus in the case d = 2, r = 4, there are 6 linearly
independent isotropic tensors forming a complete set, which
may be chosen to be (2.1, 2.3).

THE CASE r = 6:-

Here we choose the indices as i, j, k, 1, m, n; the possible
candidates for linearly independent isotropic tensors, are now

nnm, Nne, Nee, €€e,

in the obvious short hand notation introduced -earlier.
However, as identities (4) and others obtained by choosing
other sets of 4 indices out of the 6 indices

15 Jﬂ k7 15 m) n’

remain valid here, one sees that 7 € ecan always be expressed
as a linear combination of tensors of the form nnn,
whilee € ecan be expressed as a linear combination of tensors
of the form nne. It follows that in order to get all the
linearly independent isotropic tensors of rank 6, we need to
consider only those which are of the form

nnn and nne;

we consider these one by one.
The total number of isotropic tensors of the form

mn = NyNulmn,

is
61
21212131

15;

we write them explicitly as follows.
NijMNktMmn NijNemMim NijMenim
NikN jiMmn Nk jmMimo Nik" jnMim
NuM jkMmn MM jmMkno Mal jnMkems
NimM jk Mo NimM jikno MimM jn Mkl
NinM jkNimo NinM jiNkemo Min® jmMNki-

On the other hand, the total number of tensors of the form

mMme = NijNki€mn

6!
21212121 0

explicitly, these are

(MijMk1€mn MikM j1€mn> NitM jk Emn)
nijnkmeln' 7')ikr]jmeln' 7')imr]jkeln
NijMm€rns MM jm€rns MimMNj1€kn p €.,
niknlmejn' nilnkmejn' nimnklejn

knjknlmein' NjiMkm€in njmnklein}

nijnknelm: niknjnelm' 7')inr]jkelm
nijnlnekm' 7')ilr]jnekm' ninnjlekm
7’)ikr)lnejm' 7’)ilr)knejm' 7')inr]klejm €em>
njknlneim' 7')jlr]kneim' 7')jnr]kleim

NikMmn ejl' nimnknejl' NinNkm Ejl

NijiMmn €k MimMN 1€kt Min" jm €kt
€.,
njknmneil: njmnkneil: njnnkmeil

{nilnmnejkr 7’)imrllnejk' 7')inrllmejk } E
7')jlr]mneik: njmnlneik' 7')jnr]lmeik *k>

{nklnmneij' NkmMin€ij» Uknmmeij}e-j-

With the help of a technique used by Rashid et. al. in [12]
to obtain the number of linearly independent isotropic tensors
of rank 6 under SO(2), it is possible to show that there exist
just 20 linearly independent tensors among these 60, and that
10 of them can be taken from the 15 tensors of the formn n n
while the other 10 can be taken from the 45 tensors of the
form n n €. Let us write a linear equation

A NijNkiNmnt- -« +6 o NinMim€ij = 0;

we then obtain 15 equations between a | to a | 5 as follows.
Agreeing that
“1j ”means

i=j=0,k=1=m=n=1,
one gets

l] = a1+ a2+ dz = 0,

ik 2 a, + ag + ag =0,
il  a; +ag+ag =0,
im = a;p + a;; + a;, =0,
in = a;3 + a4 + a5 =0,
jk = a; + a; + a;3 = 0,
jl 2 a, +a;; + a4, =0,
jm = as + ag + a;5 = 0, %)
jn = ag + ag + a;; =0,
kl = a; + a;, + a;5 =0,
km = a, + ag + a;4 = 0,
kn = a; + ag + a;; = 0,
Im = a; + ag + a5 =0
In = a, + ag + a;p =0,
mn = a; + a, + a; = 0.

Now, equation (5.3) =

ajo = - - 4o,
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equation (5.4) =
a;s = - a13 - g,
equation (5.5) =
a;=-ap-ap=antap-as,

equation (5.6) =

a4 = - ay1-a14,
equation (5.10) =

A =-a9-aj4,
equation (5.9) =

aj=-ap-a;s=-apta;tay,
equation (5.1) =
a=-a-a=ap-apz-aggtatag=agtap-aps,
equation (5.2) =
ag=-a7-a=-aj-ap*ap;-ao,
equation (5.7) =
as=-ag-a;s=a;tap-a;3+agtastay
=agt+aptapntay,

equation (5.8) =

de = - A9 - Ap2,

These can be written systematically as

a; = —ajp; + a;3 + ay
d; = —ag9 — a1y,
az = ag + a1 — a3,
dg = —az; — Ad14
A = a9 + a1+ a;x; + aqy,
dg = —dg — dj,
a; = a;p + a;; — ags,
ag = —ag — a1; — a1z t+ A1z,
d10 = —3a11 — a1
Q15 = — a3 — a1

(6)

Hence if one considers the linear equation

M j M Mmn +ee s sNinljmier = 0, (7
then it follows from equations (6) that the 10 a’s
aj, 4y, a3,... ag, 410, 415, ®)
vanish when
ag=a;;=a;;=a;3=a,;4=0;

this implies that the 10 isotropic tensors of which the a’s of
(8) are the coefficient, are linearly independent. Further, if
any one of the above 5 a’s is nonzero, then some of the a’s of
(8) will also be nonzero, so that equation (7) will show that

each of the isotropic tensor corresponding to one of the above
5 a’s is a linear combination of those corresponding to a’s of
(8). It follows that among the 15 isotropic tensors of the form
n nn, precisely 10 are linearly independent and the rest are
linear combination of these 10.

Next, consider the tensors of the form nne. Using the
statement given on lines 8-10 of first column of page 3, with
I replaced by n and i, j, k, replaced by i, j, k, 1, m, we see that
all the tensors of the form

NN E€em, NMNEer, NN Eag, NNE. )

can be expressed in terms of the 15 tensors of the
form n n €.,,. It follows that among the 45 tensors of the
formn 7 €, all the linearly independent ones may be chosen
from those of the type nmne.,. To find these linearly
independent tensors, consider the equation

a1 NijNki€mn + a5 NimNMki€in = 0.
Again agreeing that ““ i j k” means
i=j=k=0,1=m=n=1,

we see that the above equation leads to the following 10
equations among the a;™:

ijk >a,3+a,9+a;, =0,
ijl=>ay4 a4, +a, =0,
iim=a;5 +a, +a; =0,
ikl=>as+ag+a,5 =0,
ikm=a,+as+a;, =0,
ilm=a; +ag +a,53 =0,
jkl=>ag+ag+a,, =0,
jkm=a;+ag +a;; =0,
jlm=a, +as +a,9 =0,
klm=a, +a4, +a, =0.

©)

Now
9.2)= a, = —a;1 — a4
(9.5) > a, = —aqg — a4,
9.7) =2 a5= —ag—a,,,
(96) > a3 = —ag —ay3 =ag+a;; —as,
(98) > ag= —as —a;; = —ag —ay; — a1, +a;3,
while
9.1) =2 a,+a,y = —a;3,
(93) 2 a;+a;5 = —ayz,
(94) =2 as+a,5 = —ag =ag+a;,+a,, —a;3,
(99) 2 as+a,y = —a, =aq +ayy,
(9.10) > a,+a;, = —a, =a;, +a.,.

From the last 5 equations, we get
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ajota;s =(a; +ago)- (a; +a;) + (a; +ays)

=013 — Q11 —A14 — Qg

1
= a0 25(_5113 —aiq

a9 — a5 =(as +ago) — (as +ay5)
=g+ ay4 —Q9g —A1,+ 033 —Agq

=014 — Q2+ Q33 — 0y

— Q14— Q2+t Ay Q2+ A3 —A11)T =011 — Ay,

1
ais =E(_a13 — Q11— Q4 — Q12 — Qa4+ — Qi3+ A1) T—A13 — Ay

Hence
Ay = —Q15 —Q1p =ay3taj4-a;y,
a; = —Q19 — 013 =031+t 01; — g3,
as = -0+ a9+ a4 =a;1+a,+ag+a,.

Collecting the values of

a; — ag,aq 9,5,

we get
A = —Q1;+ 033+ ayy,
A = —Qg —Agy,
az =ag+ay; —as
ay = —11 — Q4
as =ag+ay1+a;,+ag, (10)
g = —Qg —04q,
a; = a;1t0a;; — a3,
ag = —Q9g — Qg1 — Qg3 T ag3,
Ao = =11 — Q12
A5 = —Q13 — Q14

It is interesting to note that these are identical with
equations (6) obtained earlier. Applying now the same
arguments as were used after equation (6), we conclude that
out of the 15 isotropic tensors of the formn 7 €, ,,, precisely
10 are linearly independent and these can be chosen to be the
ones whose coefficients are a; — ag, a, ¢, a, 5in the above
linear equation.

We have thus completed the proof of our assertion that out
of the 60 isotropic tensors of rank 6 of the form

nmmn, me,

precisely 20 are linearly independent (and form a complete
set) and that 10 of these may be chosen to be of the
form 1 n n while the rest of 10 can be chosen to be of the
formn ne.,.

3. d = 3; Isotropic Tensors Under
SO(2, 1)

THE CASE r = 2. Here, there is only one isotropic tensor,
namely 7; ;.

THE CASE r = 3. Here again, there is only one isotropic
tensor namely €; j .

THE CASE r = 4. Here the possible isotropic tensors are

NijNkv NikNjv Mal jk-

These are easily checked, as in the case d = 2, to be
linearly independent; thus there are just 3 linearly
independent isotropic tensors of rank 4.

THE CASE r = 5. Here, the possible isotropic tensors are

Nij€kim> Nik€jims « -+ -

Their number is

213! 2

but we will show that only 6 of these are linearly
independent.
From (3), we get
ni pni qnirni s
njpnj qnj ‘rnjs
Nk pnk an Mks
m pnl qnlrnl s

€; jkl Ep qrs —
= 77l'pejkleqrs - 77l'qejklep‘rs + 77l'rejklepqs - nisejklepqr
= ejkl (nipeqrs - niqeprs + 77l'repqs - nisepq‘r)-
As €; i =0 for d =3, this gives
Nip€qrs — Nig€prs + Nir€pgs — Nis€pgr = 0.
Choose now
p=j,q=kr=Ls=m,
to get
Nij€kim — Nik€jim + Nu€km — Nim€jkr =0
n

This shows that7;,,€;; can be expressed as a linear
combination of tensors in which the subscripts of 77, do not
contain m. As the same will obviously be true for the 3
tensors

= Nim€jir = Nij€xim — Nik€jim T Nu€jkm:

Nim€ikt> Mkm€iju Mim€ijk>

we conclude that each of the above 4 tensors can be
expressed as a linear combination of the 6 tensors

(12)

The linear independence of these 6 tensors is easily
checked by writing an equation

Nij€xkims Nik €jims Nit€jkems M jk €itmr M1 €ikms M1 €ijm-

a1 Mij€kimt-- -+ ANk €ijm=0,
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and choosing
i=j=m=0,k=1,1=2,

which gives a ;= 0; other a’s can be shown to be 0 in the
same way. Thus, we have shown that there exist precisely 6
linearly independent isotropic tensors of rank 5, again
forming a complete set, under SO(2, 1), as clamed earlier.

THE CASE r = 6:- Here the possible candidates for the
isotropic tensors are

nijr]klnmn' eijk €imn-
However, we prove in the Appendix B that
NuNimNin

NN jmNjn
NkiMemMkn

Eijkelmn =

= a linear combination of tensors of the form ; ;7 1 Mm n,
so that one needs to consider only the tensors of the form

7')ijrlklr)mn-

The number of these tensors is

6! _ 654
21212131 8

=15,

and they are
NiiNkiMmn NijNemMimo NijMienimo Mk jilmns Nik jmMins
NikM jinMimo MM jk Mmno MM jmMkno MM jinMemo MimM jeMin»

nimnjlnkn' 7']imr)jnrlkl' ninnjknlm' ninnjlnkmr 7')inr)jmnkl-

These can easily checked to be linearly independent, for if
there is a linear relation

AN NkiMmn + @2NijMkmNint- -+ + Q1 sNinjmNia = 0,
choosing
i=j=0,k=1=1,m=n=2,

one gets a ;= 0, and one can similarly show that the rest of
them are also 0. This proves the linear independence of the
set so that we conclude that there exist precisely 15 linearly
independent isotropic tensors of rank 6, forming a complete
set, under SO(2, 1).

4. d=4: Isotropic Tensors Under SO(3, 1)
and SO(2, 2)
Here, the matrix 7 is given by
1000
0—100(_ -
n = 00_10={m&u1=0J23,
000—1
for SO(3, 1), and by

1000
| o100
T 1oo-10
000—1

={n;}ij,=0123,

for SO(2, 2); both these cases can be considered together as
the arguments are independent of the difference between the
twon's.

THE CASE r=2:

As in the case of SO(2, 1), the only isotropic tensor of rank
2, in the present case, is ; ;.

THE CASE r=3:

As already mentioned, there are no isotropic tensors of odd
rank when d = 4.

THE CASE r = 4:

Here, the possible candidates for the linearly independent
isotropic tensors are

NijNkw NikMjo MaN jk €iji-
It is easy to check that these are all independent; for, if
MM + + + As€ijpq = 0,
setting
i=j=0,k=1=1,

one gets a | = 0, and one similarly gets a , = a ; = 0. Next,
letting

i=0,j=1,k=2,1=3,

one gets a 4 = 0 i.e. all the 4 tensors are linearly independent.
THE CASE r =6:
Here, the possible candidates for linearly independent
tensors are

6! _ 654

= = 15
21212131 2.2.2

tensors of the form 1 n 1, namely
NiiNktMmn NijMemMNino MijMenimo Mik jilmno ik jmMino
NikM inMimo MM je Mmoo MM jmMiens MM jinMemo Mim™M jkMin,
NimM jiMkns NimM jin Mkt NinM je oo Min" jiMkemr Min® jm Mk

and

6! 65
214l -2 OB

tensors of the form n €, namely
Nij€kimn Nik €jimns Mit€Ejkmn> Nim€jkins Nin€jkim»
njk €itmn» 7')jleikmn' njmeiklnr 7')jneiklmr nkleijmnr
nkmeijlnr 7')kneijlmr 7')lmeijkn' nlneijkm' nmneijkl'

We now show that all the 15 tensors of the form n n n are
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linearly independent while precisely 10 of the 15 tensors of
the formn eare so, so that, in all, there exist 25 linearly
independent isotropic tensors of rank 6, which form a
complete set.

Consider an equation of the form

AN MaNmnt- -« + a1 N jmMia =0.
Choosing
i=j=0,k=1=1,m=n=2,

the above equation gives a | = 0; the rest of the a’s can be
similarly proved to be equal to 0, so that one may conclude
that all the tensors of the formnnn are indeed linearly
independent.

Next, to consider the linear independence of tensors of the
form 7 €, we see that from Appendix B, we get

eijklm epqrst

NipNigMirMisNit
NipNjqMjrNjsNjt
NikpMkqgMkrMesMkt
NipNigNirMisNie
nmpnmqnmrnmsnmt

~(-1)*

= [nipejklmeqrst - 77l'q Ejklmeprst + nirejklmepqst -
77is€]'k1m67:1qrt + nitejklmepqrs]

=-€jkim [r]ip €qrst — Mig€prst + Nir€pgst — Nis€pqrt +
nitepqrs]-

Hence, for d = 4, we will have
7']l'peqrst - 7']l'qep‘rst + 7']l'repqst: - nisepq‘rt + 7']l'tepqrs =0.
Choose now
p=J,q=kr=lLs=m,t=n,
to get
in€jkim = — Nij€kimn ik€jiimn — MNit€jkmn im€jkin»
Nin€jkt Nij€kimn T Nik€j1 Ni€jkmn T NimEjkt

which shows that;, €, ;mcan be expressed as a linear
combination of the tensors

Nij€Nik€ N € Nime€-
One can similarly show that each of the four tensors
anf; Nkn€ Nin€ NMmn€,

can be expressed as a linear combination of tensors of the
form

Nab Ecdef

in which n never appears as an index of 7. It follows that
each of the five tensors

Nin€, 7Ijn€: Nikn€ Min€, Mmn€,

can be expressed as a linear combination of the ten tensors
77ij€: Nik€ N €, Nim€, n]'kel 7’)jl € 7’)jmel Nkt€ Nem€ Mim€-

It is now not difficult to show that these ten tensors are
linearly independent. For let

alnijeklmn + aznikejlmn+- St a Onlmeijkn =0.
Then the choice
i=j=n=0,k=1,1=2, m=3,

gives a; = 0; all other a’s are proved to be equal to zero in
exactly the same way. It follows that the ten tensors are
indeed linearly independent. Thus we conclude that there are
15 + 10 = 25 linearly independent isotropic tensors of rank 6,
forming a complete set, under SO(3, 1) and SO(2, 2).

5. Conclusion

We have obtained all the linearly independent isotropic
tensors of ranks from 2 to 6, under the non-compact rotation
groups SO(1, 1), SO(2, 1), SO(3, 1) and SO(2, 2). We find
that their number is exactly the same as that of corresponding
linearly independent isotropic tensors under the compact
rotation groups SO(2), SO(3) and SO(4) as given by Naila
[11] and Faiz and Rashid [10, 12].

Appendix A

If {ai j}is an element of SL(3,R), then it transforms
vectors x; € R3, to

/ _ .
xi = aijxj,
as & j is a tensor of 3" rank, {ai ]-} will transform it to
el = aya;,ape
ijk — il“Yim“knclmn-
Now if a, b, ¢ are 3 row vectors so that
a
b
c

is a 3X3 matrix, then we know that
a
det [Ql = Eijkaibjck.
c

Hence, if for a given matrix {ai j} of SL(3, R), we set a; as
its ith row, then
a; = [@i1 Q2 ;3] i.e.(gi)l =ay,
and similarly for a; and ay; we then have
e = ayamagne
ijk — “il¥%jmYkn<imn

=Emn (Qi)l (ﬂj)m (gk)n
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al
=det [a]l = eukdetL l = &jk det{a”}
a

= €] —guk

showing thate; ;, is indeed isotropic underSL(3, R). In
particular, it will be isotropic under both SO(3) and SO(2, 1)
as these are just subgroups of SL(3, R). In fact, the result
holds for arbitrary n> 2 rather than for just n = 3; thus we
have

&, ;. 1s anisotropic tensor under SL(k, R), k = 2.
2.1k

The fact that g; ; is isotropic under both SO(2) and SO(I,
1) follows directly from this result.

Appendix B
Let A= {a;;} € SO(n — 1,1), with
,j=0,1,..,n—1,

and metric in M (n— 1, 1) given by

x?=x3— xi—...—x2_,.
Then
[[a0 ]
[ af |
A= [aga; ay4], A
a4
where
agj
| @) |
[ |
4 = | L b= laojarj = an-1,]
lan—ljJ
so that
_ TY _
(¢), = ajand (af), = a;;.
Put now
Aoodp1* Aon-1 1
—Q10-011 a1 n-1
A=nA= .
[ an-11 —Qn-12 an—ln—lJ

with

aj:

X |
.y

It can now be noted that

T
[ alo ] T
| o7 | [ a0 ]
i1 T
ay
det €igiy.in_, A€t - ‘
T
. L an_lj
lal .|
T —
Eigy, . detA" = Eigy, oy

al. d; (matrix multiplication)
[ o)

_[ao iy Ap— 11 |

an 1}J
=QpiGpj— A1iQ1j —..— An_1i{Qn-1j

=a;. a j (scalar multiplication inM (n — 1, 1))
=N jo

so that we get

. g.
loi, - i .
0lg in—q 1011...171_1

=det ' . (_1)71.—1 det[djodjl .. ajn—l]

=D dety 1[4, 45, ]

|
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77‘.01'07]"0 ittt Mg jn-1
77‘.11'0711'1 ittt iy jn-1

= (-

nin—lionin—lh' iy jn-1

which is the required equation number (3) mentioned in the

text.
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