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Abstract: In the recent past, linearly independent isotropic tensors of rank up to 6, under the compact rotation groups SO(2), 

SO(3) and SO(4) have been studied in some detail. The present paper extends these studies to the case of linearly independent 

isotropic tensors under the non-compact rotation groups SO(1, 1), SO(1, 2), SO(1, 3) and SO(2, 2). This is done by using the 

direct method of explicitly constructing these tensors, proving their linear independence and counting their numbers. 

Interestingly, it is found that these numbers are identical with the corresponding numbers for the case of the compact groups 

SO(2), SO(3) and SO(4). 
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1. Introduction 

Linear invariants and isotropic tensors of the rotation 

groups SO(2), SO(3) and SO(4), have recently attracted the 

attention of many researchers. Thus Faiz and Riaz [1] have 

studied eigenvectors of isotropic tensors while Hirth and 

Lothe [2], Juret Schke [3], Hearrmon [4] and Norris [5] have 

considered the linear invariants of the stiffness tensor Cijkl, 

appearing in elasticity, under SO(3). Similarly Zhou et. al. 

[6], Lazar [7], Itin et. al. [8] and Gusev and Lurie [9] have 

used them in isotropic strain gradient elasticity theory. Next, 

Ahmad and Rashid [10] first showed that the number of 

linearly independent linear invariants of tensors of any rank 

under any rotation group SO(p), is equal to the dimension of 

the space of isotropic tensors of SO(p), of that rank, and then 

obtained all the linearly independent linear invariants under 

SO(2) of tensors up to rank 6 and those under SO(3) also up 

to rank 6. They also found the number of linearly 

independent linear invariants of a tensor of general rank, 

under the group of rotations about a fixed axis, say the 3-

axis. Recently, Naila Amir [11] has found the number of 

linearly independent isotropic tensors of ranks r = 2, 4, 6, 8, 

under SO(4) and has also obtained explicit expressions for 

complete sets of basis elements in the space of isotropic 

tensors of these ranks. 

After having considered the isotropic tensors under these 

compact rotation groups, the question that immediately arises 

is: what happens when we move on to the non-compact 

rotation groups SO(1, 1), SO(2, 1), SO(3, 1) and SO(2, 2). 

This is the motivation for the present work in which, using 

the direct method, we explicitly construct a set of isotropic 

tensors, of rank up to 6, under each of these non-compact 

groups, select a linearly independent subset of each of these 

sets, and then show that each of these selected subsets is 

complete in the sense that every isotropic tensor of the 

relevant type, is a linear combination of elements of this 

subset. This means that the current work is an immediate 

generalization of the work of Ahmad and Rashid [10] for 

SO(2) and SO(3) and of Naila Amir [11] for SO(4). An 

interesting fact which appears from this work, is that the 

number of elements of a complete set of linearly independent 

isotropic tensor of any particular type, under a non-compact 

group, is identical with the corresponding number, under the 

corresponding compact group. The basic reason for this 

appears to be the fact that the metric tensor δij of the 

Euclidean spaces and ηij of the Minkowski spaces, both 

satisfy the identical relations 

δij= 0 i ≠ j, and ηij= 0, i ≠ j. 

As in references [10, 11], we denote by d the dimensions 

of the space in which rotations take place, and by r the rank 

of the tensor. To proceed systematically, we start with the 
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case d = 2, and then move on to the higher values of d = 3, 4, 

one by one. 

2. d = 2; Isotropic Tensors Under  

SO(1, 1) 

We take SO(1, 1) to be the set of hyperbolic rotations (with 

determinant +1) in the Minkowski space M(1, 1), with metric 

x
2
 = x0

2
 - x1

2
 i.e. the metric tensor ηij, i, j = 0, 1, is the 

matrix 

η = �����	= �1 00 −1�. 
Then a 2 × 2 matrix a = �
���, i, j = 0, 1, transforms a 

vector 

x ɛ M (1, 1) according to the rule  ��� = 
���� 

and the condition for a to belong to SO(1, 1) is 

a
T
 η a = η	⇔	a η a

T
 = η, 

as can be easily checked. 

Note that (1) implies that a tensor  �����……�� 

over M(1, 1), transforms under a rotation	
	� SO(1, 1), to �����……���  =	
����	
���� ……
���������……��,         (1) 

where Einstein’s summation convention has been used. A 

tensor over M(1, 1), is said to be ISOTROPIC if it has the 

same components in every coordinate system i.e. if �����……���  = 	�����……��. 

THE CASE r=2: 

It is a simple matter to check that the two second rank 

tensor 

ηij, ɛij, 

are isotropic; here ɛ����……�� 

is the Levi-Civita symbol i.e. the completely anti-symmetric 

tensor of rank k. For ����  =	
��
����� =	
�����
���  = (a η a 
T)

 i j =	���, 

while isotropy of ɛ i j follows from the easily verifiable fact 

that ϵ����…�� 

is isotropic under sl (k, ℝ) (See Appendix A) 

THE CASE r=3: 

As no tensors of rank 3 can be formed out of η i j and ɛ i j 

and ɛi j k is identically zero for d = 2, it follows that there do 

not exist any isotropic tensors of rank 3 under SO (1, 1); 

obviously, the same will be true for isotropic tensors of any 

ODD rank. 

THE CASE r = 4: 

Here the possible isotropic tensors, are η��η�� , η�� , ��	�	��	� , �	�	 �	�,  �	�	 �	�	,  �	�	 �	� ,��	� �	� , ��	� �	� , ��	� �	� ,��	� �	�, ��	� �	� , ��	� �	� .                            (2) 

However, not all of these are linearly independent as one 

can find a number of linear relations between them. To obtain 

these relations, one has to use the following result of 

Appendix B:  �"	#�	...#$%� �"��...�$%� 	

= (-1)
n–1

 &
&

��"�"��"	�� . . . ��"	�$%�����"����� . . . . ����$%�...��$%��"��$%��� . . . ��$%��$%�
&
&
.                  (3) 

Taking n = 2, one gets 

 �	� �	� = -' ��� ��	�	��	� ��	� ' = - (��	�	��	� - ��	�	��	�	).        (4) 

One can similarly obtain expressions for   �� ��,  �� �� 

in terms of product of 2	�s,
 so that we conclude that each of 

the 3 tensors (2.2) can be expressed as a linear combination 

of the 3 tensors (2.1).  

Next, taking n= 3 in (3), one gets 

 ��� �() =*��� ��( ��)��� ��( ��)��� ��( ��)* 
= - (��� �� () -	��( �� �) +		��) �� �()  

= -	 ��(��� () −	��( �) +	��) �().  

As the LHS is zero for d = 2 and	 �	�	≠ 0, we get ��� () -	��( �) +	��) �( = 0. 

Choose now i = j, m = k and then replace n by l, to get ��� �	� 	-	��� �� +	��� �� = 0  ⇒	��� �� = - (��� �� −	��� ��). 
This means that the first tensor of (2.4) is expressible as a 

linear combination of the 3 tensors (2.3); as the same will be 

true for the other 2 tensors of (2.4), it follows that we have 

proved, using an obvious notation, that 

“All tensors of the form 	�	 •�	  and 	�	 •	�  have been 
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expressed as a linear combination of tensors of the form �	 •�” 

It therefore follows that all the 12 isotropic tensors (2.1 - 

2.4) can be expressed in terms of 6 of them appearing in (2.1, 

2.3). It is easy to check that these 6 tensors are linearly 

independent; for if 
.	������ +	
0	������ +	
1	������ +	
2��� �� +	
3	��� �� +	
4	��� ��  = 0 

then taking i = j = 0, k = l = 1, one gets a 1= 0, and similarly, 

one can show that a 2 = a 3 = 0. Next, if one takes i=0, j = k = 

l = 1, one gets a 6 = 0, and a 4 = a5 = 0 are similarly proved. 

Hence the 6 tensors (2.1, 2.3) are indeed linearly 

independent. Thus in the case d = 2, r = 4, there are 6 linearly 

independent isotropic tensors forming a complete set, which 

may be chosen to be (2.1, 2.3). 

THE CASE r = 6:- 

Here we choose the indices as i, j, k, l, m, n; the possible 

candidates for linearly independent isotropic tensors, are now ���, �� , �  ,    , 
in the obvious short hand notation introduced earlier. 

However, as identities (4) and others obtained by choosing 

other sets of 4 indices out of the 6 indices 

i, j, k, l, m, n, 

remain valid here, one sees that	�	 	 can always be expressed 

as a linear combination of tensors of the form 	�	�	� , 

while 	 	 can be expressed as a linear combination of tensors 

of the form 	�	�	 . It follows that in order to get all the 

linearly independent isotropic tensors of rank 6, we need to 

consider only those which are of the form ���	
56	�� ;  

we consider these one by one. 

The total number of isotropic tensors of the form ���	 ≡ 	 �������(), 

is 

4	!0	!0	!0	!1	!	= 15; 

we write them explicitly as follows. �������() , �����(��), �����)��(, �������(), �����(��) , �����)��(, �������(), �����(��), �����)��(, ��(�����), ��(�����), ��(��)���, ��)�����(, ��)�����(, ��)��(���. 
On the other hand, the total number of tensors of the form �� 	 ≡ ������ () 

is 

4	!0	!0	!0	!0	!	= 45; 

explicitly, these are 

9:;
:<������ () , ������ () , ������ ()�����( �), �����( �) , ��(��� �)�����( �) , �����( �) , ��(��� �)�����( �), �����( �) , ��(��� �)�����( �) , �����( �), ��(��� �)=:>

:? •), 

@�����) �( , �����) �(, ��)��� �(�����) �(, �����) �(, ��)��� �(�����) �(, �����) �(, ��)��� �(�����) �(, �����) �(, ��)��� �(A •	(, 

B����() �� , ��(��� �� , ��)��( ������() �� , ��(��) �� , ��)��( ������() �� , ��(��) �� , ��)��( ��C  •	�, 
D����() ��, ��(��) ��, ��)��( ������() �� , ��(��) �� , ��)��( ��E  •�, 

�����() �� , ��(��) �� , ��)��( ��� •	�. 

With the help of a technique used by Rashid et. al. in [12] 

to obtain the number of linearly independent isotropic tensors 

of rank 6 under SO(2), it is possible to show that there exist 

just 20 linearly independent tensors among these 60, and that 

10 of them can be taken from the 15 tensors of the form	�	�	� 

while the other 10 can be taken from the 45 tensors of the 

form	�	�	 . Let us write a linear equation  
.�������()+. . . +
4	F��)��( �� = 0;  

we then obtain 15 equations between a 1 to a 1 5 as follows. 

Agreeing that 

“ i j ”means 

i = j = 0, k = l = m = n = 1, 

one gets  ij	 ⇒ 	 a. +	a0 +	a1 	= 	0,ik	 ⇒ 	 a2 	+ 	a3 	+ 	a4 	= 	0,il	 ⇒ 	 aM 	+ 	aN 	+ 	aO 	= 	0,im	 ⇒ 	 a.F 	+ 	a.. 	+ 	a.0 	= 	0,in	 ⇒ 	 a.1 	+ 	a.2 	+ 	a.3 	= 	0,jk	 ⇒ 	 aM 	+ 	a.F 	+ 	a.1 	= 	0,jl	 ⇒ 	 a2 	+ 	a.. 	+ 	a.2 	= 	0,jm	 ⇒ 	 a3 	+ 	aN 	+ 	a.3 	= 	0,jn	 ⇒ 	a4 	+ 	aO 	+ 	a.0 	= 	0,kl	 ⇒ 	a. 	+ 	a.0 	+ 	a.3 	= 	0,km	 ⇒ 	 a0 	+ 	aO 	+ 	a.2 	= 	0,kn	 ⇒ 	 a1 	+ 	aN 	+ 	a.. 	= 	0,lm	 ⇒ 	 a1 	+ 	a4 	+ 	a.1 	= 	0ln	 ⇒ 	 a0 	+ 	a3 	+ 	a.F 	= 	0,mn	 ⇒ 	 a. 	+ 	a2 	+ 	aM 	= 	0.

                     (5) 

Now, equation (5.3)	⇒ 

a10 = - a11- a12, 
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equation (5.4)	⇒ 

a15 = - a13 - a14, 

equation (5.5)	⇒ 

a7 = - a10 - a13 = a11+ a12 - a13, 

equation (5.6)	⇒ 

a4 = - a11-a14, 

equation (5.10)	⇒ 

a2 = - a9 - a14, 

equation (5.9) ⇒ 

a1= - a12 - a15 = - a12 + a13 + a14, 

equation (5.1)	⇒ 

a3 = - a1- a2 = a12 - a13 - a14 + a9 + a14 = a9 + a12 - a13, 

equation (5.2)	⇒ 

a8 = - a7 - a9 = - a11- a12 + a13 - a9, 

equation (5.7)	⇒ 

a5 = - a8 - a15 = a11+ a12 - a13 + a9 + a13 + a14  

= a9 + a11+ a12 + a14, 

equation (5.8)	⇒ 

a6 = - a9 - a12. 

These can be written systematically as a. =	−	a.0 	+ 	a.1 	+ 	a.2,a0 	= 	−	aO 	− 	a.2,a1 	= 	 aO 	+ 	a.0 	− 	a.1,a2 	= 	−	a.. −	a.2,a3 	= 	 aO 	+ 	a.. +	a.0 	+ 	a.2,a4 	= 	−	aO 	− 	a.0,aM 	= 	 a.. +	a.0 	− 	a.1,aN 	= 	−	aO 	− 	a.. −	a.0 	+ 	a.1,a.F 	= 	−	a.. −	a.0,a.3 	= 	−	a.1 	− 	a.2.
                  (6) 

Hence if one considers the linear equation 
.��	�	��	��(	)	+. . . +
.	3��	)��	(��	� 	= 0,          (7) 

then it follows from equations (6) that the 10 a’s 

a1, a2, a3,... a8, a10, a15,                          (8) 

vanish when 

a 9 = a 1 1 = a 1 2 = a 1 3 = a 1 4 = 0;  

this implies that the 10 isotropic tensors of which the a’s of 

(8) are the coefficient, are linearly independent. Further, if 

any one of the above 5 a’s is nonzero, then some of the a’s of 

(8) will also be nonzero, so that equation (7) will show that 

each of the isotropic tensor corresponding to one of the above 

5 a’s is a linear combination of those corresponding to a’s of 

(8). It follows that among the 15 isotropic tensors of the form 	�	�	�, precisely 10 are linearly independent and the rest are 

linear combination of these 10. 

Next, consider the tensors of the form 	�	�	 . Using the 

statement given on lines 8-10 of first column of page 3,  with 

l replaced by n and i, j, k, replaced by i, j, k, l, m, we see that 

all the tensors of the form �� •(, �� •� , �� •�, �� •�, 
can be expressed in terms of the 15 tensors of the 

form 	�	�	 •) . It follows that among the 45 tensors of the 

form	�	�	 , all the linearly independent ones may be chosen 

from those of the type 	�	�	 •) . To find these linearly 

independent tensors, consider the equation 
.	������ () 	+∙∙∙ 	+
.	3	��(��� �) 	= 0. 

Again agreeing that “ i j k” means 

i = j = k = 0, l = m = n = 1, 

we see that the above equation leads to the following 10 

equations among the aj
s
: 

9::
::;
:::
:<STU	 ⇒ 
.	1 + 
.	F	 + 
M 	= 0,STV ⇒ 
.	2	 + 
.	.	 + 
2	 = 0,STW ⇒ 
.	3	 + 
.0	 + 
. 	= 0,SUV ⇒ 
3 + 
N + 
.	3	 = 0,SUW ⇒ 
0 + 
O + 
.	2	 	= 0,SVW ⇒ 
1	 + 
4	 + 
.	1 	= 0,TUV ⇒ 
4 + 
	O + 
.	0	 = 0,TUW ⇒ 
1 + 
N	 + 
.	.	 = 0,TVW ⇒ 
0	 + 
3	 + 
.	F	 	= 0,UVW ⇒ 
.	 + 
2	 + 
M 	= 0. =::

::>
:::
:?
	                 (9) 

Now (9. 2Z ⇒ 	
2 =	−
.	. − 
.	2, (9. 5Z 	⇒ 
0 =	−
O 	− 
.	2, (9.7	Z 	⇒ 
4 =	−
O − 
.	0, (	9.6	Z 	⇒ 
1 =	−
4 	− 
.	1 	= 
O + 
.	0 	− 
.	1, (9.8	Z 	⇒ 
N =	−
1 	− 
.	. 	= 	−
O 	− 
.	. 	− 
.	0 	+ 
.	1, 

while (9.1Z 	⇒ 
M + 
.	F 	= 	−
.	1, (9.3Z 	⇒ 
. + 
.	3	 	= 	−
.	0, (9.4Z 	⇒ 
3 + 
.	3 	= 	−
N 	= 
O + 
.	. + 
.	0 	− 
.	1, (9.9Z 	⇒ 
3 + 
.	F 	= 	−
0 = 
O 	+ 
.	2, (9.10Z 	⇒ 
. + 
M 	= 	−
2 = 
.	.	 + 
.	2. 

From the last 5 equations, we get 
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.	F + 
.	3 	≡ (
M + 
.	FZ	–	(
. + 
MZ + 	(
. + 
.	3Z 
=−
.	1	 − 
.	. 	− 
.	2 	− 
.	0, 


.	F 	− 
.	3 ≡ (
3 	+ 
.	FZ 	−	(
3 	+ 
.	3) 

=
O + 
.2 	− 
O 	− 
.	0 + 
.	1 	− 
.	. 

=
.	2 	− 
.	0 +	
.	1 	− 
.	. 

⇒ 
.	F 	= .0 (−
.	1 	− 
.	. 	− 
.	2 − 
.	0 + 
.	2 	− 
.	0 + 
.	1 − 
.	.Z=	−
.	. 	− 
.	0, 

.3 	= .0 (−
.	1 	− 
.	. − 
.	2 	− 
.	0 	− 
.	2 + 
.	0 	− 
.	1 + 
.	.) =	−
.	1 	− 
.	2. 

Hence 
. 	= 	−
.	3 	− 
.	0 	= 
.	1 + a 1 4 - a 1 2, 
M 	= 	−
.	F 	− 
.	1 	= 
.	. + 
.	0 	− 
.	1, 
3 	= 	−
.	F + 
O + 
.	2 	= 
.	. + 
.	0 + 
O + 
.	2. 
Collecting the values of 
. 	− 
N, 
.	F, 
.3,  

we get 
. 	= 	−
.	0 + 
.	1 + 
.	2,
0 	= 	−
O 	− 
.	2,
1 	= 
O + 
.	0	 	− 
.	1,
2 	= 	−
.	. 	− 
.	2,
3 	= 
O + 
.	. + 
.	0 + 
.	2,
4 	= 	−
O 	− 
.	0,
M 	= 	 
.	. + 
.	0 	− 
.	1,
N 	= 	−
O 	− 
.	. 	− 
.	0 + 
.	1,
.	F 	= 	−
.	. 	− 
.	0,
.	3 	= 	−
.	1 	− 
.	2

                 (10) 

It is interesting to note that these are identical with 

equations (6) obtained earlier. Applying now the same 

arguments as were used after equation (6), we conclude that 

out of the 15 isotropic tensors of the form�	�	 •	), precisely 

10 are linearly independent and these can be chosen to be the 

ones whose coefficients are 	
. − 
N, 
.	F, 
.	3 in the above 

linear equation.  

We have thus completed the proof of our assertion that out 

of the 60 isotropic tensors of rank 6 of the form ���, �� , 
precisely 20 are linearly independent (and form a complete 

set) and that 10 of these may be chosen to be of the 

form	�	�	�	while the rest of 10 can be chosen to be of the 

form	�	�	 •	).  

3. d = 3; Isotropic Tensors Under  

SO(2, 1) 

THE CASE r = 2. Here, there is only one isotropic tensor, 

namely	��	�. 
THE CASE r = 3. Here again, there is only one isotropic 

tensor namely	 �	�	�	.  
THE CASE r = 4. Here the possible isotropic tensors are ������ , ������ , ������. 

These are easily checked, as in the case d = 2, to be 

linearly independent; thus there are just 3 linearly 

independent isotropic tensors of rank 4. 

THE CASE r = 5. Here, the possible isotropic tensors are ��� ��( , ��� ��( , . . .. 
Their number is 

3	!0	!1	! 	= 3.20 =10, 

but we will show that only 6 of these are linearly 

independent. 

From (3), we get 

 �	�	�	�	 b	c	d	e 	= 	 & ��	b��	c��	d��	e��	b��	c��	d��	e��	b��	c��	d��	e��	b��	c��	d��	e
& 

=	��b ��� cde − ��c ��� bde + ��d ��� bce 	− ��e ��� bcd 

=	 ���f��b cde 	− ��c bde + ��d bce 	− ��e bcdg. 
As	 �	�	�	�	 = 0 for d = 3, this gives ��b cde 	− ��c bde + ��d bce 	− ��e bcd	= 0. 

Choose now 

p = j, q = k, r = l, s = m, 

to get ��� ��( 	− ��� ��( + ��� ��( 	− ��( ��� 	= 0 ⇒ ��( ��� 	= ��� ��( 	− ��� ��( + ��� ��(.      (11) 

This shows that ��	( �	�	� can be expressed as a linear 

combination of tensors in which the subscripts of	�, do not 

contain m. As the same will obviously be true for the 3 

tensors ��( ��� , ��( ��� , ��( ��� , 

we conclude that each of the above 4 tensors can be 

expressed as a linear combination of the 6 tensors ��� ��( , ��� ��( , ��� ��(, ��� ��( , ��� ��(, ��� ��(.     (12) 

The linear independence of these 6 tensors is easily 

checked by writing an equation 
.��� ��(+. . . +	
4��� ��(=0, 



44 Ansaruddin Syed:  Isotropic Tensors Under Non-compact Rotation Groups  

 

and choosing 

i = j = m = 0, k = 1, l = 2, 

which gives a 1= 0; other a’s can be shown to be 0 in the 

same way. Thus, we have shown that there exist precisely 6 

linearly independent isotropic tensors of rank 5, again 

forming a complete set, under SO(2, 1), as clamed earlier. 

THE CASE r = 6:- Here the possible candidates for the 

isotropic tensors are �������() ,  ��� �(). 

However, we prove in the Appendix B that 

 ��� �() 	= * �����(��)�����(��)�����(��)* 
= a linear combination of tensors of the form	��	���	��(	), 

so that one needs to consider only the tensors of the form �������(). 

The number of these tensors is 

4	!0	!0	!0	!1	!	 =	 4.3.2N 	= 15, 

and they are �������() , �����(��), �����)��( , �������() , �����(��), �����)��(, �������() , �����(��), �����)��(, ��(�����), ��(�����) , ��(��)��� , ��)�����(, ��)�����(, ��)��(���. 
These can easily checked to be linearly independent, for if 

there is a linear relation 
.�������() +	
0�����(��)+. . . +	
.	3��)��(��� 	= 	0, 
choosing 

i = j = 0, k = l = 1, m = n = 2, 

one gets a 1= 0, and one can similarly show that the rest of 

them are also 0. This proves the linear independence of the 

set so that we conclude that there exist precisely 15 linearly 

independent isotropic tensors of rank 6, forming a complete 

set, under SO(2, 1). 

4. d=4: Isotropic Tensors Under SO(3, 1) 

and SO(2, 2) 

Here, the matrix	�	is given by 

�	 = 	 h 1	0	0	00 − 1	0	00	0 − 1	00	0	0 − 1i ≡ �����, S, T = 	0, 1, 2, 3,  

for SO(3, 1), and by 

� = 	 h 1	0	0	00	1	0	00	0 − 1	00	0	0 − 1	i 	≡ �����, S, T, = 0, 1, 2, 3, 
for SO(2, 2); both these cases can be considered together as 

the arguments are independent of the difference between the 

two	�′k. 

THE CASE r = 2: 

As in the case of SO(2, 1), the only isotropic tensor of rank 

2, in the present case, is	��	�. 

THE CASE r = 3: 

As already mentioned, there are no isotropic tensors of odd 

rank when d = 4. 

THE CASE r = 4: 

Here, the possible candidates for the linearly independent 

isotropic tensors are ������ , ������ , ������,  ���� . 
It is easy to check that these are all independent; for, if 
.������ ++ + 
2 ���� = 0, 

setting 

i = j = 0, k = l = 1, 

one gets a 1 = 0, and one similarly gets a 2 = a 3 = 0. Next, 

letting 

i = 0, j = 1, k = 2, l = 3, 

one gets a 4 = 0 i.e. all the 4 tensors are linearly independent. 

THE CASE r = 6: 

Here, the possible candidates for linearly independent 

tensors are 6	!2	! 2	! 2	! 3	!	 	= 6.5.42.2.2 	= 	15 

tensors of the form	�	�	�, namely �������() , �����(��), �����)��( , �������() , �����(��), �����)��(, �������(), �����(��) , �����)��(, ��(�����) , ��(�����), ��(��)��� , ��)�����(, ��)�����(, ��)��(��� , 
and 	6	!2	! 4	! 	= 6. 52 	= 15 

tensors of the form	�	 , namely ��� ��() , ��� ��() , ��� ��() , ��( ���) , ��) ���(, ��� ��() , ��� ��() , ��( ���) , ��) ���( , ��� ��() , ��( ���) , ��) ���( , ��( ���) , ��) ���( , �() ���� . 
We now show that all the 15 tensors of the form	�	�	�	are 
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linearly independent while precisely 10 of the 15 tensors of 

the form�	 are so, so that, in all, there exist 25 linearly 

independent isotropic tensors of rank 6, which form a 

complete set. 

Consider an equation of the form  
.�������()+. . . +	
.	3��)��(��� =0. 

Choosing 

i = j = 0, k = l = 1, m = n = 2, 

the above equation gives a 1 = 0; the rest of the a’s can be 

similarly proved to be equal to 0, so that one may conclude 

that all the tensors of the form �	�	�  are indeed linearly 

independent. 

Next, to consider the linear independence of tensors of the 

form	�	 , we see that from Appendix B, we get  ����( bcdel 
=(−1Z2 &&

��b��c��d��e��l��b��c��d��e��l��b��c��d��e��l��b��c��d��e��l�(b�(c�(d�(e�(l
&& 

=- [��b ���( cdel − ��c ���( bdel +	��d ���( bcel − ��e ���( bcdl +	��l ���( bcde] 
=- ���([��b cdel −	��c bdel +	��d bcel −	��e bcdl +	��l bcde]. 

Hence, for d = 4, we will have ��b cdel −	��c bdel +	��d bcel −	��e bcdl +	��l bcde = 0. 
Choose now 

p = j, q = k, r = l, s = m, t = n, 

to get ��) ���( =	−	��� ��() +	��� ��() −	��� ��() +	��( ���), 

which shows that ��	)	 �	�	�	( can be expressed as a linear 

combination of the tensors ��� , ��� , ��� , ��( . 

One can similarly show that each of the four tensors ��) , ��) , ��) , �() , 

can be expressed as a linear combination of tensors of the 

form �op qrst  

in which n never appears as an index of	�. It follows that 

each of the five tensors ��) , ��) , ��) , ��) , �() , 

can be expressed as a linear combination of the ten tensors ��� , ��� , ��� , ��( , ��� , ��� , ��( , ��� , ��( , ��( . 

It is now not difficult to show that these ten tensors are 

linearly independent. For let 
.��� ��() +	
0��� ��()+. . . +	
.	F��( ���) =0. 

Then the choice 

i = j = n = 0, k = 1, l = 2, m = 3, 

gives a1 = 0; all other a’s are proved to be equal to zero in 

exactly the same way. It follows that the ten tensors are 

indeed linearly independent. Thus we conclude that there are 

15 + 10 = 25 linearly independent isotropic tensors of rank 6, 

forming a complete set, under SO(3, 1) and SO(2, 2). 

5. Conclusion 

We have obtained all the linearly independent isotropic 

tensors of ranks from 2 to 6, under the non-compact rotation 

groups SO(1, 1), SO(2, 1), SO(3, 1) and SO(2, 2). We find 

that their number is exactly the same as that of corresponding 

linearly independent isotropic tensors under the compact 

rotation groups SO(2), SO(3) and SO(4) as given by Naila 

[11] and Faiz and Rashid [10, 12]. 

Appendix A 

If 	�
�	�� is an element of uv(3, ℝZ , then it transforms 

vectors	�� 	 	ℝ1, to 

��/ = 
����; 

as 	��	�	� is a tensor of 3
rd

 rank,	�
�	�� will transform it to 

����/ =	
��
�(
�)��(). 

Now if a, b, c are 3 row vectors so that 

x
yz{ 
is a 3×3 matrix, then we know that 

det x
yz{ = 	����
�y�z�. 

Hence, if for a given matrix �
�	�� of SL(3, ℝ), we set 
� as 

its ith row, then 
� =	 [
�	. 
�	0 
�	1]	i.e.f
�g� = 
�� , 
and similarly for	
� 	
56	
�; we then have 

����/ =	
��
�(
�)��() 

=��()f
�g�f
�g(f
�g) 
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=det x
�
�
�{ = 	 ����6|} x
.
0
1{ = 	 ���� det�
��� 
⇒	����/ = ���� 

showing that ��	�	�	  is indeed isotropic underSL(3, ℝ ). In 

particular, it will be isotropic under both SO(3) and SO(2, 1) 

as these are just subgroups of SL(3, ℝ). In fact, the result 

holds for arbitrary n≥ 2 rather than for just n = 3; thus we 

have ���#�...#� 	is an isotropic tensor under SL(k, ℝ), k ≥ 2. 

The fact that	��	�	is isotropic under both SO(2) and SO(1, 

1) follows directly from this result. 

Appendix B 

Let A ≡ �
��� ∈ u�(5 − 1, 1Z, with 

i, j = 0, 1,..., n – 1, 

and metric in M (n – 1, 1) given by �0 =	�F0 −	�.0−. . . −	�)�.0 . 

Then 

� = 	 [
F
. 	 ∙∙∙ 
)�.], �� =	
���
���

F�
.�∙∙∙
)�.� ���

��� 
where 


� =	
���
���

F	�
.	�∙∙∙
)�.	����

���, 
�� =	 �
F	�
.	� 	 ∙∙∙ 
)�.	�� 
so that f
�g� =	
�� 	and	f
��g� =	
��. 

Put now 

�� = 	�� = 	
���
���


F	F
F	. ∙∙∙. . . 
F	)�.−
.	F– 
.	. ∙∙∙. . −	
.	)�.∙∙∙−	
)�.	. 	− 
)�.	0	 ∙∙∙ −
)�.	)�.���
��� 

=	[
�F
�.. . . 
�)],  
with 


�� =

���
���


F	�−
.	�...−
)�.����
���. 

It can now be noted that 

det	
���
���
� 
�"�
���...
�$%�� ���

���
�
=��"��...�$%� det ���

�� 
F�
.�... 
)�.� ���
��
 

 =	 ��"#�...#$%� det �� = ��"#�...#$%� , 

det�
��"
��� . . . 
��$%�� 	= ��"#�...#$%� det[
�F
�.. . . 
�)�.] 
=��"#�...#$%� det �� 	= ��"#�...#$%� 	(det � . det �) 

=(−1Z)�.	��"#�...#$%� , 


�� . 
��	(matrix multiplication) 

=[
F	�
.	� . . . 
)�.�].
���
���


F	�−
.	�...−
)�.����
��� 

=
F	�
F	� − 
.	�
.	� 	−. . . −	
)�.�
)�.� 

=
� . 
	�	(scalar multiplication inM (n – 1, 1)) 

=	��	�, 

so that we get  �"#�...#$%���"��...�$%�  

=	det
��
��
�� 
�"�
���...
�$%�� ��

��
�� . (−1Z)�.	 det�
��"
��� . . . 
��$%�� 

=	(−1Z)�.		det	
���
��
� 
�"�
���...
)�.� ���

��
�
. �
��"
��� . . . 
��$%��  
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=	(−1Z)�. &
&

��"	�"��"	�� . . . ��"	�$%����	�"���	�� . . . ���	�$%�...��$%�	�"��$%�	�� . . . ��$	%�	�$%�
&
&
 

which is the required equation number (3) mentioned in the 

text. 
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