American Journal of Applied Mathematics
2017; 5(1): 19-30

http://www.sciencepublishinggroup.com/j/ajam

doi: 10.11648/j.ajam.20170501.13

ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online)

D Jl ar ) -
otlencePr

Science Publishing Group

On Modified DFP Update for Unconstrained Optimization

Saad Shakir Mahmood, Samira Hassan Shnywer

Department of Mathematics, College of Education, Almustansiryah University, Baghdad, Iraq

Email address:

saadshakirmahmood@yahoo.com (S. S. Mahmood), samira.hassan75@yahoo.com (S. H. Shnywer)

To cite this article:

Saad Shakir Mahmood, Samira Hassan Shnywer. On Modified DFP Update for Unconstrained Optimization. American Journal of Applied
Mathematics. Vol. 5, No. 1, 2017, pp. 19-30. doi: 10.11648/j.ajam.20170501.13

Received: December 25, 2016; Accepted: January 9, 2017; Published: February 6, 2017

Abstract: In this paper, we propose a new modify of DFP update with a new extended quasi-Newton condition for
unconstrained optimization problem so called (@ — DFP) update. This update is based on a new Zhang Xu condition we show
that (&« — DFP) update preserves the value of determinant of the next Hessian matrix equal to the value of determinant of
current Hessian matrix theoretically and practically. Global convergence of the modify is established. Local and super linearly
convergence are obtained for the proposed method. Numerical results are given to compare a performance of the modify
(a — DFP) method with the standard DF'P method on same function is selected.
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1. Introduction

The quasi-Newton methods are very useful and efficient
methods for solving the unconstrained minimization problem

min,egn f(x) (1)

Where f:R™ - R is twice continuously differentiable.
Starting from point x, and a symmetric positive definite
matrix By, quasi-Newton method generates sequence {x;}
and {By} by the iteration of the form

Xx+1 = Xk — Blzlvf(xk)tk = 0’ 1!"' (2)

where the update B, € R™" satisfies the following famous
quasi-Newton equation or (secant equation):

Bri1Sk = Vi 3)
with
Sk = i, Y = Grew1 — Gk 4

where A is the step length and dj is the search direction
that is obtained by solving the equation:

dy = —BzZlVf(xk) Q)

in which g, = Vf(x;) is the gradient of f (x) at x;, and By, is
an approximation to the Hessian matrix G, = V2f(x;). The
updating matrix By, is required to satisfy the usual quasi-

Newton equation (3) with equation (4). So By, is reasonable
approximation to Gy .

The (@ — DFP) update consist of iteration of the form (2)
where d; is the search direction which of the form (5) and
the Hessian approximation B is update by the (—DFP)
formula with quasi-Newton equation (3).

B - B ysTB+BsyT + yyT (1 sTBs) (6)
k+1 ™ yTs yTs\a = yTs
y's [Det(B)]?

where a = -
s'Bs

@)
The formula is the modifying of DFP update which is
satisfy equation (3) and in the next section.
In the following discussion, we shall use ||*|| and ||*||z to
denote the 1,-norm and the frobenius norm, respectively. For

a symmetric positive definite matrix M € R™™, we show
also use the following weighted norm
IXIly = IMXM]|p, ¥V X € RV (8)

2. a — DFP Update

Let § = a — 1 and from Zhang Xu condition, we have:
s*=s+ (a—1)s,
which gives s* = as 9)

From quasi-Newton equation (3), we get:
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By 1Sk = ¥V which is extended of quasi-Newton equation (10)
Now, substitution (9) in (10), we obtain:
(11

Let we consider the determinant of Hessian matrix for the
DFP update [7] with replace each s, by sj, we get:

Bri1as, = yx

YisilDet(By)]

Det (By41) = (12)
Sk Bksk
And from equation (9), we obtain:
kask[Det(Bk)]
Det (By+1) = “asThask (13)
Which gives:
T
_ Y SklDet(Bg)]
Det (By41) = asT Brst (14)
1
we suppose that Det (B, 41) = et
Then the equation (14) becomes:
1 yise[Det(By)]
Det(By) askBksk
Now, by multiplying both sides W1th 5 Ve get:
1 YRSk
[Det(BI? ~ ask Bysk (13
Hence
a(skBisk) = yi sk [Det(Bi)]?.
Finally:
T 2
a = yksk[DEt(Bk)] (16)

SZBkSk
In addition, by more simplifying we can write By 1(q-prp)

as follows:

VS B+Bsy ViY, S;. Bps
By +1(a—prp) = By — W‘F kk(1+ k kk>(17)

Vi Sk Vi Sk

which is equivalent the following formula:

* T
" (Vi—Bisi)vi +yk(vi—Bisi)

Bk+1(a—DFP) = By y’rs;

T
(Vk=BkSk) SiYKYi

12
(Viesk)

and also the formula (17) is equivalent the following
formula:

YEY
Bk+1(a—DFP) = (1 - y;€ )Bk (I B yksk) + y’I’Zsz

where s, is defined by (9). It is clear that any formula is
symmetric and satisfies the quasi-Newton equation.

(18)

(19)

3. Convergence Analysis

Now, we study the global convergence of the « — DFP
update:

At the first, we need the following assumptions:

Assumption (3.1)

(A): f:R™ - R is twice continuously differentiable on
convex set D € R"

(B): f (x) is uniformly convex, i.e., there exist positive
constants n and N such that for all x € L(x) = {x |f (x) <
f(x0)}, which is convex, where x,, is starting point, we have:

nlvl? <v'V2f()v < Nlvll?, vv ER"  (20)

The assumption (B) implies that V2f(x) is positive
definite on (x),
and that fhas a unique minimizer x* in L(x).

By definition of weighted norm (8) and equation (9),
satisfy extended (Q-N) equation then Wy, = s; and y, =
W~'a s that is then

@1

Yk = Z;Vkask

where G, = W™L.
Now by return to the property (20) and from definition of
weighted norm, we get:

T
Yk ASk

T 7~
asj Gras,
= ZkkDk < N
llasgll?

llasellz

(22)

Where G}, is the average Hessian, which is defined as:

—_— _ 1 2 %
= [ [} V2f (i +Os7) d 23)
and
1 asgll> _ 1
N Vi xSk n
Since also
R 2
lyel® _ vive _ asgGrGrask _ a®siGk sk 25)
asgyk asZyk asZa(—;}sk azs,’f(—;;sk

Assumption (B) of (3.1) means that G is positive definite
proven, thus its square root is well defined. There is a
1

symmetric square root G2 is satisfying

— 1 __1
Gk = sz. sz
1
If we let wy, = Gy2asy, then (26)
~l~l~l~l
”yk”2 G 262 G2 Gyl asy
T 1 1
1 T 1
(er2ase) e Grtas)

= (27)

w1

Substitution equation (26) in equation (27), we get
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.
lyll® _ wi Grwi

=
aspyi

And from (20) vTV2f (x*)v < N||v||?, we know ||v|? >
0. Then we can divide both sides from this, we get:
Vi, Grv

<N
llvell?

That mean

T~

wi Gpwi

—kTk < N
Wi Wi

(29)

Then from equation (28), we get:

llyll?
<N
asp Yk

(30)

In addition, from equations (21) and (9), we get:

1yill = [|Gesill

-1

il < [IGelllsi I sl < (|G| el 31

Which gives:

(32)

And

lsell _ 2
< - (33)

Therefore, from the above discussion, we have:
Lemma (3.2)
Let f* R™ — R satisfy Assumption (3.1). Then

sl Nyell sy sevee Iyell®
Wil lsicll” il Myiell?” sy

Are bounded.
Hence, we have

T
Isell Wil sivie s e Myell®
il Nl Nl Myicll?” 53"y,

Are bounded.
Lemma (3.3)
Under exact line search, Y||s,ll? and X||v,l|? are
convergent.
Which gives:
lIsgll?
lykli?
From lemma (3.2), we have

)
% is convergent and bounded.
k
Since Y|y, I? is convergent, we get:

IszI? is convergent, then

1
Slsil? < 2 Slyill?

is convergent and bounded.

Which implies Y||s;||? is convergent, where f (x*) is the
minimum of f (x).

Lemma (3.4)

For all vector x, the inequality

lg@II* Zn[f(x) = f(xM)]

holds, where f(x*) is the minimum of f (x).
Proof:
Since the function

(1) = f(x + 7(x* —x)), 0<t<1)

(34

is a convex function, we have:
f(x +1(x* — x)) > fx)+1(x* —x)Tgx)
In particular, set T = 1, then we have
fla+ =)= f)+ & —0"g()

fOD = f)+ & —x0)"g(x)
Which gives

fO) = f) = (" —x)"g(x)
By multiplying both sides with (-1) we get

fG) —fx) < —(x"—x)Tg(x)

By Cauchy-Schwarz inequality, we get
fO) = fO) <" =0)TgGl < llgCOllllx™ — x|l (35)
From (24) and (9), we have

T
Yk Sk
lalllsill* < ——

< (g6)=9() sk

lallls,)? < e (36)
< lg COllx™ — x||
n
Hence
O\llx* — x
allx — x| < lg COlI [
n
Oll[|x* —x
et — x| < lg COIllI I
an
Letan =n
llx* —x|I* < [lg@lllx* — x|l /n
llx* = x|l < lgCIl/n (37

Substituting (37) into (35) establishes (34).

Theorem (3.5)

Suppose that f(x) satisfies Assumption (3.1). Then under
exact line search the sequence { x,} generated by a —
DFP method converges to the minimizer x* of f©
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Proof: Consider a« — DFP formula of inverse Hessian
approximation

askas,’f
as;fyk

T
_ Hryeyi Hi
y;fHkYk

Hiyq = Hy (33)

and from @ — DFP formula (19) of Hessian approximation
T
B = (1= 250) B (1= 2RE) +

kYk
Obviously, By 1Hy+1 = I. By computing the trace of (39),
we have

ViV
aslz‘yk

(39

T
asgBryr

aSEBkaSk(yEyk) ka ( )
as,fyk

(as;fyk)z “5 Yk

Tr(Bys1) = Tr(By) — 2

The middle two terms can be written as:

aSlZBkSk}’lZ}’k
(asgyi)?

T
asg Bryi
T
aS Vi

From equation (4) and (5), we have
Sk Vi = Sk (Grr1 = 9k) = Sk Gt — Sk Ik

From the property of the DFP method [5] gr,,sx =
st gr+1 = 0, we obtain:
Nk @2k YieVk Vi

(@s]yi)?

_ 2 X agiyi

T
asy Yk

[ZgIZYk + yIZ.Vk]
el s Dw—
SicVk
From equation (4)and (5) again, we get
_ 29kYi + ViV
IiHi g

_ Gies19k+1 ~ eI

glfHkgk

_ Ngraal*=llgl?
ngkgk

(41)

From the positive definiteness property of Hy, 1, then (38)
becomes:

Hkykngk]
T o |9k+1

91€+1Hk+1gk+1 = 91€+1 [Hk - I Hkyk

* *T
_ g [H _Hkyk_yf?Hk]g g, Sisie ) g
k+1 k yk Hky k+1 k+1 S;Tyk k+1

kYkJ’k k

=k +g9)" [Hk ] Ok + gr)

Vi Hiyieyic H T i Hiyiyi He
= |yiHi — — —t ot |
Y He Vi Vi He Vi
+ 9x)

glfHkkang

= TH, —yI'H,) + gt H, —
[()’k « — Vi Hi) + gi Hy y;Hkyk

= (91€Hk -

gICHkkag kYk
Vi Hk)’k

] Vk + gx)

g; kkag k

Wk + 9i)
YEH Yk >k *

glfHkkanggk

+ giHe g — YT Hey
k

= gzszJ’k -
ngkYkYk Hi gk

— giHy Yk + 9k Hie i — VT Heve

= gIZHkyk
ngkkaZHkgk
Vi Hkyk

Hkykngk]
Vi Hkyk

= gIZHkgk -

=91€ [Hk_

_ Hy(Gr+1
(Gr+1

= 9k)(Grs1 — gk)THk]
= k)T Hi (Gre+1 — 9i)

=g;€ Hy

_ He(Gr1Gk+1 — Giesr Gk — GG + gkg;?)Hk]
(r+1He = i)™ (i1 — i) *
[ Hyyyyi Hy
= 915 Hk - T d
Vi He Yk

Which gives:

[ngHkgk] [g£+1Hk9k+1]
(95 Hegi] + 194 41 Hr Gies1]

T
Ik+1Hir19141 =

By finding the inverse number of the expression, we obtain

1 1 1
T =T T (42)
Ik+1Hk+19k+1  Ik+1HrIk+1 Ik HrIk
using (41) and (42), then (40) becomes:
T_r(B )= T_r(B )+ ”.gk+1”2 _ ||gk||2 _
k+1 k g£+1Hk+1gk+1 ngkgk
lgr+1ll? lly el
T T (43)
Ik+1HkIk+1  AS Yk
By recurrence, we obtain:
T_r(B ) — T_r(B ) + ”.gk+1”2 _ ”90”2
k+1 0 g£+1Hk+1gk+1 9T Hogo
2 2
kgl kil
Koo iRl gk 2L (44)
gj+1Hjgj+1 asjyj

Therefore, by lemma (3.2), there exists a positive number
N which is independent of k, such that

2
lgr+1ll> sk g+l

Tr(Bry1) <
g£+1Hk+1gk+1 Jj= og,+ Hjgjy1

+ Nk (45)
In the left part, we will prove that if the theorem does not

hold, then the sum of the last two term in (45) is negative.
Now consider the trace of Hy 4, from (38), we have
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2

s*

5j
+Z] =0 ,T
s; ¥j

Nl
Tr(Hiy1) = Tr(Ho) — 21 =0 T)H)y

(46)

Since Hy,q is positive definite, the right hand side of
(46)is positive. By lemma (3.2) there exists n > 0 which is
independent of k such that

5 vl k
Z?:o ij]H;y o 47)
Note that
2 2 2
OF Hy)™ < [Hyll [y (48)
and
Y Hy; > gj1H; g4 (49)

By the positive definiteness of H; and exact line search,
then by using (49), (48) and (47) in turn, we obtain:

lyl° _ x
F <= (50)

T
9j+1Hj9j+1 yjHjyj H,y,
Th L < yk < <
/ TE0 P T vHp T on

Iy I
By using Cauchy-Schwarz inequality and (50)
9]T+1H i9j+1

Z ||91+1|| ZHQJH”
g]+1 ]gl+1 ”y ” j=0 ”y]'”2
f(z’? ||g,-+1||>2
R\ |yl

Now suppose that the theorem is not true, that is, there
exists € > 0 such that for all sufficiently large £,

(51

lgill = € (52)

Also, by lemma (3.3), there exists a constant 7 > 0 such
that

" = xll < (" = 0)"(g(x) = g(x)) /n

1
fOa) = fxpeer) = 577”5;2”2

which gives ||sg|| = 0 and further ||y, || = 0. Then, by (51)
and (52) we deduce, for any £ sufficiently large, that

2
Z;c: T||gj+1|| > Nk

0
9j+1Hjgj+1

(53)

The above inequality implies that the sum of the last two
terms in (45) is negative.
By (53) and (45), we immediately obtain:

g rsll?
T
Ik+1Hk+19k+1

Tr(By+1) < (54)

Note that, for a symmetric positive definite matrix, the
inverse of trace is the lower bound of the last eigenvalue of
inverse of the matrix. Then, it follows from (54) that

T
gk+1Hk+lgk+1
lgr+1l?

<u (55)

Where p is the lower bound of the last eigenvalue of
Hj 1. However, from the property of Rayleigh quotient [9],
we have

T
Ik+1Hk+19k+1
lgr+111?

>u (56)

which contradicts (55). This contradiction proves that {x;}
converges to x* and that our theorem holds.

4. Local Linear Convergence of « — DFP
Method

Now, we shall prove the local linear convergence of
a — DFP method of equivalent formula (18) for >0 under
exact line search.

The a — DFP iteration we consider is:

Xip1 = X — @B Fy) (57)

r Byy1 =
. T T .
(k—Brsi)ve +yi(Ve—Bisi)  (yk—Bksk) sk eyl (58
T - T a2 YiYi) (58)
Vi Sk (Vksk

By, +

So that replace Vf(x) and V?f(x) by F(x) and F'(x)
respectively.
In this discussion of this subsection, we need the following

assumption:
Assumption (4.1)
(A): The mapping F:R™—>R is continuously

differentiable in open convex set D € R™.

(B): There is x* in D such that F(x*) = 0 and F'(x*) is
nonsingular. (€): F'(x) satisfies the Lipshiz condition at x*,
that is, there exists a constant y > 0 such that

IF'(x) = F'(xe)I < yvllx —x*|l, x € D

We begin with some general converges results.

Lemma (4.2) [9]

Let F: R™ — R"satisfy assumption (A). Then for any u, v
,x* € D c R™ we have

IFw) = F(v) = F'(x") (u = v)l

< [supasi||F'(v + t(u

—vll (59)

Furthermore, assume that F' satisfy assumption (C), then
IF(w) — F(v) = F'(x")(u — )l < yvo(w,v)llu — vl (60)
and

llu—x"|[+|lv—x"] I

IFw) = F@) = F' ()l < v . —vll, (61)

where (u, v) = max{|jlu — x|, [[v — x*[|}. (62)
Lemma (4.3)

Lety,s* € R",y,s* # 0,and p € (0,1).If ||y — s*|| <
pliyll,
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then yTs* is positive and

ls* ¥Ts' V2,
2l < — <
| il <A1 (nyuns*n) SP (63)
Conversely, if yTs* > 0 and (63) holds, then
lly = s*Il < 3pllyll (64)

Theorem (4.4) [9]
Let F: R™ —» R™ is satisfy the assumptions (A), (B) and
(C) in (4.1), U an update function such that for all (x;, By) €

dom U and
By 11 € U(xy, By), we have (65)

IBisr = F' eI < NIBy = F (eI + 2 (Ul — %711 +
llxe = x*1D, (66)

where y is some constant, or that

IBrs1 — F'(x)Il < [1 + pyo(xy, xg4)IIBe — F' (x| +

P20 (X, Xi41) (67)
where p; and p, are some constants, and
0 (X Xpe1) = max{llxe — x*[l, Ixpe4a — 2711} (68)

Then, there exist constants € and &, such that, for all
llxo —x*|| < € and ||By — F'(x*)|| < &, the iteration (57)
and (65) is well-defined, and {x, } converges to x* linearly.

To study the local convergence of @ — DF method, it is
required to estimate || By, — V2f (x)]l.

As show in the following theorem, there is a matrix
T

P=1- ;'}%y'; in By,q — V2f(x*). Since

lIsellllyl
P|l, =~ 69
P, = L= (69)
It is a secant of the angle between y;, and sj. In general, y;
and sy, is not parallel. So ||P||, may be quite big, and it is not
suitable to estimate ||Bxi; — VZf(x*)|| by means of
£, —norm. However, near x*,

1
f(x) closes a quadratic function, and hence A zy, and
1
Azs;, are approximately parallel, where 4 = V2f(x*). In
motivates us some weighted norm to estimate ||Bj,q —
V2f(x*)||. Then, we have

1 1
IEla—prp = IEN _x = ||a2EA (70)
A 2F

F

Below, we first develop the linear convergence of a —
DFP.

Theorem (4.5)

Let f: R™ — R satisfy Assumption (c) in (4.1). Also let

(71)

In a neighborhood of x*, where u = ||[V2f(x*)]1],
0 (X, X 11) = max{||x, — x*||, |2 41 — x*}|. then, there
exist € >0 and § > 0 such that for ||x, —x*|| < € and
1By — V2f (x*) |l g—prp < 8, the iteration (57) and equivalent

1
Yo (X, X41) < 3

formula (18) of @ — DFP method is well-defined, and the
produced sequence {x;} converges to x* linearly.

Proof:

Based on the lemma (4.4), to prove the linearly
convergence of @ — DFP method, it is enough to prove

|Brs1 — sz(x*)”a—DFP
<1

+ p10 (g, X ) IBe = V2 f (X)) g—prp

+020 (Xg, Xge1) (72)

where p; and p, are positive constants independent of x;, and
Xy 41, 0 1s defined by (68).

1
Le A =V?f(x*) and M = [V2f(x*)]"Z, which is F'(x*)
1
and [F'(x*)] 2 respectively, also are symmetric positive
definite matrices.

From (57) and the formula (18) of @ — DFP, it follows
that

*\. T T
Bk+1 — A= PT(Bk —A)P + (yk—Ask)yk+yk(yk_Ask) P

Tk 7
where
* T
— 7 _ SKkYk
P=1 Vs (74)
Thus, from (73), one has
|Bi+1 — Allg-prp
< IPT(By — APl g—prp
N H(yk — Asi)yi
ylfs’z a-DFP
4 yi(vi—asi)P 75)
Yiesk

a—DFP

Note that ||P||, is defined by (69).

The first term on the right hand side of (75) can be
estimate as:

11
A2PA 2

2
”PT(Bk - A)P”a—DFP < ”Bk - A”a—DFP
2

< 1B = Allgpre (76)

moreover, for the rest two terms on the right hand side of
(75) and by (70) we have:

1 1
A72(yy — Asp)A7zyy

T o*
Yk Sk

Vk — Asp)yi

T o*
Yk Sk

a—DFP

1 1
A 2y —A2s;,
(=Asi)yi <1 H Tk
YiSk Tz

(77)

1
a-DFP AzZsy,
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and

1 1
A2y (v — AS;)TPA_E

Ve — AS;)TP
Yis |
F

T o*
Yk Sk

a—DFP

1 1
||A 2y —AZsy,

T
yie(yi—Asp) P

1
o < = T (78)
kK a-DFP AZsy
where
SR
T A"2yy | | AZsy,
_ Vi Sk —
Z=7 1 T T2 1 (79)
o Ry e P

which by lemma (4.3) implies the curvature condition
ERR:
(472m) (a2si) = vEsi> 0

Now, we estimate ||Byi1llq—prp by using (76), (77) and
(78), we have

1 1
1Bis1 — Allg-prp < = By — Allg—prp + (Z_2+

1 1
”A 2y —AZsy,

H— (80)
z AzZs},
Note from lemma (4.2) that
1 1, 1 .
472w = azsie]| a2 v - asi
T =T 1
[l42si el /[|4
_oy 1 — Asgll
= A==
Sk”
llyx — Asll
lIsgll
1
Sy o(Xe, Xpes1) <3 (81)

. * * 1 *
Since |lyx — Aspll < llsglle y oGex, xpe1) < 3 lIskll
By lemma (4.3), we have:

lyi — Asill]®

1-2z2<|u
lIszll

< [uy o (e, x4 )12

Consequently, if x; and x4 are in the neighborhood of
x*, then

1
1-22 < [uy o(xp, x4 )]? < >

1 1
72 < 2 < py o(Xp, Xps1)

1 1—2?

z z?2

[uy o(xy, xk+1)]2

<1+
1y o(xg, Xpr1)

=14 py o(xp Xp41)
So, the two terms in (80) satisfy respectively.
Ziz 1Bk — Alla-prp < [1+ py 0Cex, X4 DIIBx — Alla-prp  (82)

and
1 1
1 1 ”A 2y, — AzZsy
Gyt
2 1
7 | AZs}
< [(1 + H]/O'(xk;xk+1)) + (\/m)]wa(xk.xkﬂ) (83)

combining (82) with (83) into (80), we have:
IBi+1 — Alla-prp

< [1+uy oG, X )IBr — Alle—prp

4 4
+ §+ 3 [uy o(xg, Xpe41)]

<[1+py ol xks)IBx — Allg—prp + 3 1Y 0 Xk, Xpe11)

Which completes the proof by applying lemma (4.4) with
pr=wuyandp, =3puy.

5. Super Linear Convergence of a —
DFP Method

Now, we shall prove the super linear convergence of the
a — DFP method. the convergence analysis in this section
mainly Dennis and Mor'e [2]. The super linear convergence
of the sequence {x;} generated by the iteration (57) is
generally characterized by the following theorem.

Theorem (5.1) [2]

Let F: R™ - R™ is satisfy (A) and (B) in Assumption
(4.1). Let { By} be a sequence, of nonsingular matrices.
Suppose for x, € D, that the iteration generated by (57)
remain in D. x;, # x*(Vk = 0). Suppose also that {x;}
converges to x*. Then {x;} converges to x* at super linear
rate if and only if

liInk—)oo ||(Bk_Fl(f*))(Si)' =0
lsill

(84)

Theorem (5.1) indicates that if B, converges to
F'(x*) along the direction s;, then @ —DFP method
converges super linearly. This theorem is very important in
analysis of « — DFP. Equation (84)is called the Dennis
and Mor'e characterization of super linear convergence.

To apply theorem (5.1), we need a refinement estimate
[|By+1 — F'(x*)|| which is established with the help of the
following lemmas.

Lemma (5.2)

Let M € R™ " be a nonsingular symmetric matrix, If, for
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1
1€,
The inequality
My, —

holds, then for any non-zero matrix E € R™", we have:

“ispll < AlIM sl (85)

(@: 1 - DIM s> < ylfsié < @+ DIM sl (86)

b): ||E[1 y):”; =AT=pPlElR67)
—1 % T
(C):HE[I—(M sk)(iwyk)
Vi Sk F

< [VT=p97 + (- 7 PRl g, (s9)

Where
B
p= (1-2)2 [ ,3] 'V = B tsy €[0,1] (89
Proof:
Note that

yise = My )" (M tas,) = My, — M as,) "M as;, +
IM~ asy ||? (90)

Also, it follows from Cauchy-Schwarz inequality and (85)
that

- M tas,) "M tas,|
< My, — M~ asi || IM~ asgl

[(Myy

=AM~ as |I? o1
From (90) and (91), we get
VieSk < MM asgll? + 1M asill? = (1 + DIM s l?
And, in same way, we have
(1 - DM as,|? < yis;

Which gives the first result (a).
Now, we will prove (b) By using the property of the
Frobenius norm of a rank-one update.

A+ xy" Il = lAlIE + 2y"ATx + [Ix]1[lylI?
To prove (b) we need the following property
IEA —uvDIIE = IIENF — 2vETEu + | Eull*[lv]%.
In particular,

M~ ask

Letu = ,v =M 1as,

ot~

yk as

M~ tas,)(M™as,)T

T
Vi Sk

F

) (M~ tas, )TETE(M™1as,)

= |lEIF -
F Vi Ay .
EM as
HyTTsk M~ as||*
k XSk
IEM ™ as||?
= ||E|Iz + (=2yF + M ta —_
IEI2 + (25T, + 1M~ as, ) =t
By using (a) and (89), we get:
1Mt asll? = 2yfas, < — vias, — 27— 5 vEas,
1-24 .,
=-(F=7)vtas.
And therefore
_ _ 2
HE [1 B (M tas,)(M 1ask)T]
Vi as P
1-22 IEM ™ asy||?
<||E|I} = ——yT e
” ”F 1_/’{ ykask< (y]’i‘ask)z
<[1_ 1-21 |[EMtas||? ]” 2
- (1 =22 M~ as|?ENZ F'

from (89) again, we get:

Je[:-
Which shows (b):
M Yas, ) (M tas,)T
HE[I—( K 2 ] < J1=p9Z ||E|,.
F

Vi @Sy
Finally, we prove (c) by means of (b). It enough to prove
that

2

(M~ lasi ) (M as)"]
<1-pd*|IE|I}

T
Vi &Sk

JUFE

||E M_iask(M;iask—Myk)T <
Y ASk F
-1 (IMyk-MTtasg||
1-2 ( [IM~Lasl ) IENF ©2)
from (a), we have:
_n-1___r
e = a-=-2 M~ L asy|? ©3)
JTasy (M~ asi |l (|IM~ s, — My |I|E]| -
k
IM~ s, [IIM~ as, — Myl
<@a-Mn1 E
( ) ”M_laskllz ” ”F
M las,— M
<|\vicawr+a -] i Yelll ey
IM~ asy ||

which proves (c).
We have known that if f:R™ — R satisfies Assumption
(4.1), then (72) holds.



American Journal of Applied Mathematics 2017; 5(1): 19-30 27

Then under Assumptions of the theorem (4.5), the
preceding lemma can be applied with the sitting

N R

[F'(x)] =A%,

Y = IB, — sz(x*)“a—DFPa Y41 = 1Brs1 —
sz(x*)”a—DFP,

and & = max{p, 0 (xy, Xy11), P20 (X, Xpe41) -

Due to the linear convergence of the sequence {x;} gives
in theorem (4.5), we have Y,;7-; & < +o0, and can sequnetly
by lemma (5.3), there exists a constant h > 0 such that

A=F'(x*) =V f(x*),M =

limy oo+ ||By — F'(x")lg—prp = h %94)
Hence
limy,o0l|Bx — F' (x")la=pFp »
is exists.
Lemma (5.3):

Let {¢;} and {6, } be sequences of nonnegative numbers
satisfying

Prr1 < (1 + 6 ) Py + 8 95)

and

Yiz O < +o0 (96)

then {¢,} is converges.

These results together then give rise to a refinement
estimate of ||Byyq — F'(x™)||¢—prp as follows:

Lemma (5.4)

Under the assumption of theorem(4.5), there exist positive
constants A4, A, and A3, such that Vx, ., € N(x*, €), we have

|Brs1 — sz(x*)”a—DFP

< [ 1-49%+ Aza(xk'xk+1)]”Bk = V2f ()l aprp +

A30 (xpe, Xpe1), 7
where ¢ is defined by (68) and
1 _1
’[sz(X*)] 2<Bk—[\72f(x*)] 2)
k= (98)

l
2

IBx=V2f (x")la-prp||[VZf (x*)]

Proof:
First m we write = V2f(x*). From (75), we have:

IBi+1 — Alla-prp
< I1P"(Bx. = APlla-prr

— Aas)yl
n H()’k 1)Vk

T
Vi XSk a—DFP
(yx — Aas)T
Vie\Vk k
Yic @S a—DFP

Let

L |
A2aspy A 2
Viask

1 1
R=1- JE,=A2(B, —A)AZ  (99)

And
IPT (B = A)Pllq-prp . . L
(A_EPTAE> (A_E(Bk

-~ A)A‘%) (A%PA‘%)

F

= |IR" E Rllp

Similar to the proof of the theorem (4.5), we known that
there exists p; > 0 and p, > 0 such that

1 ||A 2y, — Azask”

< Z |

Ok — Aask))’}f
3’1:“51{

a—-DFP

Azask”

< P30 (Xy, Xie41),

Ve — Aask)TP

1 1
s
)

Vi @Sk a—DFP oz | A%ask”
< P40 (X, X 41)-
If we let A3 = p3 + p,, then (75) becomes:
1Bi+1 — Alla—prp < IRTER||r + A30 (g, X441 )(100)
Since

1 1
||A 2y, — Azasy,

1
Suy o(xg Xes1) <35 3

1
Azasy,

Then, by use of lemma (5.2), and from (99), we get:

A™ Zyk - A20{Sk||

Note that ||RTE||z = |ETR||z = |ER||F, thus, by using
lemma (5.2) again, we obtain:

IRTEIl

IRTER|s < l,/1—p192+(1 N1

V1 —pd?

IRTERIlF <

-1 1 ]
A 2y, — A20{Sk||

V1= p0?

+(1-D .

Azas;,

-1 1 ]
A 2y, — A20{Sk||

+@-n" NEN .

1
A20{Sk||
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Where 9, is defined by (98), From lemma (5.2) again and
by (89), we get

1 1
A 2y, — AZask”

IENF

5
IRTER||; < I\h — P07+ (1- D)

1
Azask”

< [ 1-492+ A,y O—(xkﬁxk+1)] [IE|l (101)

Where 4; = p, 4, = % . Substitution (101) into (100)
and from (99), we deduce the desired result (97). The proof is
complete

Finally, using the above four lemmas, we can establish the
following super linear convergence theorem of a —
DFP method.

Theorem (5.5)

Under the assumption of theorem (4.5), @ — DFP method
defined by (57) and (58) is convergent super linearly.

Proof:

1

Since (1 —2,9%)2 < (1 —%Alﬁﬁ), then (95) can be

written as:

”Bk+1 - A”(Z—DFP
< 1- 2'119]3 ”Bk - A”(Z—DFP

+ 220 (Xp, Xpe41) ||Bx — Allg—prp
+ 430 (X, Xge1)

= 1_719k ”Bk_A”a—DFP

+ 220 (g, X+ 1)1Bx — Allg-prp
+ A30 (X, Xpe41)

A
(5) 92131 = Alla-re

< |IBx — Allg=prp — lIBk+1 — Alla—prp
+ 2;1Bx — Allg—prpo (Xis Xk 41)
+ 430 (X, Xpe+1)

Summing the above from k& = 1 to infinity gives:

1 <,
41 ) O21B = Alla-orr
k=1

[ee)
< Z”Bk — Allg-prp
k=1

o
= > 1Bess = Alle-or
k=1
[oo)

+ 1, Z 0 (ks Xie41) 1By — Allg=prp

k=1
=S}

+1; Z 0 (ks Xe41)

k=1

Since, from theorem (4.5), {x;} is linearly convergent,
then Y57 0 (g, Xgaq) < 00.
Also, since {||By — Allq—prp} is bounded, then

1 (o)
51121913”31( — Allg—prp <

k=1

By (94), the lim;,_,, ||By, — All4—prp eXists.

Hence, if some subsequence of ¢
Al| o-prp} converges to zero.

The whole sequence converges to zero.

Therefore,

1By —

1B, — A)sill

lim
lIsgl

)
k—oo

Which proves the super linear convergence of {x;} by
theorem (5.1). Otherwise, there exists a positive constant
T such that

1By — Allg—prp = 7,V k = k¢, then

1 [e9]
k=1

Since 4; = £ > 0, it follows that limy, 9 = 0

Furthermore, we have:

1
Az

1
|A_7(Bk - A)ask

-1

By — A)sy,
Il (B * )sill < i
llsll oo |

1
Az

1
A2asy,

k—oco

1
||A_E(Bk - A)ask

= lim|lA[| - [[B, — Al

1
1By — All ||A2as)

= lm [lA]] - [IB) — All 9

Where U, is defined by (98).
Then, by using 9, = 0, we immediately obtain:

|(Bx — A)asll _

lim
llesl

k—oo

Hence, {x;} is convergent super linearly, we complete the
proof.

6. Numerical Results

This section is devoted to numerical experiments. Our
purpose was to check whether the modified a—
DFPalgorithm provide improvements on the corresponding
standard DFP algorithm. The programs were written in
MATLAP. The reason for their selection is that the problems
appear to have been used in standard problems in most the
literature these functions represent a result of application in
the branch of technology and industry.

The test functions are chosen as follows:
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1—f) =0 —-x)*+ 1 —x)% [1]

2 — A quadratic function. [10]

4
flx) = Z(loi‘le‘ +x3 +10*7ix?)

i=1

3 — Rosen brook's function. [4]

f&x)=>0- x1)% + (2, — x1)%

4 — Rosenbroc'k cliff function [8]

Fx) =107*(x; — 3)2 = (x; — xp) + 2001=%2),

5 — Generalized Edger function. [1]

F) = S [(gimq — 2)* + (g — 2)%x% + (i + 1)1,

6 — Extended Himmelbla function [1]

n/2
fx) = Z 1(95221'—1 + x5 = 11)? + (g1 + x5, = 7).

i=

7 — Rosen rock's function [6]

8 — Trigonometric function [1]

fO) =38 n—

Yj=1cosx; +i(1 — cosx;) —

. P 2
sinx; + e** — 1] .

9 — Extended Rosen rock function [1]

Fx) =32 ¢y — x2-)% + (1 — x53_1)% ¢ = 100

10 — Watson function [6]

Feo =) fRW)
£ = Byl = D)2 = (B gt/ ) - 1.

i
t=—. and
29

11 — Freudenstein and Roth function [3]

fO) ={-13+x +[(5—x)x, — Z]xz}z

+{_29 + x1 + [(xz + 1)x2 - 14’]x2}2

n/2
£G) = D 11006k = 38)? + (1 = %71
i=1
Table 1. Numerical results for DFP and a — DFP update.
. . . DFP o — DFP

Fun. Starting point Dim. Feval Tter. Feval Tter The Best

1 [0; 0" 2 6.0962¢-016 2 1.7909¢-017 2 DFP

1 [-1;-1]" 2 2.7900e-020 2 2.7900e-020 2 Same

1 [0; 1]7 2 3.2494¢-016 2 2.9082¢-017 2 DFP

2 [-1;0;—1;0]" 4 1.5076e-007 9 9.0146¢-007 7 a— DFP
2 [-1;0;0;0]" 4 1.8142¢-013 3 7.3965¢e-011 3 a — DFP
2 [-30;10;---]7 4 7.9747¢-008 34 7.2012¢-006 9 a — DFP
3 [0; 0" 2 1.7525e-018 20 1.6887¢-016 14 a— DFP
3 [0; =5]" 2 1.5615e-016 3 7.5140e-015 3 a — DFP
3 [-3;=3]" 2 3.0198¢-017 14 2.4041e-017 14 Same

4 [-0.5;---1" 4 0.2011 3 0.2011 3 Same

4 [0.5;---]7 12 0.2004 3 0.2004 3 Same

4 [0;---1" 12 0.2007 3 0.2007 3 Same

5 [-3;0]" 2 5.5433e-015 8 8.8715e-014 3 a — DFP

5 [0;5;---17 18 2.9846¢-008 9 3.6384¢-008 6 a — DFP

5 [-1;--17 18 1.4714e-010 7 5.3611e-009 6 a — DFP

6 [5;10]" 2 8.1785e-012 7 3.2157¢-011 6 a — DFP

6 [0; 01" 2 1.3697¢-013 8 3.1675e-009 8 a — DFP

6 [0; —1]" 2 1.1910e-012 8 2.7507e-012 8 a — DFP

7 [-1;1]" 8 2.0658¢-011 6 1.9815e-010 24 a — DFP

7 [0;1;---17 8 5.1583e-012 6 3.1487¢-011 8 a — DFP

7 [0;---1" 4 1.7728e-010 2 1.7728e-010 2 Same

8 [-0.5;---]" 12 7.6464¢-007 13 4.6941e-006 5 a — DFP

8 [0.5;---]7 12 3.7119¢-006 13 3.7598¢-006 4 a — DFP

8 [2;--1" 12 6.8965¢-007 21 1.8229¢-006 5 a — DFP

9 [1;1;1]7 3 0 1 0 1 Same

9 [—4;--]7 3 0.0220 40 0.0118 9 a — DFP

9 [10;10]" 2 3.5522 31 40.2765 8 a — DFP

10 [1;1;1;1]7 4 6.0707¢-017 3 1.0838e-016 3 a — DFP

10 [1;0;1;0]" 4 2.1626¢-013 3 3.5351e-008 3 a — DFP

10 [0;---1" 10 1.6053e-010 2 5.5796e-010 2 a — DFP

11 [5;10]" 2 5.7785e-010 12 2.2977¢-010 8 a — DFP

11 [—10; 20]" 2 2.3185¢-013 15 1.7572¢-013 9 oa— DFP
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. . . DFP a — DFP
Fun. Starting point Dim. Feval Tter. Feval Tter. The Best
11 [-7;15]7 2 1.6761e-012 13 8.3077e-012 10 a — DFP

7. Conclusion

In this thesis, we introduce a new modified of the DFP say
a — DFP update, we show that under certain circumstances
this update preserve the value of the determinant of hessian
matrix and without Quasi-Newton or based on the Zhang Xu
condition.

Global convergence of the proposed method establishes
under exact line search. The proposed method possesses local
linearly convergence and super linearly convergence for
unconstrained optimization problem.

Numerical results show that the proposed is efficient for
unconstrained optimization problem compared the modified
a — DFP method with the standard DFP method on same
function is selected, which suggests that a good improvement
has been achieved.
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