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Abstract: In this paper, we propose a new modify of DFP update with a new extended quasi-Newton condition for 

unconstrained optimization problem so called �� − ����	update. This update is based on a new Zhang Xu condition we show 

that �� − ���� update preserves the value of determinant of the next Hessian matrix equal to the value of determinant of 

current Hessian matrix theoretically and practically. Global convergence of the modify is established. Local and super linearly 

convergence are obtained for the proposed method. Numerical results are given to compare a performance of the modify �� − ����	method with the standard DFP method on same function is selected. 
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1. Introduction 

The quasi-Newton methods are very useful and efficient 

methods for solving the unconstrained minimization problem min�∈�� ����	                                 (1) 

Where �: �� → � is twice continuously differentiable. 

Starting from point ��  and a symmetric positive definite 

matrix �� ,  quasi-Newton method generates sequence {��} 
and {��} by the iteration of the form ���� = �� − ����������,  = 0, 1,⋯	               (2) 

where the update �� ∈ ��×�  satisfies the following famous 

quasi-Newton equation or (secant equation): ����%� = &� 	                                    (3) 

with %� = '�(� , &� = )��� − )� 	                        (4) 

where '	�  is the step length and (�	  is the search direction 

that is obtained by solving the equation: (� = −����������	                                (5) 

in which )� = ∇����� is the gradient of ���� at �� and �� is 

an approximation to the Hessian matrix +� = ∇,�����. The 

updating matrix ��  is required to satisfy the usual quasi-

Newton equation (3) with equation (4). So ���� is reasonable 

approximation to +���. 

The �� − ���� update consist of iteration of the form (2) 

where (� is the search direction which of the form (5) and 

the Hessian approximation B is update by the (−���� 
formula with quasi-Newton equation (3). 

���� = � − ./01�1/.0.0/ + ..0.0/ 3�4 + /01/.0/ 5	             (6) 

where � = .0/	6789�1�:;/01/ 	                         (7) 

The formula is the modifying of DFP update which is 

satisfy equation (3) and in the next section. 

In the following discussion, we shall use ‖∙‖ and ‖∙‖>  to 

denote the ?,-norm and the frobenius norm, respectively. For 

a symmetric positive definite matrix @ ∈ ��×� , we show 

also use the following weighted norm ‖A‖B = ‖@A@‖>, ∀	A ∈ ��×�	                 (8) 

2. D − EFG Update 

Let H = � − 1 and from Zhang Xu condition, we have: %∗ = % + �� − 1�%, 
which gives %∗ = �%                         (9) 

From quasi-Newton equation (3), we get: 
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����%�∗ = &� which is extended of quasi-Newton equation (10) 

Now, substitution (9) in (10), we obtain: �����%� = &�                               (11) 

Let we consider the determinant of Hessian matrix for the 

DFP update [7] with replace each %� by %�∗, we get: 

Det ������ = .J0/J∗6789�1J�:/J∗01J/J∗                      (12) 

And from equation (9), we obtain: 

Det ������ = .J04/JKLMNOPJQR4/J01J4/J                     (13) 

Which gives: 

Det ������ = .J0/J6789�1J�:4/J01J/J                     (14) 

we suppose that Det ������ = �789�1J�. 
Then the equation (14) becomes: 1�ST���� = &�U%�6�ST����:�%�U��%�  

Now, by multiplying both sides with 
�789�1J�, we get: 

�6789�1J�:; = .J0/J4/J01J/J                              (15) 

Hence ��%�U��%�� = &�U%� 	6�ST����:,. 

Finally: 

� = .J0/J6789�1J�:;/J01J/J                             (16) 

In addition, by more simplifying we can write �����4�7>V� 
as follows: 

�����4�7>V� = �� − .J/J∗01J�1J/J∗.J0.J0/J∗ + .J.J0.J0/J∗ W1 + /J∗01J/J∗.J0/J∗ X	(17) 

which is equivalent the following formula: 

�����4�7>V� = �� + O.J�1J/J∗Q.J0�.JO.J�1J/J∗Q0.J0/J∗ −
O.J�1J/J∗Q0/J∗.J.J0O.J0/J∗Q;                       (18) 

and also the formula (17) is equivalent the following 

formula: 

�����4�7>V� = WY − .J/J∗0.J0/J∗ X�� ZY − /J∗.J0.J0/J∗[ + .J.J0.J0/J∗ 	     (19) 

where %�∗  is defined by (9). It is clear that any formula is 

symmetric and satisfies the quasi-Newton equation. 

3. Convergence Analysis 

Now, we study the global convergence of the � − ��� 

update: 

At the first, we need the following assumptions: 

Assumption (3.1) �\� : f: �� → �  is twice continuously differentiable on 

convex set � ⊂ �� ���: �	���  is uniformly convex, i.e., there exist positive 

constants n and N such that for all � ∈ ^��� = {�	|�	��� ≤�����}, which is convex, where �� is starting point, we have: b	‖c‖, ≤ cU∇,����c ≤ d‖c‖,, ∀	c ∈ ��         (20) 

The assumption (B) implies that ∇,����	 is positive 

definite on ���, 
and that f has a unique minimizer �∗	in L���. 

By definition of weighted norm (8) and equation (9), 

satisfy extended (Q-N) equation then e&� = %�	∗ and &� =e���	%� that is then 	&� = +�f�%�		                                  (21) 

where +�f = e��. 

Now by return to the property (20) and from definition of 

weighted norm, we get: 

b ≤ .J04/J‖4/J‖; = 4/J0gJf4/J‖4/J‖; ≤ d                       (22) 

Where +�f  is the average Hessian, which is defined as: 

+�f = 6	h ∇,�	��� + i%�∗�	�� (i	                  (23) 

and  

�j ≤ ‖4/J‖;.J04/J ≤ ��	                            (24) 

Since also 

‖.J‖;4/J0.J = .J0.J4/J0.J = 4/J0gJfgJ4k/J4/J04gJf/J = 4;/J0gJf ;/J4;/J0gJf/J 	      (25) 

Assumption (B) of (3.1) means that +�f  is positive definite 

proven, thus its square root is well defined. There is a 

symmetric square root +�fl; is satisfying 

+�f = +�f�,. 	+�f �, 

If we let m� = +�fl;�%�, then                     (26) 

‖&�‖,�%�U&� = �%�U+�f�,+�f�,+�f�,+�f�,�%��%�U+�f�,+�f�,�%�  

= WgJf l;4/JX0gJfWgJf l;4/JX
W4/JgJfl;X0WgJf l;4/JX 	                         (27) 

Substitution equation (26) in equation (27), we get  
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‖.J‖;4/J0.J = nJ0gJfnJnJ0nJ 	                             (28) 

And from (20) cU∇,�	��∗�c ≤ d‖c‖,, we know ‖c‖, >0. Then we can divide both sides from this, we get: c�U+�fc�‖c�‖, ≤ d 

That mean 

nJ0gJfnJnJ0nJ ≤ d	                                (29) 

Then from equation (28), we get: 

‖.J‖;4/J0.J ≤ d	                                 (30) 

In addition, from equations (21) and (9), we get: ‖&�‖ = p+�f%�∗p 

‖&�‖ ≤ p+�fp‖%�∗	‖, ‖%�∗‖ ≤ q+�f��q‖&�‖         (31) 

Which gives: 

‖.J‖p/J∗p 	≤ 	d	                            (32) 

And  

p/J∗p‖.J‖ 	≤ 	 ��	                              (33) 

Therefore, from the above discussion, we have: 

Lemma (3.2) 

Let f: �� → � satisfy Assumption (3.1). Then   ‖%�‖‖&�‖ , ‖&�‖‖%�‖ , %�&�‖%�‖, , %�U&�‖&�‖, , ‖&�‖,%�U&� 		
Are bounded. 

Hence, we have 

‖%�∗‖‖&�‖ , ‖&�‖‖%�∗‖ , %�∗&�‖%�∗‖, , %�∗
0&�‖&�‖, , ‖&�‖,%�∗0&�  

Are bounded. 

Lemma (3.3) 

Under exact line search, ∑‖%�‖,  and ∑‖&�‖,  are 

convergent. 

Which gives: ‖/J‖;‖.J‖;	is convergent and bounded. 

From lemma (3.2), we have p/J∗p;‖.J‖; is convergent and bounded. 

Since ∑‖&�‖,	 is convergent, we get: ‖%�∗‖, is convergent, then 

∑‖%�∗‖, ≤ �� ∑‖&�‖, 

Which implies ∑‖%�∗‖, is convergent, where �	��∗� is the 

minimum of �	���. 
Lemma (3.4) 
For all vector x, the inequality ‖)���‖, ≥ b	6	���� − ���∗�]                    (34) 

holds, where ���∗� is the minimum of ����. 
Proof: 

Since the function t�u� = �O� + u��∗ − ��Q, �0 ≤ u ≤ 1� 
is a convex function, we have: �O� + u��∗ − ��Q ≥ ���� + u��∗ − ��U)��� 

In particular, set u = 1, then we have �O� + ��∗ − ��Q ≥ ���� + ��∗ − ��U)��� ���∗� ≥ ���� + ��∗ − ��U)��� 
Which gives ���∗� − ���� ≥ ��∗ − ��U)��� 
By multiplying both sides with (-1) we get ���� − ���∗� ≤ −��∗ − ��U)��� 
By Cauchy-Schwarz inequality, we get ���� − ���∗� ≤ |��∗ − ��U)���| ≤ ‖)���‖‖�∗ − �‖	(35) 

From (24) and (9), we have 

|�|‖%�‖, ≤ &�U%�b  

|�|‖%�‖, ≤ Ov��∗��v���Q0/J
� 	                     (36) 

≤	‖)���‖‖�∗ − �‖b  

Hence 

�‖�∗ − �‖, ≤ ‖)���‖‖�∗ − �‖
b  

‖�∗ − �‖, ≤ ‖)���‖‖�∗ − �‖
�b  

Let �b	 = b 

‖�∗ − �‖, ≤ ‖)���‖‖�∗ − �‖ b⁄  

‖�∗ − �‖ ≤ ‖)���‖ b⁄ 		                  (37) 

Substituting (37) into (35) establishes (34). 

Theorem (3.5) 

Suppose that ���� satisfies Assumption (3.1). Then under 

exact line search the sequence { ��}  generated by � −���	method converges to the minimizer �∗ of f. 
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Proof: Consider � − ���  formula of inverse Hessian 

approximation  

x��� = x� − yJ.J.J0yJ.J0yJ.J + 4/J4/J04/J0.J 	               (38)	
and from � − ��� formula (19) of Hessian approximation 

���� = ZY − .J4/J04/J0.J[�� ZY − 4/J.J04/J0.J[ + .J.J04/J0.J	      (39) 

Obviously, ����x��� = Y. By computing the trace of (39), 

we have 

z{������ = z{���� − 2 4/J01J.J4/J0.J + 4/J01J4/JO.J0.JQO4/J0.JQ;  + .J.04/J0.J (40) 

The middle two terms can be written as: 

−2�%�U��&��%�U&� + �%�U��%�&�U&���%�U&��,  

From equation (4) and (5), we have %�U&� = %�U�)��� − )�� = %�U)��� − %�U)� 

From the property of the DFP method [5] )���U %� =%�U)��� = 0, we obtain: 

= 2 ⋋� �)�U&��%�U&� +⋋� �,%�U&�&�U&���%�U&��,  

=⋋� ~2)�U&� + &�U&�%�U&� � 
From equation (4)and (5) again, we get 

=	2)�U&� + &�U&�)�Ux�)�  

= )���U )��� − )�U)�)�Ux�)�  

=	 ‖vJ�l‖;�‖vJ‖;vJ0yJvJ 	                              (41) 

From	the positive definiteness property of x���, then (38) 

becomes: 

)���U x���)��� = )���U ~x� − x�&�&�Ux�&�Ux�&� � )��� 

= )���U ~x� −x�&�&�Ux�&�Ux�&� � )���, �)���U %�∗%�∗0%�∗0&� )���� = 0	
	= �&� + )��U ~x� − x�&�&�Ux�&�Ux�&� � �&� + )��	

	= ~&�Ux� − &�Ux�&�&�Ux�&�Ux�&� + )�Ux� − )�Ux�&�&�Ux�&�Ux�&� � �&�+ )�� 

= ~�&�Ux� − &�Ux�� + )�Ux� − )�Ux�&�&�Ux�&�Ux�&� � �&� + )�� 
= W)�Ux� − )�Ux�&�&�Ux�&�Ux�&� X �&� + )�� 

= )�Ux�&� − )�Ux�&�&�Ux�&�&�Ux�&� + )�Ux�)� − )�Ux�&�&�Ux�)�&�Ux�&�  

= )�Ux�&� − )�Ux�&� + )�Ux�)� − )�Ux�&�&�Ux�)�&�Ux�&�  

= )�Ux�)� − )�Ux�&�&�Ux�)�&�Ux�&�  

= )�U ~x� − x�&�&�Ux�&�Ux�&� � )� 

= )�U ~x� − x��)��� − )���)��� − )��Ux��)��� − )��Ux��)��� − )�� � )� 

= )�U ~x�
− x��)���)���U − )���)�U − )�)���U + )�)�U�x��)���x� − )�x��U�)��� − )�� � )� 	
= )�U ~x� −x�&�&�Ux�&�Ux�&� � )� 

Which gives: 

)���U x���)��� = 6)�Ux�)�:6)���U x�)���:6)�Ux�)�: + 6)���U x�)���: 
By finding the inverse number of the expression, we obtain 

�vJ�l0 yJ�lvJ�l = �vJ�l0 yJvJ�l + �vJ0yJvJ	         (42) 

using (41) and (42), then (40) becomes: 

z{������ = z{���� + ‖vJ�l‖;vJ�l0 yJ�lvJ�l − ‖vJ‖;vJ0yJvJ −‖vJ�l‖;vJ�l0 yJvJ�l + ‖.J‖;4/J0.J		                         (43)	
By recurrence, we obtain: 

z{������ = z{���� + ‖vJ�l‖;vJ�l0 yJ�lvJ�l − ‖v�‖;v�0y�v� 	−∑ pv��lp;v��l0 y�v��l + ∑ p.�p;4/�0.����� 		����                 (44) 

Therefore, by lemma (3.2), there exists a positive number 

N which is independent of k, such that 

z{������ ≤ ‖vJ�l‖;vJ�l0 yJ�lvJ�l − ∑ pv��lp;v��l0 y�v��l +d 	���� (45) 

In the left part, we will prove that if the theorem does not 

hold, then the sum of the last two term in (45) is negative. 

Now consider the trace of x���, from (38), we have 
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z{�x���� = z{�x�� − ∑ py�.�p;.�0y�.� + ∑ q/�∗q;/�∗0.��������� 	   (46) 

Since x���  is positive definite, the right hand side of 

(46)is positive. By lemma (3.2) there exists b > 0 which is 

independent of k such that 

∑ py�.�p;.�0y�.� 	≤ ��	����                          (47) 

Note that 

O&�Ux�&�Q, ≤ px�&�p,p&�p,	               (48) 

and &�Ux�&� > )���U x�)���	                      (49) 

By the positive definiteness of x�  and exact line search, 

then by using (49), (48) and (47) in turn, we obtain: 

∑ v��l0 y�v��lp.�p; ≤ ∑ .�0y�.�p.�p; ≤ py�.�p;.�0y�.� ≤ ��		�������� (50) 

By using Cauchy-Schwarz inequality and (50) 

� p)���p,)���U x�)��� ≥ ��p)���pp&�p
�

��� �, ∕�)���U x�)���p&�p, 	�
���

�
���  

≥ �� Z∑ pv��lpp.�p���� [,	                      (51) 

Now suppose that the theorem is not true, that is, there 

exists � > 0 such that for all sufficiently large k, ‖)�‖ ≥ �                               (52) 

Also, by lemma (3.3), there exists a constant � > 0 such 

that ‖�∗ − �‖ ≤ ��∗ − ��UO)��∗� − )���Q ∕ � 

����� − ������� ≥ 12 �‖%�∗‖, 

which gives ‖%�∗‖ → 0 and further ‖&�‖ → 0. Then, by (51) 

and (52) we deduce, for any k sufficiently large, that 

∑ pv��lp;v��l0 y�v��l > d 	����                          (53) 

The above inequality implies that the sum of the last two 

terms in (45) is negative. 

By (53) and (45), we immediately obtain: 

z{������ < ‖vJ�l‖;vJ�l0 yJ�lvJ�l	                    (54) 

Note that, for a symmetric positive definite matrix, the 

inverse of trace is the lower bound of the last eigenvalue of 

inverse of the matrix. Then, it follows from (54) that 

vJ�l0 yJ�lvJ�l‖vJ�l‖; < �,                          (55) 

Where �  is the lower bound of the last eigenvalue of 	x���. However, from the property of Rayleigh quotient [9], 

we have 

vJ�l0 yJ�lvJ�l‖vJ�l‖; > �,                       (56) 

which contradicts (55). This contradiction proves that {��} 
converges to �∗ and that our theorem holds. 

4. Local Linear Convergence of D − EFG 

Method 

Now, we shall prove the local linear convergence of � − ��� method of equivalent formula (18) for α>0 under 

exact line search. 

The � − ��� iteration we consider is: ���� = �� − ���������                (57) ���� =�� + O.J�1J/J∗Q.J0�.JO.J�1J/J∗Q0.J0/J∗ − O.J�1J/J∗Q0/J∗0O.J0/J∗Q; �&�&�U�	 (58) 

So that replace ∇����  and ∇,����  by ����  and ����� 
respectively. 

In this discussion of this subsection, we need the following 

assumption: 

Assumption (4.1) �\�:  The mapping �: �� → �  is continuously 

differentiable in open convex set � ⊂ �� . �B�: There is �∗  in D such that ���∗� = 0	and ����∗�	is 

nonsingular. ���: �����	satisfies the Lipshiz condition at �∗, 
that is, there exists a constant � > 0 such that ‖����� − ����∗�‖ ≤ �‖� − �∗‖, � ∈ � 

We begin with some general converges results. 

Lemma (4.2) [9] 

Let �:	�� → ��satisfy assumption (A). Then for any �, c , �∗ ∈ � ⊂ �� we have  ‖F��� − ��c� − ����∗��� − c�‖	 ≤ K%��4��p��Oc + T�� − c�Q − ����∗�pR‖� − c‖   (59) 

Furthermore, assume that �� satisfy assumption (C), then ‖���� − ��c� − ����∗��� − c�‖ ≤ ����, c�‖� − c‖	(60) 

and 

‖���� − ��c� − ����∗�‖ ≤ � ‖���∗‖�‖���∗‖, ‖� − c‖,	(61) 

where ��, c� = max{‖� − �∗‖, ‖c − �∗‖}. (62) 

Lemma (4.3) 

Let &, %∗ ∈ ��,&, %∗ ≠ 0, and	� ∈ �0, 1�. If ‖& − %∗‖ ≤�‖&‖, 



24 Saad Shakir Mahmood and Samira Hassan Shnywer:  On Modified DFP Update for Unconstrained Optimization  

 

then &U%∗ is positive and 

 1 − ‖/∗‖‖.‖   ≤ �, 1 − 3 .0/∗‖.‖‖/∗‖5, ≤ �,         (63) 

Conversely, if &U%∗ > 0 and (63) holds, then ‖& − %∗‖ ≤ 3�‖&‖           (64) 

Theorem (4.4) [9] 

Let �:	�� → ��  is satisfy the assumptions �A�, �B�	 and �C� in (4.1), U an update function such that for all ��� , ��� ∈(¤¥	¦ and ���� ∈ ¦��� , ���, we have              (65) ‖���� − ����∗�‖ ≤ ‖�� − �∗��∗�‖ + §, �‖���� − �∗‖ +‖�� − �∗‖�,           (66) 

where �	is some constant, or that ‖���� − ����∗�‖ ≤ 61 + ������ , �����:‖�� − ����∗�‖ +�,���� , �����             (67) 

where ��	 and �, are some constants, and ���� , ����� = max{‖�� − �∗‖, ‖���� − �∗‖}.        (68) 

Then, there exist constants ¨	 and 	H,  such that, for all ‖�� − �∗‖ < ¨  and ‖�� − ����∗�‖ < H , the iteration (57) 

and (65) is well-defined, and {��} converges to �∗	linearly. 

To study the local convergence of � − ��	method, it is 

required to estimate ‖���� − ∇,���∗�‖. 
As show in the following theorem, there is a matrix � = Y − /J∗.J0.J0/J∗ 	in ���� − ∇,���∗�.	Since 

‖�‖, = p/J∗p‖.J‖.J0/J∗ ,                      (69) 

It is a secant of the angle between &�  and %�∗ . In general, &�  

and %�∗ is not parallel. So ‖�‖,	may be quite big, and it is not 

suitable to estimate ‖���� − ∇,���∗�‖  by means of ℓ, −norm. However, near �∗, ����	closes a quadratic function, and hence \�l;&�  and 	\l;%�∗  are approximately parallel, where \ = ∇,���∗� . In 

motivates us some weighted norm to estimate ‖���� −∇,���∗�‖. Then, we have 

‖ª‖4�7>V = ‖ª‖«¬l;,> = q\�l;ª\�l;q> .            (70) 

Below, we first develop the linear convergence of � −���. 

Theorem (4.5) 

Let �: �� → � satisfy Assumption �c� in (4.1). Also let 

������ , ����� ≤ �®	                         (71) 

In a neighborhood of �∗ , where � = ‖6∇,���∗�:��‖ , ���� , ����� = max	{‖�� − �∗‖, ‖���� − �∗}‖.	 then, there 

exist ¨ > 0	 and H > 0	 such that for ‖�� − �∗‖ < ¨	 and 	‖�� − ∇,���∗�‖4�7>V < H, the iteration (57) and equivalent 

formula (18) of � − ���  method is well-defined, and the 

produced sequence {��} converges to �∗	linearly. 

Proof: 

Based on the lemma (4.4), to prove the linearly 

convergence of � − ��� method, it is enough to prove ‖���� − ∇,���∗�‖4�7>V< 61+ ������ , �����:‖�� − ∇,���∗�‖4�7>V 

+�,���� , �����                              (72) 

where �� and �, are positive constants independent of �� and ����, �	is defined by (68). 

Le \ = ∇,���∗�	 and @ = 6∇,���∗�:�l;,  which is ����∗� 
and 6����∗�:�l;  respectively, also are symmetric positive 

definite matrices. 

From (57) and the formula (18) of � − ��� , it follows 

that 

���� − \ = �U��� − \�� + O.J�«/J∗Q.J0�.JO.J�«/J∗Q0V.J0/J∗ 	   (73) 

where  

� = Y − /J∗.J0.J0/J∗ 	                              (74) 

Thus, from (73), one has ‖���� − \‖4�7>V≤ ‖�U��� − \��‖4�7>V+ ¯�&� − \%�∗�&�U&�U%�∗ ¯4�7>V 

+°.JO.J�«/J∗Q0V.J0/J∗ °4�7>V	                      (75) 

Note that ‖�‖, is defined by (69). 

The first term on the right hand side of (75) can be 

estimate as: 

‖�U��� − \��‖4�7>V ≤ °\�,�\��,°,, ‖�� − \‖4�7>V 

≤ �±; ‖�� − \‖4�7>V	                       (76) 

moreover, for the rest two terms on the right hand side of 

(75) and by (70) we have: 

¯�&� − \%�∗�&�U&�U%�∗ ¯4�7>V = ²\��,�&� − \%�∗�\��,&�U&�U%�∗ ²
>

 

°O.J�«/J∗Q.J0.J0/J∗ °4�7>V ≤ �±
¯«¬l;.J�«l;/J∗¯

¯«l;/J∗¯ 	               (77) 



 American Journal of Applied Mathematics 2017; 5(1): 19-30 25 

 

and 

¯&��&� − \%�∗�U�&�U%�∗ ¯4�7>V = ²\��,&��&� − \%�∗�U�\��,&�U%�∗ ²
>

 

°.JO.J�«/J∗Q0V.J0/J∗ °4�7>V ≤ �±; . ¯«¬
l;.J�«l;/J∗¯
¯«l;/J∗¯                (78) 

where 

³ = .J0/J∗¯«¬l;.J¯¯«l;/J∗¯ =
W«¬l;.JX0W«l;/J∗X
¯«¬l;.J¯¯«l;/J∗¯ 	               (79)	

which by lemma (4.3) implies the curvature condition 

Z\��,&�[U Z\�,%�∗[ = &�U%�∗ > 0 

Now, we estimate ‖����‖4�7>V  by using (76), (77) and 

(78), we have 

‖���� − \‖4�7>V ≤ �±; ‖�� − \‖4�7>V + 3 �±; +
�±5 ¯«¬l;.J�«l;/J∗¯

¯«l;/J∗¯ 	                           (80) 

Note from lemma (4.2) that 

°\��,&� − \�,%�∗°°\�,%�∗° ≤ °\��,° ‖&� − \%�∗‖‖%�∗‖ ∕ °\��,° 	
	= ‖\��‖ ‖&� − \%�∗‖‖%�∗‖  

= � ‖&� − \%�∗‖‖%�∗‖  

≤ �	γ	σ��� , ����� ≤ �®	                          (81) 

Since ‖&� − \%�∗‖ ≤ ‖%�∗‖�	�	���� , ����� ≤ �® ‖%�∗‖ 

By lemma (4.3), we have: 

1 − ³, ≤ ~� ‖&� − \%�∗‖‖%�∗‖ �, ≤ 6�	�	���� , �����:,. 
Consequently, if ��  and ����  are in the neighborhood of �∗, then 

1 − ³, ≤ 6�	�	���� , �����:, < 12, 1³, < 12 < 	�	�	���� , ����� 

1³, = 1 + 1 − ³,³, < 1 + 6�	�	���� , �����:,�	�	���� , �����  

= 1 + 	�	�	���� , ����� 
So, the two terms in (80) satisfy respectively. 

�±; ‖�� − \‖4�7>V < 61 + �	�	���� , �����:‖�� − \‖4�7>V   (82) 

and 

Z 1³, + 1³[ °\
��,&� − \�,%�∗°°\�,%�∗°  

≤ KO1 + ������ , �����Q + O¶1 + ������ , �����QR������ , �����  (83) 

combining (82) with (83) into (80), we have: ‖���� − \‖4�7>V ≤ 61 + �	�	���� , �����:‖�� − \‖4�7>V
+ �43 + ¸43� 6�	�	���� , �����: 

< 61 + �	�	���� , �����:‖�� − \‖4�7>V + 3	�	�	���� , ����� 
Which completes the proof by applying lemma (4.4) with �� = �	� and �, = 3	�	�. 

5. Super Linear Convergence of D −EFG Method 

Now, we shall prove the super linear convergence of the � − ���  method. the convergence analysis in this section 

mainly Dennis and Mor'e [2]. The super linear convergence 

of the sequence {��}  generated by the iteration (57) is 

generally characterized by the following theorem. 

Theorem (5.1) [2] 

Let �:	�� → ��  is satisfy �\�  and ���  in Assumption 

(4.1). Let {��}  be a sequence, of nonsingular matrices. 

Suppose for �� ∈ � , that the iteration generated by (57) 

remain in D. �� ≠ �∗�∀ ≥ 0� . Suppose also that { ��} 
converges to �∗. Then {��}	converges to �∗  at super linear 

rate if and only if 

lim�→º q31J�>»��∗�5O/J∗Qqp/J∗p = 0                 (84) 

Theorem (5.1) indicates that if ��  converges to ����∗�	 along the direction %�	∗ ,	 then � − ���	 method 

converges super linearly. This theorem is very important in 

analysis of � − ���. Equation (84)is called the Dennis 

and Mor'e characterization of super linear convergence. 

To apply theorem (5.1), we need a refinement estimate ‖���� − ����∗�‖ which is established with the help of the 

following lemmas. 

Lemma (5.2) 

Let @ ∈ ��×� be a nonsingular symmetric matrix, If, for 
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' ∈ ¼0, �®½, 
The inequality ‖@&� −@��%�∗‖ ≤ '‖@��%�∗‖               (85) 

holds, then for any non-zero matrix ª ∈ ��×�, we have: �a�:	�1 − '	�‖@��%�∗‖, ≤ &�U%�∗ ≤ �1 + '�‖@��%�∗‖,.	(86) 

�b�:	°ª ¿Y − OB¬l/J∗QOB¬l/J∗Q0.J0/J∗ À°> ≤ ¶1 − �i,‖ª‖> .(87) 

�Á�:	¯ª ~Y − �@��%�∗��@&��U&�U%�∗ �¯> 

≤ ¿¶1 − �i, + �1 − '��� pB.J�B¬l/J∗ppB¬l/J∗p À ‖ª‖> 	   (88) 

Where 

� = ��,Â���Â�; ∈ ¼1, Ã®½ , i = pÄB¬l/J∗p‖Ä‖ÅpB¬l/J∗p ∈ 60, 1:	   (89) 

Proof: 

Note that &�U%�∗ = �@&��U�@���%�� = �@&� −@���%��U@���%� +‖@���%�‖,                      (90) 

Also, it follows from Cauchy-Schwarz inequality and (85) 

that 

|�@&� −@���%��U@���%�|≤ ‖@&� −@���%�‖‖@���%�‖ 

= '‖@���%�‖,                      (91) 

From (90) and (91), we get 

&�U%�∗ ≤ λ‖@���%�‖, + ‖@���%�‖, = �1 + '�‖@���%�‖, 

And, in same way, we have 

�1 − '�‖@���%�‖, ≤ &�U%�∗ 
Which gives the first result (a). 

Now, we will prove (b) By using the property of the 

Frobenius norm of a rank-one update. 

‖\ + �&U‖>, = ‖\‖>, + 2&U\U� + ‖�‖,‖&‖, 

To prove (b) we need the following property 

‖ª�Y − �cU�‖>, = ‖ª‖>, − 2cªUª� + ‖ª�‖,‖c‖,. 
In particular, 

Let � = B¬l4/J
.J04/J , c = @���%� 

¯ª ~Y − �@���%���@���%��U&�U�%� �¯
>

,
 

= ‖ª‖>, − 2 �@
���%��UªUª�@���%��&�U�%�
+ ¯ª@���%�&�U�%� ¯

,
‖@���%�‖, 

= ‖ª‖>, + �−2&�U�%� + ‖@���%�‖,� ‖ª@
���%�‖,�&�U�%��,  

By using (a) and (89), we get: 

‖@���%�‖, − 2&�U�%� ≤ 1
1 − ' &�U�%� − 2

1 − '
1 − ' &�U�%� 

= −Z1 − 2'1 − ' [ &�U�%� 

And therefore 

¯ª ~Y − �@���%���@���%��U&�U�%� �¯
>

,
 

	≤ ‖ª‖>, − 1 − 2'1 − ' &�U�%� W‖ª@
���%�‖,�&�U�%��, X 

≤ ~1 − 1 − 2'
�1 − '�, 	

‖ª@���%�‖,‖@���%�‖,‖ª‖>,�	‖ª‖>
, , 

from (89) again, we get: 

¯ª ~Y − �@���%���@���%��U&�U�%� �¯
>

,
≤ 1 − �i,‖ª‖>,  

Which shows (b): 

¯ª ~Y − �@���%���@���%��U&�U�%� �¯
>
≤ ¶1 − �i,	‖ª‖> . 

Finally, we prove �c� by means of (b). It enough to prove 

that 

°ª B¬l4/JOB¬l4/J�B.JQ0
.J04/J °

>
≤

�1 − '��� 3pB.J�B¬l4/Jp
‖B¬l4/J‖ 5 ‖ª‖> 	               (92) 

from (a), we have: 

�
.J04/J ≤ �1 − '��� 	 �

‖B¬l4/J‖;	                          (93) 

1
&�U�%� 	‖@

���%�‖	‖@���%� −@&�‖‖ª‖>
≤ �1 − '��� ‖@���%�‖‖@���%� −@&�‖‖@���%�‖, 	‖ª‖> 

≤ ~¶1 − 'i, + �1 − '��� ‖@���%� −@&�‖‖@���%�‖ � ‖ª‖> 	
which proves (c). 

We have known that if �: �� → �  satisfies Assumption 

(4.1), then (72) holds. 
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Then under Assumptions of the theorem (4.5), the 

preceding lemma can be applied with the sitting 

\ = ����∗� = ∇,���∗�, @ = 6����∗�:�l; = \�l;, Ç� = ‖�� − ∇,���∗�‖4�7>V, Ç��� = ‖���� −∇,���∗�‖4�7>V, 
and È� = max{������ , �����, �,���� , �����}. 

Due to the linear convergence of the sequence {��}	gives 

in theorem (4.5), we have ∑ È� < +∞,º���  and can sequnetly 

by lemma (5.3), there exists a constant ℎ ≥ 0 such that lim�→º�‖�� − F���∗�‖4�7>V = ℎ	               (94) 

Hence lim�→º‖�� − ����∗�‖4�7>V	, 
is exists. 

Lemma (5.3): 

Let {t�} and {H�} be sequences of nonnegative numbers 

satisfying 	t��� ≤ �1 + H��t� + H�	                  (95) 

and ∑ H� < +∞º���                               (96) 

then {t�} is converges. 

These results together then give rise to a refinement 

estimate of ‖���� − ����∗�‖4�7>V as follows: 

Lemma (5.4) 

Under the assumption of theorem(4.5), there exist positive 

constants '�, ',	and '®, such that ∀���� ∈ d��∗, ¨�, we have ‖���� − ∇,���∗�‖4�7>V 

≤ K¶1 − '�i, + ',���� , �����R‖�� − ∇,���∗�‖47>V +'®���� , �����,                               (97) 

where � is defined by (68) and 

i� = ¯K∇;Ë��∗�R¬l;W1J�K∇;Ë��∗�R¬l;X4/J¯
‖1J�∇;Ë��∗�‖Ì¬LÅÍ¯6∇;Ë��∗�:l;4/J¯	               (98) 

Proof: 

First m we write = ∇,���∗�. From (75), we have: ‖���� − \‖4�7>V≤ ‖�U��� − \��‖4�7>V+ ¯�&� − \�%��&�U&�U�%� ¯4�7>V 

+¯&��&� − \�%��U&�U�%� ¯4�7>V 

Let 

� = Y − «l;4/J.J0«¬l;.J04/J , ª� = \�l;��� − \�\�l;		     (99) 

And ‖�U��� − \��‖4�7>V= °Z\��,�U\�,[ Z\��,���− \�\��,[ Z\�,�\��,[°> 

= ‖�U	ª	�‖> 

Similar to the proof of the theorem (4.5), we known that 

there exists �® > 0 and �Ã > 0 such that 

¯�&� − \�%��&�U&�U�%� ¯4�7>V ≤ 1³ °\
��,&� − \�,�%�°
°\�,�%�°≤ �®���� , �����, 

¯&��&� − \�%��U�&�U�%� ¯4�7>V ≤ 1³, °\
��,&� − \�,�%�°
°\�,�%�°≤ �Ã���� , �����. 

If we let '® = �® + �Ã, then (75) becomes: ‖���� − \‖4�7>V ≤ ‖�Uª�‖> + '®���� , �����(100) 

Since 

°\��,&� − \�,�%�°
°\�,�%�° ≤ �	�	���� , ����� ≤ 13, 

Then, by use of lemma (5.2), and from (99), we get: 

‖�Uª�‖> 	≤ Î¶1 − �i, + �1 − '��� °\��,&� − \�,�%�°
°\�,�%�° Ï ‖�Uª‖>	 

Note that ‖�Uª‖> = ‖ªU�‖> = ‖ª�‖> ,  thus, by using 

lemma (5.2) again, we obtain: 

‖�Uª�‖> ≤ Î¶1 − �i,
+ �1 − '��� °\��,&� − \�,�%�°

°\�,�%�° Ï Î¶1 − �i,
+ �1 − '��� °\��,&� − \�,�%�°

°\�,�%�° Ï ‖ª‖>. 
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Where i� is defined by (98), From lemma (5.2) again and 

by (89), we get 

‖�Uª�‖> ≤ Î¶1 − �i, + 52 �1 − '��� °\��,&� − \�,�%�°
°\�,�%�° Ï ‖ª‖> 

≤ K¶1 − '�i, + ',	�	�	���� , �����R	‖ª‖>	           (101) 

Where '� = 	�, ', =	 �ÑÃ 	�	�. Substitution (101) into (100) 

and from (99), we deduce the desired result (97). The proof is 

complete 

Finally, using the above four lemmas, we can establish the 

following super linear convergence theorem of � −���	method. 

Theorem (5.5) 

Under the assumption of theorem (4.5), � − ���	method 

defined by (57) and (58) is convergent super linearly. 

Proof: 

Since �1 − '�i,�l; ≤ 31 − �, '�i�,5,  then (95) can be 

written as: ‖���� − \‖4�7>V≤ Ò1 − '�i�,	‖�� − \‖4�7>V 	+ ',���� , �����	‖�� − \‖4�7>V+ '®���� , ����� 
≤ Z1 − '�2 i�,[ ‖�� − \‖4�7>V+ ',���� , �����‖�� − \‖4�7>V+	'®���� , ����� 

Z'�2 [ i�,‖�� − \‖4�7>V≤ ‖�� − \‖4�7>V − ‖���� − \‖4�7>V+	',‖�� − \‖4�7>V���� , �����+ '®���� , ����� 
Summing the above from k = 1 to infinity gives: 

12 '��i�,‖�� − \‖4�7>Vº
��� ≤ �‖�� − \‖4�7>Vº

���−�‖���� − \‖4�7>Vº
���+ ',����� , �����º

��� ‖�� − \‖4�7>V
+ '®����� , �����º

��� 	 

Since, from theorem (4.5), {��}	  is linearly convergent, 

then ∑ ���� , ����� < ∞.º���  

Also, since {‖�� − \‖4�7>V} is bounded, then 

12 '��i�,‖�� − \‖4�7>V < ∞º
���  

By (94), the lim�→º‖�� − \‖4�7>V  exists. 

Hence, if some subsequence of { ‖�� −\‖4�7>V}	converges to zero. 

The whole sequence converges to zero. 

Therefore, 

lim�→º ‖��� − \�%�∗‖‖%�∗‖ = 0, 
Which proves the super linear convergence of {��}	by 

theorem (5.1). Otherwise, there exists a positive constant u	such that ‖�� − \‖4�7>V ≥ u, ∀	 ≥  �,	 then 

12 '�u�i�, < ∞º
���  

Since '� = Ã® > 0,	it follows that lim�→º i� = 0 

Furthermore, we have: 

lim�→º ‖��� − \�%�∗‖‖%�∗‖ ≤ lim�→º
°\�,° °\��,��� − \��%�°

°\�,°�� °\�,�%�°  

= lim�→º‖\‖ ∙ 	‖�� − \‖ °\��,��� − \��%�°‖�� − \‖	°\�,�%�°	
= lim�→º‖\‖	 ∙ ‖�� − \‖	i� 

Where i� is defined by (98). 

Then, by using i� → 0, we immediately obtain: 

lim�→º ‖��� − \��%�‖‖�%�‖ = 0. 
Hence, {��} is convergent super linearly, we complete the 

proof. 

6. Numerical Results 

This section is devoted to numerical experiments. Our 

purpose was to check whether the modified � −���algorithm provide improvements on the corresponding 

standard DFP algorithm. The programs were written in 

MATLAP. The reason for their selection is that the problems 

appear to have been used in standard problems in most the 

literature these functions represent a result of application in 

the branch of technology and industry. 

The test functions are chosen as follows: 
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1 − ���� = �1 − ���, + �1 − �,�,. [1] 2 − A quadratic function. [10] 

���� = ��10Ó���ÓÃ + �Ó® + 10��Ó�Ó,�Ã
Ó��  

3 − Rosen brook's function. [4] ���� = �1 − ���, + ��, − ���,. 4 − Rosenbroc'k cliff function [8] ���� = 10�Ã��� − 3�, − ��� − �,� + S,���l��;�. 5 − Generalized Edger function. [1] 

���� = ∑ 6��,Ó�� − 2�Ã + ��,Ó�� − 2�,�,Ó, + ��,Ó + 1�,:�∕,Ó�� . 6 − Extended Himmelbla function [1] 

���� = � ��,Ó��, + �,Ó − 11�, + ��,Ó�� + �,Ó, − 7�,.�∕,
Ó��  

7 − Rosen rock's function [6] 

���� = �6100��Ó − �Ó®�, + �1 − �Ó�,:.�∕,
Ó��  

8 − Trigonometric function [1] ���� = ∑ Kb − ∑ cos �� + Ù�1 − cos �Ó� −�����Ó�� sin �Ó + S�Ó − 1R,. 9 − Extended Rosen rock function [1] 

���� = ∑ Û��,Ó − �,Ó��, �, + �1 − �,Ó���,�∕,Ó�� . c = 100 10 − Watson function [6] 

���� = � �Ó,����
Ó��  

�Ó��� = ∑ �Ü − 1���T���,®��, − O∑ ��T����®��� Q, − 1. 

T� = Ó,Ý. and 

11 − Freudenstein and Roth function [3] ���� = {−13 + �� + 6�5 − �,��, − 2:�,}, +{−29 + �� + 6��, + 1��, − 14:�,}, 

Table 1. Numerical results for DFP and � − ��� update. 

Fun. Starting point Dim. 
DFP D −EFG  

The Best 
Feval  Iter. Feval Iter. 

1 60; 0:U 2 6.0962e-016 2 1.7909e-017 2 DFP 

1 6−1;−1:U 2 2.7900e-020 2 2.7900e-020 2 Same 

1 60; 1:U 2 3.2494e-016 2 2.9082e-017 2 DFP 

2 6−1; 0;−1; 0:U 4 1.5076e-007 9 9.0146e-007 7 α − ��� 

2 6−1; 0; 0; 0:U 4 1.8142e-013 3 7.3965e-011 3 � − ��� 

2 6−30; 10;⋯ :U 4 7.9747e-008 34 7.2012e-006 9 � − ��� 

3 60; 0:U 2 1.7525e-018 20 1.6887e-016 14 α − ��� 

3 60; −5:U 2 1.5615e-016 3 7.5140e-015 3 � − ��� 

3 6−3;−3:U 2 3.0198e-o17 14 2.4041e-017 14 Same 

4 6−0.5;⋯ :U 4 0.2011 3 0.2011 3 Same 

4 60.5;⋯ :U 12 0.2004 3 0.2004 3 Same 

4 60;⋯ :U 12 0.2007 3 0.2007 3 Same 

5 6−3; 0:U 2 5.5433e-015 8 8.8715e-014 3 � − ��� 

5 60; 5;⋯ :U 18 2.9846e-008 9 3.6384e-008 6 � − ��� 

5 6−1;⋯ :U 18 1.4714e-010 7 5.3611e-009 6 � − ��� 

6 65; 10:U 2 8.1785e-012 7 3.2157e-011 6 � − ��� 

6 60; 0:U 2 1.3697e-013 8 3.1675e-009 8 � − ��� 

6 60; −1:U 2 1.1910e-012 8 2.7507e-012 8 � − ��� 

7 6−1; 1:U 8 2.0658e-011 6 1.9815e-010 24 � − ��� 

7 60; 1;⋯ :U 8 5.1583e-012 6 3.1487e-011 8 � − ��� 

7 60;⋯ :U 4 1.7728e-010 2 1.7728e-010 2 Same 

8 6−0.5;⋯ :U 12 7.6464e-007 13 4.6941e-006 5 � − ��� 

8 60.5;⋯ :U 12 3.7119e-006 13 3.7598e-006 4 � − ��� 

8 62;⋯ :U 12 6.8965e-007 21 1.8229e-006 5 � − ��� 

9 61; 1; 1:U 3 0 1 0 1 Same 

9 6−4;⋯ :U 3 0.0220 40 0.0118 9 � − ��� 

9 610; 10:U 2 3.5522 31 40.2765 8 � − ��� 

10 61; 1; 1; 1:U 4 6.0707e-017 3 1.0838e-016 3 � − ��� 

10 61; 0; 1; 0:U 4 2.1626e-013 3 3.5351e-008 3 � − ��� 

10 60;⋯ :U 10 1.6053e-010 2 5.5796e-010 2 � − ��� 

11 65; 10:U 2 5.7785e-010 12 2.2977e-010 8 � − ��� 

11 6−10; 20:U 2 2.3185e-013 15 1.7572e-013 9 α − ��� 
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Fun. Starting point Dim. 
DFP D −EFG  

The Best 
Feval  Iter. Feval Iter. 

11 6−7; 15:U 2 1.6761e-012 13 8.3077e-012 10 � − ��� 

 

7. Conclusion 

In this thesis, we introduce a new modified of the DFP say � − ��� update, we show that under certain circumstances 

this update preserve the value of the determinant of hessian 

matrix and without Quasi-Newton or based on the Zhang Xu 

condition. 

Global convergence of the proposed method establishes 

under exact line search. The proposed method possesses local 

linearly convergence and super linearly convergence for 

unconstrained optimization problem. 

Numerical results show that the proposed is efficient for 

unconstrained optimization problem compared the modified � − ���  method with the standard DFP method on same 

function is selected, which suggests that a good improvement 

has been achieved. 
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