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Abstract: In this paper, a class of large-update primal-dual interior-point methods for semidefinite optimization based on a 

parametric kernel function are presented. The proposed kernel function is not only used for determining the search directions 

but also for measuring the distance between the given iterate and the center for the algorithms. By means of the Nesterov and 

Todd scaling scheme, the currently best known iteration bounds for large-update methods is established. 
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1. Introduction 

In this paper, we focus on the primal problem of 

semidefinite optimization (SDO) in the standard form 

{ }(P) min : , , ,1 2, 0, , i iC X A X b i m X⋅ ⋅ = = … ≻  

and its dual problem 

1

(D) max 0 .,: 
m

T

i i

i

b y y A S C S
=

 + = 
 

∑ ≻  

Here, each , , .n m n

iA S b R C S∈ ∈ ∈ Throughout the paper, we 

assume that the matrices 
i

A  are linearly independent. 

Recently, (SDO) has been one of the most active research 

areas in mathematical programming. 

Many interior-point methods (IPMs) for linear 

optimization (LO) are successfully extended to (SDO) due to 

their polynomial complexity and practical efficiency. For an 

overview of these results, we refer to [1, 2] and the 

references [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. 

Kernel functions play an important role in the design and 

analysis of primal-dual (IPMs) for optimization and 

complementarity problems. They are not only used for 

determining the search directions but also for measuring the 

distance between the given iterate and the µ -center for the 

algorithms. Currently, (IPM) based on kernel function is one 

of the most effective methods for (LO) and (SDO) and is a 

very active research areas in mathematical programming. 

Particularly, Bai et al. [14] introduced a variety of non-self-

regular kernel functions, i.e., the so-called eligible kernel 

functions, which is defined by some simple conditions on the 

kernel functions and their derivatives. They provided a 

simple and unified computational scheme for the complexity 

analysis of primal-dual kernel function based (IPMs) for 

(LO). Consequently, a series of eligible kernel functions are 

considered for various optimization problems and 

complementarity problems, see, e.g., [15, 16, 17, 18]. For a 

survey, we refer to the monograph [19] on the subject and the 

references therein. 

In this paper, we consider the following parametric kernel 

function [8] 

1
1

2 1
( ) , 1, 0,

2 log

tt q
t q t

q
ϕ

−
−= + > >                (1) 

which is a generalization of the finite kernel function 

considered in [15] for (LO), namely, 
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12
11

( ) , 0.
2

t
t

t e tϕ
−−= + >                         (2) 

The purpose of the paper is to extend the primal-dual 

large-update (IPMs) for (LO) based on the parametric 

function considered in [15] to (SDO) by using the NT-scaling 

scheme [11, 21]. Furthermore, the complexity results match 

the currently best result of iteration bounds for large-update 

methods is established, namely, log log
n

O n n
ε

 
 
 

, by 

choosing 1 ( )q O n= + . 

The outline of the rest of the paper is as follows. In Section 

2, we recall some basic concepts and results on matrix theory, 

the properties of the parametric kernel (and barrier) function. 

Primal-dual kernel function-based (IPMs) for (SDO) are 

presented in Section 3. In Section 4, we give the complexity 

analysis of the primal-dual (IPMs) for (SDO). Finally, some 

concluding remarks are made in Section 5. 

Some of the notations used throughout the paper are as 

follows. ,n nR R+  and nR++  
denote the set of vectors with n  

components, the set of nonnegative vectors and the set of 

positive vectors, respectively. 
n nR ×

 denotes the set of n n×  

real matrices. E  denotes the n n×  identity matrix. || ||
F

⋅  and 

2
|| ||⋅ denote the Frobenius norm and the spectral norm for 

matrices, respectively. 
n

S , nS+  and nS++  denote the cone of 

symmetric, symmetric positive semidefinite and symmetric 

positive definite n n×  matrices, respectively. 

Tr• ( )TA B A B=  denotes the matrix inner product of two 

matrices A  and B , respectively. The L oɺɺwner partial order �  

(or≻ ) on positive semidefinite (or positive definite) matrices 

means A B�  (or A B≻ ) if A B−  is positive semidefinite (or 

positive definite). Finally, if ( ) 0g x ≥  is a real valued 

function of a real nonnegative variable, the notation

( ) ( )g x O x=  means that ( )g x cx≤  for some positive 

constant c  and ( ) ( )g x x= Θ  that 
1 2

( )c x g x c x≤ ≤  for two 

positive constants 
1

c  and
2

c . 

2. Preliminaries 

2.1. Some Results on Matrices and Matrix Functions 

In this section, some well known results on matrices and 

matrix functions from linear algebra are considered. Our 

presentation is mainly based on the monograph [20] and the 

references [8, 21]. 

Let
n

V ∈S and 

1 2( ( ), ( ), , ( )) ,diagT

nV Q V V V Qλ λ λ= …                  (3) 

where Q
 
is any orthonormal matrix 1( )TQ Q−=  that 

diagonalizes .V  The matrix valued function ( ) : n nV S Sϕ →  

is defined by 

1 2( ) ( ( ( )), (diag ( )), , ( ( ))) .T

nV Q V V V Qϕ ϕ λ ϕ λ ϕ λ= …      (4) 

Let ( )tϕ  be differentiable, i.e., the derivative ( )tϕ ′  exists. 

Then the matrix valued function ( )Vϕ′  is well defined, 

namely 

1 2( ) diag( ( ( )), ( ( )), , ( ( ))) .T

nV Q V V V Qϕ ϕ λ ϕ λ ϕ λ′ ′ ′…′ =    (5) 

Recall that a matrix ( )A t  is said to be a matrix of 

functions if each entry of ( )A t  is a function of t , i.e., 

( ) [ ( )]ijA t A t= . Let ( )A t  and ( )B t  be two matrices of 

functions. Then 

d d
( ) ( ) ( ),

d d
ijA t A t A t

t t

  ′= = 
 

                       (6) 

d
( ( ))Tr Tr( ( )),

d
A t A t

t
′=                            (7) 

d
( ( ) ( )) ( ) ( ) ( ) ( ).

d
A t B t A t B t A t B t

t
′ ′= +                   (8) 

For any function ( )tϕ , let us denote by ϕ∆  the divided 

difference of ( )tϕ  as follows 

1 2

1 2 1 2

1 2

( ) ( )
( , ) , .

t t
t t t Rt

t t

ϕ ϕϕ −
∆ = ≠

−
∈                   (9) 

If 
1 2
t t= , we simply write ( , ) ( )t t tϕ ϕ ′∆ = . 

The following theorem provides to measure the first-order 

directional derivative of a general function ( ( ))A tϕ  and 

bound its second-order derivative with respect to t . 

Theorem 2.1 (Lemma 16 in [21]) Suppose that ( )A t  is a 

matrix of functions such that the matrix ( )A t  is positive 

definite with eigenvalues 
1 2
( ) ( ) ( ) 0

n
t t tλ λ λ≥ ≥ … ≥ > . If 

( )A t  is twice differentiable with respect to ( , )
t t

t l u∈  and 

( )tϕ  is twice continuously differentiable function in a 

domain that contains all the eigenvalues of ( )A t , then 

d
Tr( ( ( ))) Tr( ( ( )) ( )),

d
A t A t A t

t
ϕ ϕ ′ ′=                (10) 

and 

2
2

2

d
Tr( ( ( ))) ( ) Tr( ( ( )) ( )),

d
A t A t A t A t

t
ϕ ω ϕ′ ′ ′′≤ +‖ ‖       (11) 

where 

max{| ( ( ), ( )) |: ( , ), , 1, 2, , }j k t tt t t l u j k nω ϕ λ λ′= ∆ ∈ = …   (12) 

is a number depending on ( )A t  and ( )tϕ  with 
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1 2

1 2 1 2

1 2

( ) ( )
( , ) , , [ , ].t t

t t
t t t t l u

t t

ϕ ϕϕ
′ ′−′∆ = ∀ ∈

−
          

 

 (13) 

2.2. The Parametric Kernel (Barrier) Function 

The first three derivatives of ( )tϕ  defined by (1) with 

respect to t  are given by 

1
1

2

1
) ( ,tt t q

t
ϕ

−
′ = −                                (14) 

1
1

4

log 2
( ) 1 ,t

q t
t q

t
ϕ

−+′′ = +                          (15) 

12 2
1

6

log 6 log 6
( ) .t

q t q t
t q

t
ϕ

−+ +′′′ = −                  (16) 

In what follows, we recall some useful results in [15, 16] 

without proofs. 

Lemma 2.1 Let : [0, ) [1, )∞ → ∞̻  be the inverse function 

of ( )tϕ for 1t ≥ . Then 

1 2 ( ) 1 2 .s s s+ ≤ ≤ +̻  

Lemma 2.1 Let 

1
1

( )
log

t

b

q
t

q
ϕ

−

=  be the barrier term of ( )tϕ , 

( )sρ  be the inverse function of 
1

( )
2

tϕ ′−  for (0,1]t ∈  and 

: [0, ) (0,1]ρ ∞ →  be the inverse function of the restriction of 

( )b tϕ−  for (0,1]t ∈ , respectively. Then 

( ) (1 2 );s sρ ρ≥ +                                  (17) 

1
( ) ;

log( )
1

log( )

s
s

q

ρ ≥
+

                               (18) 

1
( ) .

log(1 2 )
1

log( )

s
s

q

ρ ≥
++

                          (19) 

The following property, i.e., the exponential convexity, 

which plays an important role in the analysis of kernel-

function based (IPMs) [15,21]. 

Lemma 2.3 (Lemma 2.1 in [15]) Let 1 0t >  and 2 0t > . 

Then 

1 2 1 2

1
( ) ( ( ) ( )).

2
t t t tϕ ϕ ϕ≤ +  

Now, we define the barrier function ( ) : nV S R+ +Ψ →  

according to the kernel function ( )tϕ  as follows 

( , , ) : ( ) : Tr( ( )).X S V Vµ ϕΨ = Ψ =                    (20) 

From (16), we have 

1

( ) ( ( )).
n

i

i

V Vϕ λ
=

Ψ =∑                            (21) 

One can easily verify that the derivative of the barrier 

function exactly equal to ( )Vϕ′ , which is defined by (5). 

Furthermore, we know that ( )VΨ  is strictly convex with 

respect to 0V ≻  and vanishes at its global minimal point 

V E= , i.e., ( ) ( ) 0E Eϕ ϕ ′= = , and ( ) 0EΨ = . 

We have the following theorem, by Lemma 2.3. 

Theorem 2.2 (Proposition 3 (II) in [21]) Let 
1 2, nV V ++∈ S . 

Then 

1
1 1 2
2 2

1 2 1 1 2

1
( ( ) ( )).

2
V V V V V

 
  Ψ ≤ Ψ + Ψ  
  
 

 

The following theorem provides an estimate for the effect 

of a µ -update on the value of ( )VΨ , which is a 

reformulation of Theorem 3.2 in [15]. 

Theorem 2.3 Let nV ++∈ S  and 1β ≥ . Then 

( )
( ) .

V
V n

n
β ϕ Ψ Ψ ≤  

 
 

Corollary 2.1 Let 0 1θ≤ <  and 
1

V
V

θ+ =
−

. If ( )V τΨ ≤ , 

then 

( ) .
1

n
V n

τ

ϕ
θ+

  
  

  Ψ ≤
 −
 
 

̻

 

Proof: With 
1

1
1

β
θ

= ≥
−

 and ( )V τΨ ≤ , the result 

follows immediately from Theorem 2.3. This completes the 

proof. 

The norm-based proximity measure ( ) : nV S Rδ + +→  is 

given by 

2

1

1 1
( ) : ( ) ( ( )) .

2 2

n

i

i

V V Vδ ϕ ϕ λ
=

′ ′= = ∑‖ ‖             (22) 

The lower bound on ( )Vδ  in terms of ( )VΨ  can be 

obtained from the following theorem, which is a 

reformulation of Theorem 4.8 in [15]. 

Theorem 2.4 Let nV S++∈ . Then 

1
( ) ( ( ( ))).

2
V Vδ ϕ ′≥ Ψ̻  

Corollary 2.2 Let nV S++∈ . Then 
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!

2
2

( ) ( ( )) .
2

V Vδ ≥ Ψ  

Proof: We have 

( )

1
1

1 2 ( )

!

2

1 1
( ) ( ( ( ))) 1 2 ( )

2 2 1 2 (

1 ( ) 2
1 2 ( ) 1 ( ( )) .

2 21 1 2 ( )

−
+ Ψ

 
 

′≥ Ψ ≥ + Ψ − + Ψ 
 

Ψ≥ + Ψ − = ≥ Ψ
+ + Ψ

V
q

V V V
V

V
V V

V

δ ψ ̻

 

This completes the proof. 

3. Primal-Dual Kernel Function-Based 

(IPMs) for (SDO) 

Without loss of generality, we assume that both the primal 

problem and its dual problem of (SDO) satisfy the interior-

point condition (IPC), i.e., there exists 0 0 0( , , )X y S  such that 

0 0 0 0 0 0

1

  1 0,, , ,   , 0., 
m

i i i i

i

A X b i m X y A S C S
=

⋅ = = … + =∑≻ ≻   (23) 

The Karush-Kuhn-Tucker conditions for (P) and (D) are 

equivalent to the following system 

1

, , ,, 1 , 0, 0, 0.
m

i i i i

i

A X b i m X y A S C S XS
=

⋅ = = … + = =∑≻ ≻ (24) 

The standard approach is to replace the third equation in 

(24), i.e., the so-called complementarity condition for (P) and 

(D), by the parameterized equation XS Eµ=  with 0.µ >  

This yields 

1

, 1 , 0, , 0, .,,
m

i i i i

i

A X b i m X y A S C S XS Eµ
=

⋅ = = … + = =∑≻ ≻  (25) 

Under the assumption that (P) and (D) satisfy the (IPC), the 

system (25) has a unique solution, denoted by 

( ( ), ( ), ( ))X y Sµ µ µ . Let ( )X µ  be the µ -center of (P) and 

( ( ), ( ))y Sµ µ  be the µ -center of (D). The set of µ -centers 

(with µ  running through positive real numbers) gives a 

homotopy path, which is called the central path of (P) and (D). 

If 0µ → , then the limit of the central path exists, and 

since the limit points satisfy the complementarity condition, 

i.e., 0,XS =  it naturally yields an optimal solution for (P) 

and (D), see, e.g., [2]. 

In order to provide the scaled Newton system has a unique 

symmetric solution, Zhang [22] introduced the following 

symmetrization operator 

1 11
( ) : ( ( ) ), .

2

T n n

PH M PMP PMP M R
− − ×= + ∀ ∈         (26) 

One can easily verify that 

( ) ,
P

H M E M Eµ µ= ⇔ =                          (27) 

for any nonsingular matrix ,P  any matrix M  with real 

spectrum and any .Rµ ∈  For any given nonsingular matrix 

,P  the system (25) is equivalent to 

1

,, 1 , 0,

, 0,

( ) .

,i i

m

i i

i

P

A X b i m X

y A S C S

H XS Eµ
=

⋅ = = …

+ =

=

∑

≻

≻                     (28) 

By using Newton method to the system (28), this yields 

1

0, 1, , ,

0,

( ) ( ).

i

m

i i

i

P P

A X i m

y A S

H X S XS E H XSµ
=

⋅ ∆ = = …

∆ + ∆ =

∆ + ∆ = −

∑          (29) 

The search direction obtained through the system (29) is 

called the Monteiro-Zhang unified direction. Different 

choices of the matrix P  result in different search directions 

(see, e.g., [2, 22]). 

In this paper, we consider the so-called NT-

symmetrization scheme [11, 21], which yields the NT search 

direction. Let 

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2: ( ) ( ) ,P X X SX X S S XS S
− − −

= =        (30) 

and 
1

2:D P= . The matrix D  can be used to rescale X  and 

S  to the same matrix ,V  defined by 

1 11 1
: .V D XD DSD

µ µ
− −= =                  (31) 

From (31), after some elementary reductions, we have 

1

1

0, 1, , ,

0,

.

i X

m

i i S

i

X S

A D i m

y A D

D D V V

=

−

⋅ = = …

∆ + =

+ = −

∑                        (32) 

Here 

1
: , 1, , ,i iA DA D i m

µ
= = …   

and 

1 11 1
: , :  .X SD D XD D D SD

µ µ
− −= ∆ = ∆       (33) 

One can easily verify that 

1 ( ),cV V V− − = −∇Ψ                      (34) 

where ( )
c

V∇Ψ  denotes the gradient of ( )
c

VΨ  is given by 
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( )
1

2

1

( ) : Tr( ( )) ( ( )

( ) 1
log( ( )) .

2

=

=

Ψ = =

 −
= − 

 

∑

∑

n

c c c i

i

n
i

i

i

V V V

V
V

ϕ ϕ λ

λ λ
        (35) 

Hence, the system (29) is equivalent to 

1

0, 1, , ,

0,

( ).

i X

m

i i S

i

X S c

A D i m

y A D

D D V

=

⋅ = = …

∆ +

+ −∇Ψ

=

=

∑                       (36) 

This means that the logarithmic barrier function essentially 

determines the classical NT search direction. 

In this paper, we replace the right-hand side ( )
c

V−∇Ψ  in the 

third equation in (36) by ( ),V−∇Ψ  i.e., ( ).Vϕ ′−  This yields 

1

,0, 1 2

0

, ,

,

( ).

,i X

m

i i S

i

X S

A D i m

y A D

D D V

=

⋅ = = …

∆ +

+ −∇Ψ

=

=

∑                     (37) 

The scaled new search direction ( , , )
X S

D y D∆  is computed 

by solving the system (37) so that X∆ and S∆ are obtained 

through (33). If ( , , ) ( ( ), ( ), ( ))X y S X y Sµ µ µ≠ , then 

( , , )X y S∆ ∆ ∆  is nonzero. 

By taking a default step size along the search directions, 

we get the new iterate ( , , )X y S+ + +  according to 

: , : , : .X X X y y y S S Sα α α+ + += + ∆ = + ∆ = + ∆      (38) 

One can easily verify that 

( ) 0 ( ) 0.XS E V E V Vµ ϕ ′= ⇔ = ⇔ = ⇔ Ψ =         (39) 

Hence, the value of ( )VΨ  can be considered as a measure 

for the distance between the given iterate ( , , )X y S  and the 

µ -center ( ( ), ( ), ( ))X y Sµ µ µ . 

The generic form of primal-dual kernel function-based 

(IPMs) for (SDO) is shown in Algorithm 1. 

Algorithm 1 Primal-Dual Interior-Point Algorithm for 

(SDO) 

Input: a threshold parameter 1;τ ≥  

an accuracy parameter 0;ε >  

a fixed barrier update parameter ,0 1;θ θ< <  

a strictly feasible pair 0 0 0( , , )X y S  and 0 1µ =  such that 

0 0 0( , , ) .X S µ τΨ ≤  

begin 0 0 0 0: ; : ; : ; : ;X X y y S S µ µ= = = =  

while nµ ε≥  

begin 

: (1 ) ;µ θ µ= −  

while ( , , )X S µ τΨ >  do 

begin 

computer the search directions ( , , );X y S∆ ∆ ∆  

choose a suitable step size ;α  

update ( , , ) : ( , , ) ( , , ).X y S X y S X y Sα= + ∆ ∆ ∆  

end 

end 

end 

4. Complexity Analysis of Large-Update 

Methods 

In each inner iteration the search direction , )y,  ( X S∆∆ ∆  

is obtained by solving the system (37) and via (33). After a 

step with size α  the new iterate is given by 

, , .X X X y y y S S Sα α α+ + += + ∆ = + ∆ = + ∆      (40) 

Then, we have 

( )
X X

X X X X DD D D V D Dα α µ µ α+ = + ∆ = + = +  (41) 

and 

1 1 1 1( ) .
S S

S S S S D D D D V D Dα α µ µ α− − − −
+ = + ∆ = + = +  (42) 

It follows from (31) that 

1

1 2
1

.V D X S D
µ

−
+ + +=                        (43) 

One can easily verify that 2V+  is unitarily similar to 

the matrix 
1 1

2 2X S X+ + +  and thus to 

1 1

2 2( ) ( )( ) .X S XV D V D V Dα α α+ + +                   (44) 

This implies that the eigenvalues of V+  are precisely the 

same as those of the matrix 

1

1 1 2

2 2: ( ) ( )( ) .
X S X

V V D V D V Dα α α+

 
= + + + 
 

      (45) 

From the definition of ( )VΨ , one obtains ( ) ( )V V+ +Ψ = Ψ . 

Hence, by Theorem 2.2, we have 

( )1
( ) ( ) ( ) ( ) .

2
X SV V V D V Dα α+ +Ψ = Ψ ≤ Ψ + + Ψ +     (46) 

Now, we consider the decrease in ( )VΨ  as a function of 

α  and define 

( ) : ( ) ( ) ( ) ( ).f V V V Vα + += Ψ − Ψ = Ψ − Ψ            (47) 

Let define 
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( )1

1
( ) : ( ) ( ) ( ).

2
X Sf V D V D Vα α α= Ψ + + Ψ + − Ψ      (48) 

It follows that 
1

( ) ( )f fα α≤  and 
1

(0) (0) 0.f f= =  

By Theorem 2.1, one has 

( )1

1
( ) Tr ( ) ( )

2
X X S Sf V D D V D Dα ψ α ψ α′ ′ ′= + + +    (49) 

and 

( )
2

1 2

2 2

1 2

1 d
( ) Tr ( ) ( )

2 d

1
( ),

2

X S

X S

f V D V D

D D

α ϕ α ϕ α
α

ω ω

′′ = + + +

≤ +‖ ‖ ‖ ‖

        (50) 

where 

{ }1 max | ( ( ), ( )) | : , 1, 2, , ,j X k XV D V D j k nω ϕ λ α λ α′= ∆ + + = …  (51) 

and 

{ }2 max | ( ( ), ( )) | : , 1, 2, , .j S k SV D V D j k nω φ λ α λ α′= ∆ + + = …  (52) 

Hence, using the third equation of the system (37), one has 

2 2

1

1 1
(0) Tr( ( )( )) Tr( ( ) ) 2 ( ) .

2 2
X Sf V D D V Vϕ ϕ δ′ ′ ′= + = − = −    (53) 

In order to facilitate discussion, we denote : ( ),Vδ δ=  and 

we have the following result [8]. 

Theorem 3.1 One has 
2

1 ( ) 2 ( ( ) 2 ).minf Vα δ ϕ λ αδ′′ ′′≤ −  

The default step size for the algorithm should be chosen 

such that X +  and S+  are feasible and ( ) ( )V V+Ψ − Ψ  

decreases sufficiently. For the details we leave it for the 

interested readers (see, e.g., [8,15]. Following the strategy 

considered in [8], we briefly recall how to choose the default 

step size. Suppose that the step size α  satisfies 

( ( ) 2 ) ( ( )) 2 .min minV Vϕ λ αδ ϕ λ δ′ ′− − + ≤              (54) 

Then 1( ) 0f α ≤ . The largest possible value of the step size 

of α  satisfying (53) is given by 

1
: ( ( ) (2 )).

2
α ρ δ ρ δ

δ
= −                        (55) 

Furthermore, we can conclude that 

1 1
.

( (2 )) ( ( ))
α

ϕ ρ δ ϕ ρ δ
≤ ≤

′′ ′′
                    (56) 

After some elementary reductions, we have 

2

1
.

log(1 4 )
1 (1 4 )(2 log ) 1

log
q

q

α
δδ

≥
 ++ + + + 
 

           (57) 

In the sequel, let 

�
2

1
:

log(1 4 )
1 (1 4 )(2 log ) 1

log
q

q

α
δδ

=
 ++ + + + 
 

          (58) 

be the default step size. 

As a consequence of Lemma A.1 and the fact that 

1( ) ( ),f fα α≤  which is a twice differentiable convex 

function with 1(0) 0,f =  and 
1

2(0) 2 0,f δ′ = − <  the following 

lemma is obtained. 

Lemma 4.1 Let the step size α  be such that .α α≤ ɶ  Then 

2( ) .f α αδ≤ −  

The following theorem shows that the default step size 

yields sufficient decrease of the barrier function during each 

inner iteration. 

Theorem 4.2 Let 0 3τΨ ≥ ≥  and αɶ  be the default step 

size as given by (57). Then 

1

2
2

0

1
( ) ( ) .

log(1 )
20(2 log ) 1

log

f V

q
q

α ≤ − Ψ
 + Ψ
 + +
 
 

ɶ  

Proof: From Lemma 4.1 with (56) and Corollary 2.2, we 

have 

2
2

2
( )

log(1 4 )
1 (1 4 )(2 log ) 1

log

 f

q
q

δα αδ
δδ

≤ − ≤
 ++ + + + 
 

ɶ ɶ

 

2

2

log(1 4 )
10 (2 log ) 1

log
q

q

δ
δδ

≤ −
 ++ + 
 

 

2

2

log(1 4 )
10(2 log ) 1

log
q

q

δ
δ

≤ −
 ++ + 
 

 

1

2

0

1
( )

log(1 )
10 2(2 log ) 1

log

.V

q
q

δ
≤ − Ψ

 + Ψ
 + +
 
 

 

This completes the proof. 

At the start of an outer iteration and just before updating 

the parameter ,µ  one has ( ) .V τΨ ≤  

It follows that the value of ( )VΨ  exceeds from the 

threshold τ  after updating of µ . Therefore, one need to count 

how many inner iterations are required to return to the 

situation where ( ) .V τΨ ≤  Let denote the value of ( )VΨ  after 

the µ -update be 0 ,Ψ  the subsequent values in the same outer 
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iteration are denoted as ,
k

Ψ 1, , ,k K= …  where K  denotes 

the total number of inner iterations in the outer iteration. 

Since 
2 1

( )
2

t
tϕ −≤  for 1,t ≥  we have 

0

2
1

1 1

2 2

2
( ).

2(1 ) 1

n n
n n

n
n n n

O n

τ τρ

θ θ

τ τ
τ τ

θ θ

   
+   

    Ψ ≤ Ψ ≤ Ψ
  − −
  

   

 
+   + ≤ = =

− −

             (59) 

According to the decrease of ( )f αɶ  in Lemma 4.2, we 

have 

1

1 ( ) , 0,1, , 1,k k k k Kγβ −
+Ψ ≤ Ψ − Ψ = −⋯               (60) 

where 

2

0

1
,

log(1 )
10 2(2 log ) 1

log
q

q

β =
 + Ψ
 + +
 
 

 and 
1

.
2

γ =  (61) 

The following lemma provides an estimate for the number 

of inner iterations between two successive barrier parameter 

updates. 

Lemma 4.2 One has 
2

1
0 2

0

log(1 )
20 2(2 log ) 1 ( ) .

log
K q

q

 + Ψ
 ≤ + + Ψ
 
 

 

Proof: From Lemma A.2 and (59), the result of the lemma 

follows. This completes the proof. 

It is well known that an upper bound of the number of 

outer iterations is bounded above by [23] 

1
log .

n

θ ε
 
 
 

                                    (62) 

By multiplying the number of outer iterations and the 

number of inner iterations, we get an upper bound for the 

total number of iterations, namely, 

2

1

2

2
log(1 )

20 2(2 log ) 21
1 log .

log 1

n

q n n

q

τ τ
τ τθ

θ θ ε

 +
 +  + +− +     −  
 
 

 (63) 

Note that 
0

( ).O nΨ ≤  By choosing 1 ( ),q O n= +  the best 

total iteration bound is obtained. 

Theorem 4.3 For large-update methods, we set (1),θ = Θ  

and ( ).O nτ =  Then the iteration bound becomes 

log log ,
n

O n n
ε

 
 
 

 

which matches the currently best well-known complexity for 

large-update methods. 

5. Conclusion 

In this paper, we have investigated a class of large-update 

primal-dual (IPMs) for (LO) based on a parametric kernel 

function presented in [16] can be extended to the context of 

(SDO). Furthermore, the best result of iteration bounds for 

large-update methods is derived. In our future study, the 

generalizations of the primal-dual (IPMs) for (LO) to 

symmetric cone optimization (SCO) and symmetric cone 

complementarity problems (SCCP) are interesting. 
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Appendix(Some Technical Lemmas) 

Lemma A.1 (Lemma 12 in [21]) Let ( )h t  be a twice 

differentiable convex function with (0) 0h = , (0) 0h′ <  and 

let ( )h t  attain its (global) minimum at 
*

0t > . If ( )h t′′  is 

increasing for *[0, ]t t∈ , then 

*(0)
( ) 0 .

2

th
h t t t

′
≤ ≤ ≤，  

Lemma A.2 (Lemma 14 in [21]) Suppose 
0 1
, , ,

K
t t t…  is a 

sequence of positive numbers such that 

1

1k k kt t t γβ −
+ ≤ − , 0,  1, ,  1,k K= … −  

where 0β >  and 0 1γ< ≤ . Then 

0 .
t

K
γ

βγ
 

≤  
 
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