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Abstract: In this study, the effects of variable viscosity on unsteady natural convection hydromagnetic flow past an 

isothermal sphere are determined. The uniformly heated sphere is immersed in a viscous and incompressible fluid where 

viscosity of the fluid is taken as a linear function of temperature. The Partial Differential Equations governing the flow are 

reduced into non dimensional form and since these equations are non-linear, they are solved numerically using finite difference 

methods. The numerical results obtained are presented graphically and discussed. It has been observed that there is a 

significant change in primary velocity, secondary velocity, temperature, skin friction and heat transfer of the fluid with changes 

in Reynolds number, Grashof number, Magnetic parameter and viscous variation parameter. These results are applicable in 

engineering, technology and biomedical fields. 
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1. Introduction 

Fluid is a substance that is capable of flowing. It can also 

be defined as a substance which deforms continuously when 

subjected to external shearing stress. Fluids are classified as 

Liquid, Gas, Vapor, Ideal Fluids and Real Fluids. A liquid is 

fluid which possesses a definite volume which varies slightly 

with temperature and pressure. A gas possesses no definite 

volume and is compressible. Vapor is a gas whose 

temperature is such that it is very near the liquid state. In 

liquids, molecules are close together compared to the 

molecules in gases which are not close to one another and are 

in a haphazard movement in all directions which make them 

to collide with each other. Ideal fluid is one which is 

compressible and has no viscosity and surface tension 

whereas a real fluid is one which has viscosity, surface 

tension and compressibility in addition to density. In real 

world, ideal fluids do not exist but real fluids exist. 

Fluid flow can be classified as steady and unsteady 

depending on their variation with time. A steady flow is one 

in which the fluid characteristics like velocity, pressure and 

density change with time whereas unsteady flow is one in 

which the velocity, pressure or density at a point change with 

respect to time. Other types of fluid flows include Uniform, 

Non Uniform, Rotational, Irrotational, Laminar, Turbulent, 

Compressible and incompressible flows. 

The study of electric conducting fluids has gained 

popularity in our world today. These fluids include plasmas, 

liquid metals, salt water and air. This has attracted many 

researchers to carry out research in the same field. This is 

because it has found its application in many areas since it 

involves study of electrically conducting fluids. These fluids 

can be found in areas such as the production of electricity 

power especially in electrical plants and in the geothermal 

plants in Kenya. The interaction of the current with the 

magnetic field changes the motion of the fluid and produces 

an induced magnetic field. 

An isothermal sphere in this study is a uniformly heated 
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perfect geometrical object that is made of non-conducting 

material. Natural convection flow from an isothermal 

horizontal cylinder was investigated by Molla et al (2005) 

where viscosity was taken as an inverse function of 

temperature. This study was observed to be appropriate for 

fluids having large Prandtl number. The researchers observed 

that there was an increase in the rate of heat transfer and a 

decrease in the rate of skin-friction coefficient due to the 

effect of Rayleigh number Ra and viscosity variation 

parameter. It was also observed that the momentum and 

thermal boundary layer become thinner where there is an 

increase in the values of viscosity-variation parameter. Both 

viscosity and velocity distribution was observed to increase 

whereas the temperature distributions were observed to 

decrease with the effect of Rayleigh number Ra and there 

was an enhancement of the thickness of momentum boundary 

layer. 

Umavathi, (2015) studied the combined effect of variable 

viscosity and thermal conductivity of a viscous fluid on free 

convection flow in a vertical channel using DTM. It was 

found out that increasing the viscosity led to enhancement of 

the flow and heat transfer. Also, increasing the variable 

thermal conductivity led to suppression of the flow and the 

heat transfer for variable viscosity. Therefore, unsteady 

natural hydrodynamic convection flow is a phenomenon that 

is of great importance in our world today. 

Unsteady magnetohydrodynamic heat transfer with 

thermal radiation flux in a semi-infinite porous medium was 

investigated by B'eg et al (2011). In this case, they 

considered analytical and numerical study. They observed 

that an increase in Hartmann number through a strong 

magnetic flux density causes a decrease in the flow velocity, 

u with distance normal to the plate surface into the boundary 

layer. This shows that changes in Hartmann number cause a 

significant change in the velocity. Their results showed that 

thermal radiation increase fluid temperatures and accelerates 

the flow whereas magnetic field simulated by the Hartmann 

number decelerates the flow and reduces the shear stress. 

They also observed that through the assistance of buoyancy 

forces, Darcian drug impedes the flow and increasing free 

convection accelerates the flow. It was concluded that 

increase in Prandtl number decreases temperature whereas 

the velocity gradient increases. 

Unsteady natural convection flow past a vertical 

accelerated plate has been investigated by Deka et al (2009) 

where the plate was placed in a thermally stratified fluid. In 

their study, they used the Laplace transform techniques to 

solve the equations that they obtained. They observed that 

thermal stratification parameter S is an important factor in 

the study of unsteady vertical natural convection flow. This is 

due to the fact that velocity in thermally stratified fluid 

decreases with the increase of stratification parameter S and 

increases when Gr and t increase. They also observed that 

there is a decrease in temperature with increase in the value 

of Grashof number and Stratification parameter S. It was 

observed that Skin Friction, Nusselt number increases with 

increase in the values of S. Mina et al (2004) investigated 

similarity solutions for unsteady free-convection from a 

continuous moving vertical surface. These researchers used 

the shooting method to solve the obtained differential 

equations in order to obtain analytical solution for 

temperature and numerically for velocity. Their results 

showed that increase in Prandtl number (Pr) leads to decrease 

in the thickness of the thermal boundary-layer and also a 

decrease in the vertical velocity (u). 

The unsteady free convection flow with thermal radiation 

past a porous vertical plate with Newtonian heating was 

studied by Mebine et al (2009). They used the technique of 

Laplace transform in deriving the solutions to the governing 

flow and energy equations. It was concluded that increase in 

suction, radiation parameter, blowing and free convection 

parameter leads to increase in the velocity where it reaches to 

a maximum point and then starts to decrease up to zero at the 

edge of the boundary layer. They also observed that there is a 

decrease in temperature as radiation parameter and suction 

increases whereas increase in blowing retards the flux of heat 

to the flow and there is an increase in temperature due to 

increase in suction. 

Ramesh et al (2011) investigated unsteady flow of a 

conducting dusty fluid between two circular cylinders. The 

variable separable method was used in their study in order to 

obtain the solutions. In their results, they observed that the 

graphs of velocity profiles are parabolic in nature for 

different values of Hartmann number and Time (T). Another 

observation by these researchers is that magnetic field retards 

the flow of both the fluid and dust phases as shown by the 

effects of Hartmann number and time increase leads to 

decrease in velocity. When the dust particles are very fine, 

then the velocities for both fluid and dust are the same. 

Effect of inclined magnetic field on unsteady free 

convection flow of a dusty and viscous fluid between two 

infinite flat plates filled by a porous medium was 

investigated by Sugunamma et al (2013). They used the 

perturbative technique to solve the governing equations. In 

their results, they observed that when Gr > 0, velocity 

decreases with increase of magnetic parameter and also when 

(Porous parameter) increases. It was observed that there is 

gradual decrease of velocity with increase in time and (Heat 

source parameter). It was also observed that increase in Gr 

causes gradual increase in fluid velocity and particle velocity 

and that as Pr increases, the velocity of both the fluid and the 

particle phase decreases. The researchers also found out that 

an increase in φ (Volume fraction of dusty particles) causes 

an increase in fluid velocity and particle velocity and that 

there is a decrease in temperature of the dusty fluid when 

there is an increase in time. 

Mutua, (2013) investigated the magnetohydromagnetic 

free convection flow of a heat generating fluid past a semi-

infinite vertical porous plate. In this case, they considered the 

plate with variable suction. They used the finite difference 

method and observed that decrease in rotational parameter 

leads to increase in the velocity profiles. It was also observed 

that there was an increase in the velocity profiles when 

Eckert number and Magnetic parameter increase and on 
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removal of injection. There was no effect observed on the 

primary velocity profile when Suction parameter was 

increased but there was a decrease in the secondary velocity 

profile. 

Seethamahalakshmi, (2012) studied the MHD free 

convective mass transfer flow past an infinite vertical porous 

plate with variable suction. They also considered the study 

with soret effects. In their study, they observed that increase 

in Prandtl number leads to decrease in velocity and increase 

in Sorect number also leads to increase in the velocity field. 

Also decrease in the applied magnetic intensity contributes to 

a decrease in velocity whereas a decrease in temperature was 

observed when Prandtl number increases. 

Recently, Deepa et al (2014) investigated the effects of 

viscous dissipation on unsteady MHD free convective flow. 

They considered the convective flow with thermophoresis 

past a radiate, inclined and permeable plate. The implicit 

finite difference scheme with shooting method was used to 

solve the obtained governing equations. They found out that 

there is an increase in the viscous drag as well as the rate of 

heat transfer when there is a significant variation of viscosity. 

They made a conclusion that there is an induced 

concentration of the particles for a destructive reaction and 

reduction of generative reaction when there is higher order of 

chemical reaction. 

From the research work cited above, it can be seen that 

extensive research work has been carried out on MHD 

natural convection fluid flow past a surface. However, no 

emphasis has been given to the problem studied by Molla et 

al (2012) considering unsteady flow where viscosity as a 

linear function of temperature. Therefore, this work presents 

findings of studies on the effects of variable viscosity on 

unsteady natural convection hydromagnetic flow past an 

isothermal sphere taking viscosity as linear function of 

temperature and analysis of the results using Direct 

Numerical Scheme. 

2. Formulation 

The configuration of the problem considered in this study 

is as shown in the diagram below; 

 

Figure 1. Physical Model of the Problem. 

The diagram above shows a two-dimensional Laminar free 

convective hydromagnetic fluid flow past a uniformly heated 

sphere Centre (o) and radius (a) which is immersed in a 

viscous and incompressible fluid. Viscosity of the fluid is 

taken as a linear function of temperature, thus, viscosity 

varies directly proportional to temperature 

2.1. Governing Equations 

2.1.1. Equation of Conservation of Mass 

This equation states that mass can neither be created nor 

destroyed under normal conditions. It is obtained from the 

fact that mass fluid entering and leaving a volume in the flow 

field have the same mass balance. 
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2.1.2. Equation of Motion 

The expression of the equation in vector form is given as; 
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.
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∂
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Where
q

t

∂
∂

�

 is the temporal acceleration, ( ).q q∇
�

� �

 is the 

convective acceleration, p∇
�

 is the pressure gradient,
2v q∇ �  is 

the force due to viscosity and F
�

 represents the body forces 

vector in X and Y directions. 

2.1.3. The Energy Equation 

The general equation is given as: 

2 2

2 2
ˆ ˆ

ˆ ˆ ˆ ˆ
p

T T T T
C u v K

x y x y
ρ µϕ

  ∂ ∂ ∂ ∂+ = + +  ∂ ∂ ∂ ∂   
       (4) 

Where viscous energy dissipation term ϕ  is defined as: 

2 22

2
u v u v

x y y x
ϕ

    ∂ ∂ ∂ ∂ = + + +     ∂ ∂ ∂ ∂      
            (5) 

2.2. Non-dimensional Parameters 

In this study, the following non-dimensional numbers will 

be encountered while taking the analysis of various equations: 

2.2.1. Prandtl Number, Pr 

This number gives the ratio of viscous force to the thermal 

and is defined as: 

Pr
p

C

K

µ
=  

2.2.2. Grashof Number, Gr 

This number gives the relative importance of buoyancy 
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force to viscous force. This number usually occurs in natural 

convection problem and is usually defined as: 

( ) 3

2

w
g T T a

Gr
V

β ∞

∞

−
=  

2.2.3. Magnetic Parameter, M 

This is defined as; 

2 2

0 0

1

2

a
M

Gr

δ β

µ∞

=  

2.2.4. Reynolds Number, Re 

This number is defined as the ratio of inertia force to the 

viscous force. It is given as; 

Re
VLρ
µ

=  

This number signifies the relative predominance of the 

inertia to the viscous force occurring in the flow systems. 

2.3. Problem Modelling 

In this study, the fluid viscosity is taken as a linear 

function of temperature and can be illustrated as: 

( )1 wT Tµ µ γ∞= + −    where T is the temperature of the 

fluid and wT  is the temperature of the ambient fluid. 

The non-dimensional variables used in transforming the 

general equations (1), (3) and (4) into non-dimensional form 

are given as follows; 
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Through mathematical formulation, the general equation 

of conservation of mass reduces to: 

( ) ( )* *1

4
* *

0
ru rv

Gr
x y

∂ ∂
+ =
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                      (7) 

Equation (7) is a dimensional equation of conservation of 

mass. Substituting the variables in equation (6) we obtain the 

non-dimensionalized equation which is given as; 
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ru rv

Gr
x y

∂ ∂
+ =

∂ ∂
                     (8) 

The general equation (3) of motion reduces to; 
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1
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                                     (9) 

Substituting the variables in equation (6), equation (9) becomes; 

( )
12 2

4
1 2

24

Re
1

a u u u u u
u Gr v Sinx Mu

t x y y yy
Gr U

θγθ γ θ∂ ∂ ∂ ∂ ∂ ∂+ + = + + + −
∂ ∂ ∂ ∂ ∂∂                                       (10) 

Equation (4) is the general equation of energy in two-

dimensional form reduces as follows through mathematical 

formulation; 

* * * 2 *
* *

* * * *2

p

T T T K T
u v

Ct x y yρ
∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

              (11) 

Substituting variables in equation (6), this equation 

becomes; 

12 2

4
1 2

22

Re 1

Pr

a
u Gr v

t x y y
Gr U

θ θ θ θ∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

             (12) 

Initial conditions: 

0,u v= = 1θ =  at 0t =                   (13a) 

Boundary conditions: 

0,u v= = 1θ = , 0y =  at any t               (13b) 

0, 0u θ→ →  as y → ∞                   (13c) 

2.4. Method of Solution 

The Direct Numerical Scheme (DNS) method is applied in 

order to solve equations (8), (11) and (12). The following set 

of transformations is introduced in order to make it easier for 

these equations to be solved using this method: 

X x= , Y y= ,
u

U
x

= ,
v

V
y

= , ( )t T time= . Therefore, 

u Ux UX= =  and v Vy VY= = .               (14) 

ˆ( )r x  is the radial distance from the Centre of the sphere in 

consideration and is given as ( )r x SinX=  after non-
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dimensionalization. 

Substituting transformations (14) in equations (8), (11) and 

(12) and simplifying, these equations become; 

1 1

4 41 0
U CosX V

X U Gr V Gr Y
X SinX Y

∂ ∂ + + + + = ∂ ∂ 
   (15) 

( )
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a U U U U U SinX
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T X Y Y Y XY
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                          (16) 
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a
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T X Y Y
Gr U

θ θ θ θ∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂        (17) 

In order to determine the physical quantities, namely the 

shearing stress and the rate of heat transfer, the following 

dimensionless relations are used in this study; 

( )

1

4

02 1

f

Y

C Gr U
X
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∂ =  + ∂ 
                         (18) 

1

4

0Y

NuGr
Y

θ−

=

∂ = −  ∂ 
                           (19) 

Using transformations (14), the initial and boundary 

conditions as used in the previous section can be given as: 

Initial conditions; 

0, 1, 0U V Tθ= = = =  for all X  and Y       (20a) 

Boundary conditions; 

0, 1U V θ= = =  at 0X = any Y for all T      (20b) 

0, 1U V θ= = =  at 0, 0Y X= >  for all T       (20c) 

0, 0,U θ→ → as , 0Y X→ ∞ > for all T        (20d) 

Equations (17),(18),(19),(20) and (21) can be written in 

terms of finite differences as shown below; 

1 1
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,
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Making 
,

k

i jU  the subject of the formula in equation (21) gives; 
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Writing equation (16) in finite difference form and making 
,

k

i jU  the subject of the formulae, we obtain; 
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Therefore, making 1

,

k

i j
U +  the subject of the formula, the equation can be written as: 
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Writing equation (17) in terms of finite differences, it results to; 

12
, , 1, 1, 1, 1,

1

22

1
, 1 , 1 , 1 , 1 1, , 1,4

2

Re

2( ) 2 2( )

21

2 2( ) Pr ( )

k k k k k k

i j i j i j i j i j i j

i

k k k k k k k

i j i j i j i j i j i j i j

j

U Ua
X

T X
Gr U

V V
Gr Y

Y Y

θ θ θ θ

θ θ θ θ θ

+
+ − + −

+ − + − + −

     − + −
+ +     

∆ ∆          

     + − − +
=     

∆ ∆          

                                       (25) 

Making 1

,

k

i jθ +  the subject of the formula, this equation can be written as; 
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The physical quantities to be obtained are the shearing 

stress (rate of skin friction) and the rate of heat transfer. The 

finite difference equations used to obtain these results are; 
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                  (28) 

Equations (22), (24) (26), (27) and (28) are the final 

equations which are implemented in MATLAB in order to 

obtain the required results. 

3. Results and Discussion 

In this study, an investigation of the effects of variable 

viscosity on unsteady natural convection hydromagnetic flow 

past an isothermal sphere has been carried out. Viscosity is 

taken as a linear function of Temperature, therefore, viscosity 

varies directly proportional to temperature in this study. The 

numerical solutions start from the lower stagnation point x = 

0, round the sphere to the upper stagnation point where x = π. 

The Reynolds number is taken as; Re (=3, 4, 5), Grashof 

number, Gr (=50, 65, 85, 100), Magnetic parameter, M (=0, 

0.25, 0.5, 1) and Viscous variation parameter, γ  (=0, 0.25, 

0.5, 1). 

 

Figure 2. Primary velocity (U) against y-axis varying Reynolds number. 

Figure 2 above represents the primary velocity (U) against 

the Y-axis varying Reynolds number. The Magnetic 

parameter is taken as M=0.5, Gr=85, γ =0.5 and Re (=3, 4, 

5). It is observed that velocity profiles decreases with 

increase in Reynolds number and increases with decrease in 

Reynolds number. In this study, Re is considered as an 
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inverse function and thus increase in Re leads to increase in 

the viscosity of the fluid and decrease in Re leads to decrease 

in the viscosity. Increasing viscosity leads to an increase in 

the viscous force that opposes the motion of the fluid and 

decrease in viscosity leads to a decrease in the viscous force. 

Therefore, in this case, it can be concluded that increase in 

Reynolds number leads to an increase in the viscosity of the 

fluid and thus the decrease in the velocity of the fluid which 

leads to decrease in the velocity profiles. 

 

Figure 3. Secondary velocity (V) against X-axis varying Reynolds number. 

Figure 3 above represents secondary velocity against the x-

axis varying Reynolds number where M=0.5, Gr=85, γ =0.5 

and Re (=3, 4, 5). It is observed that the velocity starts from a 

negative value and increase to a positive value. Increase in 

Reynolds number leads to an increase in the velocity profiles 

until there is no change in the velocity profile at point (0). 

There is an intersection of the velocity profiles as observed 

from the above figure. This is because there is a circular 

motion displayed by the fluid which leads to a vortex flow. 

This leads to a change in the pressure gradient of the flow 

and thus the secondary flow of the fluid at the floor of the 

sphere changes as shown in the diagram above with increase 

in the Reynolds number. 

 

Figure 4. Temperature (T) against Y-axis varying Reynolds number. 

From figure 4 above, M=0.5, Gr=85, γ =0.5 and Re (=3, 4, 

5) and it is observed that increase in Reynolds number leads to 

decrease in the temperature profiles and decrease in Re leads 

to increase in the temperature profiles. In this study, Re is 

considered as an inverse function and thus increase in Re leads 

to increase in the viscosity of the fluid and decrease in Re leads 

to decrease in the viscosity. Increasing viscosity leads to an 

increase in the viscous force that opposes the motion of the 

fluid and decrease in viscosity leads to a decrease in the 

viscous force. Therefore, in this case, it can be concluded that 

increase in Reynolds number leads to an increase in the 

viscosity of the fluid and thus the decrease in the temperature 

of the fluid which leads to decrease in the temperature profiles. 

 

Figure 5. Skin friction against x-axis varying Reynolds number. 

Figure 5 represents the skin friction against the X-axis 

varying Reynolds number while M=0.5, Gr=85 and γ =0.5. 

It is observed that the skin-friction profiles decreases with 

increase in Reynolds number and increases with decrease in 

Reynolds number. Increase in Re leads to increase in the 

viscosity of the fluid which leads to increase in the viscous 

force due to the inverse nature of Reynolds number in this 

study. Increased viscous force leads to a reduction in the 

velocity of the fluid and thus the reduction in the velocity 

gradient. Decrease in velocity gradient leads to a decrease in 

the skin friction in the fluid as portrayed in the profiles 

above. 

 

Figure 6. Heat transfer against x-axis varying Reynolds number. 
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Figure 6 above shows the Heat transfer against x-axis 

varying Reynolds number whereas M=0.5, Gr=85 and γ
=0.5. It can be observed that increase in Reynolds number 

leads to an increase in the Heat transfer profiles and decrease 

in Reynolds number leads to a decrease in the heat transfer 

profiles. Increase in Re leads to increase in the viscosity of 

the fluid which leads to increase in the viscous force due to 

the inverse nature of Reynolds number in this study. 

Increased viscous force leads to a reduction in the 

temperature of the fluid and thus the reduction in the 

temperature gradient. Decrease in the temperature gradient of 

the fluid leads to an increase in the heat transfer of the fluid. 

 

Figure 7. Primary velocity (U) against Y-axis varying Grashof number. 

Figure 7 above represents the primary Velocity against Y-

axis varying the Grashof number while M=0.5, Re=4 and γ
=0.5. It is observed that increase in Grashof number leads to 

an increase in the velocity profiles and decrease in Grashof 

number leads to decrease in the velocity profiles. Increase in 

Grashof number leads to decrease in the viscosity of the fluid 

and decrease in Grashof number leads to an increase in the 

viscosity of the fluid. Increase in the viscosity of the fluid 

leads to an increase in the viscous force which leads to a 

decrease in the velocity of the fluid and decrease in the 

viscosity leads to decrease in the viscous force thus increase 

in the velocity of the fluid. Therefore, increase in Grashof 

number leads to a decrease in Viscosity which reduces the 

viscous force and thus an increase in the velocity of the fluid 

as shown in the figure 7 above. 

 

Figure 8. Secondary velocity (V) against x-axis varying Grashof number. 

From figure 8 above, it is observed that there is a slight 

decrease in the velocity profiles when the Grashof number is 

increased. The profiles intersect at a point and begin to 

increase after the same point in an inverse behavior. This is 

because of the circular motion displayed by the fluid which 

leads to a vortex flow which causes a change in pressure 

gradient of the flow and thus the secondary flow of the fluid 

across the floor of the sphere. 

 

Figure 9. Temperature (T) against Y-axis varying Grashof number. 

Figure 9 above shows the temperature (T) against the Y-axis 

varying Grashof number while M=0.5, Re=4 and γ =0.5. It 

can be observed that increase in Grashof number leads to an 

increase in the temperature profiles and decrease in Grashof 

number leads to a decrease in Grashof number. Increase in 

Grashof number leads to decrease in the viscosity of the fluid 

and decrease in Grashof number leads to an increase in the 

viscosity of the fluid. Increase in the viscosity of the fluid leads 

to an increase in the viscous force which leads to a decrease in 

the temperature of the fluid and decrease in the viscosity leads 

to decrease in the viscous force thus increase in the 

temperature of the fluid. Therefore, increase in Grashof 

number leads to a decrease in Viscosity which reduces the 

viscous force and thus an increase in the temperature of the 

fluid and thus the increase in the temperature profiles. 

 

Figure 10. Skin Friction against X-axis varying Grashof number. 
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Figure 10 above shows the profiles of skin friction against 

x-axis varying Grashof number while M=0.5, Re=4 and γ
=0.5. It is observed that increase in Grashof number leads to an 

increase in the skin friction profiles and decrease in Grashof 

number leads to a decrease in skin friction. Increase in Grashof 

number leads to decrease in the viscosity of the fluid and 

decrease in Grashof number leads to an increase in the 

viscosity of the fluid. Increase in the viscosity of the fluid leads 

to an increase in the viscous force which leads to a decrease in 

the velocity of the fluid and decrease in the viscosity leads to 

decrease in the viscous force thus increase in the velocity of 

the fluid. Decrease in velocity leads to a decrease in the 

velocity gradient of the fluid and increase in the velocity leads 

to an increase in the velocity gradient of the fluid. Therefore, 

in this case, increase in Grashof number leads to an increase in 

the velocity gradient of the fluid which leads to an increase in 

the skin friction of the fluid. 

 

Figure 11. Heat transfer against x-axis varying Grashof number. 

Figure 11 above shows the profiles of Heat transfer against 

x-axis varying Grashof number while M=0.5, Re=4 and γ
=0.5. It is observed that increase in Grashof number leads to 

an increase in Heat transfer profiles and decrease in Grashof 

number leads to a decrease in the heat transfer. Increase in 

Grashof number leads to decrease in the viscosity of the fluid 

and decrease in Grashof number leads to an increase in the 

viscosity of the fluid. Increase in the viscosity of the fluid 

leads to an increase in the viscous force which leads to a 

decrease in the temperature of the fluid and decrease in the 

viscosity leads to decrease in the viscous force thus increase 

in the temperature of the fluid. Increase in temperature leads 

to an increase in temperature gradient of the fluid which 

leads to an increase in the heat transfer as shown in the figure 

above. 

 

Figure 12. Primary velocity (U) against Y-axis varying Magnetic parameter 

M. 

Figure 12 shows Primary velocity against Y-axis varying 

Magnetic parameter where M (=0, 0.25, 0.5, 1.0) whereas 

Gr=85, Re=4 and γ =0.5. It is observed that increase in 

Magnetic parameter leads to decrease in the velocity 

profiles and decrease in Magnetic parameter leads to an 

increase in the velocity profiles. Increase in Magnetic 

parameter leads to an increase in Lorentz force in the fluid 

which opposes the fluid flow and thus leading to a decrease 

in the velocity of the fluid thus the reduction in the velocity 

profiles shown above. 

 

Figure 13. Secondary velocity (V) against x-axis varying Magnetic 

parameter (M). 

Figure 13 above shows the Secondary velocity (V) 
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against x-axis varying magnetic parameter (M) whereas 

Gr=85, Re=4 and γ =0.5. Increase in Magnetic parameter 

leads to an increase in the velocity profiles and decrease in 

the magnetic parameter leads to a decrease in the velocity 

profiles. There is an intersection of the velocity profiles at a 

certain point and then the profiles starts to rise. This is 

because as the fluid passes below the sphere, there is a 

circular motion that is displayed by the fluid which leads to 

a vortex flow. This makes the surface of the fluid to have a 

characteristic depression toward the axis of the spinning 

fluid. 

At any elevation with the fluid, the pressure is a little 

greater near the perimeter of the sphere where the fluid is a 

little deeper than near the center of the sphere. The fluid 

pressure is a little greater where the speed of the fluid is a 

little slower and the pressure is a little less where the speed is 

faster and therefore, this is consistent with the Bernoulli’s 

principle. There is a pressure gradient from the perimeter of 

the sphere to towards the center which leads to a centripetal 

force which is necessary for the circular motion of each 

parcel of the fluid. This pressure gradient accounts for the 

secondary flow of the boundary layer of the fluid flowing 

across the floor of the fluid. Thus, the variation of the 

velocity profiles with the magnetic parameter as shown 

above. 

 

Figure 14. Temperature (T) against Y-axis varying Magnetic parameter. 

Figure 14 represents temperature (T) against Y-axis 

varying Magnetic parameter (M) while Gr=85, Re=4 and γ
=0.5. It is observed that increase in Magnetic parameter M 

leads to a decrease in the temperature profiles whereas 

decrease in magnetic parameter leads to an increase in the 

temperature profiles. Increase in the Magnetic parameter 

leads to an increase in the Lorentz force in the fluid which 

leads to a decrease in the temperature of the fluid and 

decrease magnetic parameter leads to a decrease in Lorentz 

force which leads to an increase in the Temperature of the 

fluid, thus the change in the temperature profiles. 

 

Figure 15. Skin friction against X-axis varying Magnetic parameter. 

Figure 15 above represents Skin friction against x-axis 

varying Magnetic parameter while Gr=85, Re=4 and γ =0.5. 

It is observed that increase in the Magnetic parameter leads 

to decrease in the sin friction and decrease in the magnetic 

parameter leads to an increase in the skin friction of the fluid. 

This can be explained from the fact that increase in Magnetic 

parameter leads to increase in Lorentz force which opposes 

the motion of the fluid and this leads to a decrease in the 

velocity gradient which leads to decrease in the local skin 

friction coefficient and hence the reduction in the skin 

friction profiles. 

 

Figure 16. Heat Transfer against X-axis varying Magnetic parameter. 

Figure 16 above shows Heat transfer against X-axis 

varying Magnetic parameter M while Gr=85, Re=4 and γ
=0.5. It is observed that increase in Magnetic parameter leads 

to a decrease in the heat transfer and decrease in Magnetic 

parameter leads to an increase in the heat transfer. This is 

because increase in Magnetic parameter leads to an increase 

in Lorentz force which opposes the motion of the fluid and 

leads to a decrease in the temperature gradient and hence the 

decrease in the local Nusselt number. For increasing fluid 

temperature, the temperature difference between fluid and the 
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surface decreases and hence the corresponding rate of heat 

transfer decreases. 

 

Figure 17. Velocity (U) against Y-axis varying the viscous variation 

parameter. 

Figure 17 above shows the primary velocity (U) against Y-

axis varying the viscous variation parameter γ  while Gr=85, 

Re=4 and M=0.5. From the figure, it is observed that increase 

in γ  leads to a decrease in the velocity (U) of the fluid and 

decrease in γ  leads to an increase in the velocity of the fluid. 

For increasing values of γ , the viscosity of the fluid within 

the boundary layer increases which retards the fluid motion 

and as a result, the velocity (U) of the fluid decreases. 

 

Figure 18. Velocity (V) against X-axis varying Viscous Variation Parameter. 

Figure 18 above represents Secondary velocity (V) against 

X-axis varying the Viscous variation parameter ( )γ  while 

Gr=85, Re=4 and M=0.5. From the figure, it is observed that 

there is a slight change in the velocity profiles. This is 

because there is a slight effect of viscosity of the fluid on the 

secondary velocity of the fluid. 

 

Figure 19. Temperature (T) against Y-axis varying Viscous Variation 

parameter. 

Figure 19 above represents temperature (T) against Y-axis 

varying the viscous variation parameter while Gr=85, Re=4 

and M=0.5. It is observed that increase in γ leads to a 

decrease in the temperature of the fluid and decrease in γ  

leads to an increase in the temperature of the fluid. This is 

because increase in γ leads to an increase in the viscosity of 

the fluid which leads to an increase in viscous force which 

opposes the motion of the fluid. This increase in the viscous 

force leads to a decrease in the temperature of the flow and 

the reduction rate of the temperature profiles. The change in 

the temperature profiles is very slight which shows the 

change in the viscous variation parameter has a slight effect 

on the temperature profiles.  

 

Figure 20. Skin friction against X-axis varying viscous variation parameter. 

Figure 20 above shows Skin friction against X-axis 

varying the viscous variation parameter while Gr=85, Re=4 

and M=0.5. From the figure above, it is observed that 

increase in viscous variation parameter leads to an increase in 

the skin friction of the fluid and a decrease in the skin friction 

leads to a decrease in the skin friction of the fluid. Skin 

friction varies directly proportional to the viscous variation 

parameter γ and therefore increase in γ leads to an increase 

in the skin friction and decrease in γ leads to a decrease in 

the skin friction. Thus, the change in the skin friction profiles 



269 Mwangi Wanjiku Lucy et al.:  Effects of Variable Viscosity on Unsteady Natural Convection Hydromagnetic  

Flow Past an Isothermal Sphere 

as shown above. 

 

Figure 21. Heat transfer against X-axis varying viscous variation 

parameter. 

Figure 21 above represents heat transfer against X-axis 

varying Viscous variation parameter while Gr=85, Re=4 and 

M=0.5. From the figure, it is observed that increase in γ leads 

to a decrease in the heat transfer profiles and decrease in γ
leads to increase in the heat transfer profiles. It can be 

observed that increase in γ leads to a decrease in the 

temperature of the fluid and decrease in γ leads to an increase 

in the temperature of the fluid. This is because increase in γ
leads to an increase in the viscosity of the fluid which leads to 

an increase in viscous force which opposes the motion of the 

fluid. Decrease in the temperature of the fluid with increase in 

the viscous variation parameter leads to a decrease in the 

temperature gradient which leads to a reduction in the rate of 

heat transfer which means that the Nusselt number decreases. 

4. Conclusions 

In this study, the effects of variable viscosity on unsteady 

natural convection hydromagnetic flow past an isothermal 

sphere has been carried out. The numerical results in this 

study have been obtained using the Direct Numerical Scheme 

(DNS). It can be concluded that; 

� Increase in Reynolds number (Re) leads to an increase 

in the secondary velocity (V) and Heat transfer in the 

fluid but leads to a decrease in Primary velocity (U), 

Temperature (T) and Skin friction of the fluid. 

� Increase in Grashof number leads to an increase in 

Primary velocity (U), Temperature, Skin friction and 

Heat transfer in the fluid but leads to a decrease in 

Secondary velocity (V). 

� Increase in Magnetic parameter (M) leads to an increase 

in Secondary velocity (V) but leads to a decrease in 

primary velocity (U), Temperature,(T), Skin Friction 

and Heat transfer. 

� Increase in the Viscous variation parameter ( γ ) leads to 

an increase in skin friction, a slight change in secondary 

velocity (V) but leads to a decrease in primary velocity 

(U), Temperature and Heat transfer in the fluid. 
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Nomenclature 

a  Radius of the sphere, m 

pC  Specific heat at constant pressure, J/deg kg 

fC  Skin friction coefficient 

f  Dimensionless stream function 

g  Acceleration due to gravity, g 

Gr  Grashof number 

K  Thermal conductivity of the fluid, W/mK 

Mu  MHD parameter 

Nu  Nusselt number 

Pr  Prandtl number 

wq  Heat flux at the surface, W/m
2
 

T  Temperature of the fluid, K 

T∞  Temperature of the ambient fluid, K 

wT  Temperature at the surface, K 

,   Dimensionless velocity component 

,x y  Axis direction 

β  Volumetric coefficient of thermal 

expansion, (C
o
)

-1
 

wτ  Shearing stress, N/m
2
 

ρ  Density of the fluid, Kg/m
3
 

µ  Viscosity of the fluid, Ns/m
2
 

θ  Dimensionless temperature function 

0β  Strength of magnetic field, A/m 

0δ  Electric conduction, S/m 

V  Fluid velocity in the x, y direction, m
3
/s 

Gradient 

operator  
i j k

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

�� �

 

F
�

 Body forces vector in x and y directions, N 

mh  Magnetic field intensity, T 

fxC  Local skin Friction coefficient 

Q  Heat Generation Parameter 

( )ˆr x
 

Radial distance from the symmetrical axis 

to the surface of the sphere, m 
o  The Centre of the sphere 
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