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Abstract: For any bounded open interval X in the Euclidean space E
1
, let ↓USC(X) and ↓C(X) be the families of all 

hypographs of upper semi-continuous maps and continuous maps from X to I=[0,1], respectively. They are endowed with the 

topology induced by the Hausdorff metric of the metric space Y×I，Y is the closure of X. It was proved in other two papers 

respectively that ↓USC(X) and ↓C(X) are homeomorphic to s and c0 respectively, where s=(-1,1)
∞
 and c0={(xn)

∞−∈ )1 ,1( : 

limn→∞xn=0}. However the topological structure of the pair (↓USC(X), ↓C(X)) was not clear. In the present paper, it is proved in 

the strongly universal method that the pair of spaces (↓USC(X), ↓C(X)) is pair homeomorphic to ),( 0

∞∞ cs  which is not 

homeomorphic to (s, c0). Hence this paper figures out the topological structure of the pair (↓USC(X), ↓C(X)). 

Keywords: Hypograph, Upper Semi-continuous Maps, Continuous Maps, Bounded Open Interval, Hausdorff Metric,  

The Property of Strongly Universal 

 

1. Introduction 

For a Tychonoff space X and a subspace L of the real line R 

with the usual topology, let C(X, L) denote the set of all 

continuous maps from X to L. C(X, L) can be endowed with 

different topologies which are interesting for topologists. 

There are many research results in this field. In 1966 and 1991, 

two classical results were proved respectively which are listed 

below. 

Theorem 1 [Anderson-Kadec Theorem] [1]. Cu(X, L) is 

homeomorphic to (≈) the Hilbert space l2≈s=(-1,1)
∞
 [2] if X is 

an infinite compactum (a compactum means a compact metric 

space) and L=I=[0, 1] or L=R, where Cu(X, L) is C(X, L) 

endowed with the uniformly convergence topology. 

Theorem 2 [3]. Cp(X, L)≈c0 if X is a countable non-discrete 

metric space and L=R or L=I, where Cp(X, L) denotes C(X, L) 

endowed with the pointwise convergence topology, and 

c0={(xn)
∞−∈ )1 ,1( : limn→∞xn=0}. 

In [4] to [7], C(X, I) was endowed with another topology. To 

introduce this topology, it is necessary to recall the knowledge 

about hyperspace. For a metric space (M, d), the hyperspace 

Cld(M) is the set consisting of all non-empty closed subsets of 

M endowed with Vietoris topology. Hausdorff distance dH 

defined as follows: 

dH(A, B)=Inf{ε: Bd (A, ε)⊃B and Bd(B, ε)⊃A}   (1) 

for any A, B∈Cld(M). It is well-known that if M is compact, 

then dH is a metric and deduces Vietoris topology on Cld (M). 

Let X be a space. A (single-valued) function f: X → R is 

called upper semi-continuous if f
−1

(−∞, t) is open in X for 

every t∈R. For a Tychonoff space X and L⊂R, let USC(X, L) 

denote the family of all upper semi-continuous maps from X 

to L. For convenience, USC(X, I) and C(X, I) are abbreviated 

as USC(X) and C(X) respectively. 

For every f ∈USC(X), let ↓f be the region below of f, that 

is, ↓f = {(x, λ)∈X×I: λ ≤ f (x) } then ↓f ∈Cld (X×I). 

Hence↓USC(X)={↓f: f∈USC(X)} and ↓C(X)= {↓f: f∈

C(X)} can be topologized as subspaces of the hyperspace 

Cld(X×I). ↓C(X) can be considered as C(X) endowed with 

another topology which is different with the two former 

topologies ([4, Corollary 1]). 

For two pairs of spaces (X1, Y1) and (X2, Y2) with Y1⊂X1 

and Y2⊂X2, the symbol (X1, Y1)≈(X2, Y2) means that there 

exists a homeomorphism h: X1 →X2 such that h(Y1)=Y2. For a 

metric space X, we use X0 and clX(·) to denote the set of all 
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isolated points of X and the closure-operator in X, 

respectively. 

In 2005, it was proved that ↓USC(X)≈Q (Q = [-1, 1]
∞ 

is the 

Hilbert cube) when X is a compactum [8]. 

In 2006, there was the following result. 

Theorem 3 [4]. For a Tychonoff space X, the following 

conditions are equivalent: 

(a) X is a compactum and clX(X0)≠X; 

(b) ↓C(X) ≈ c0; 

(c) (↓USC(X), ↓C(X)) ≈ (Q, c0). 

In 2009, the following theorem was proved which indicated 

that the topological structure of (↓USC(X), ↓C(X)) was 

figured out for every compactum X. 

Theorem 4 [7]. Let X be a compact metric space, |X| denotes 

the cardinal number of X, and Σ={(xn)∈Q: sup{xn: n∈N
+
} < 

1} be a subspace of Q, then 









∪
≠≈

↓↓

.otherwises)Σ)\(QcQ,(

X)(Xcl if)cQ,(

finite is X if)I,I(

C(X))USC(X),(

0

0X0

|||| XX

 

If X is a non-compact space, ↓USC(X) and ↓C(X) can be 

endowed with Fell topology. From 2014 to 2016,Yang made a 

series of research in this area, see [9-11].  

If X is a non-compact and topological complete metric 

space whose completion is compact, then ↓USC(X) and ↓C(X) 

can be embed in ↓USC(Y) as subspaces [12, 13], where Y is 

the completion of X. In fact, define a map ↓e: 

↓USC(X)→↓USC(Y) as following: for any f ∈USC(X), 

 

X.\Yx)y(flim

Xx)x(f

e(f)(x)

Xyx,y







∈
∈

=
∈→

    (2) 

It had been proved in [12] that ↓e is an isometric imbedding. 

In 2008, there was the following result about ↓USC(X). 

Theorem 5 [12]. ↓USC(X) ≈ l2 ≈s if (X, ρ) is a non-compact 

and topological complete metric space whose completion is 

compact. 

However, at that time, we didn’t know the topological 

structure of ↓C(X) for every X satisfying the condition in 

Theorem 5. In 2013, we considered the case of clX(X0)≠X, and 

got the following result. 

Theorem 6 [13]. If X is a noncompact, locally compact, 

totally bounded, separable metric space, then ↓C(X, I) ≈ c0 if 

and only if clX(X0)≠X. 

We failed to prove that (↓USC(X,I),↓C(X,I))≈(s,c0) for 

every noncompact, locally compact, totally bounded, 

separable metric space X with clX(X0)≠X. In this paper, we 

take a particular case, that is, consider X as a bounded open 

interval in the Euclidean space E
1
 and we prove the following 

main result. 

Theorem 7. For any bounded open interval X in the 

Euclidean space E
1
, (↓USC(X), ↓C(X))≈ ),( 0

∞∞ cs . 

Remark 1. In fact (Q
∞
, s

∞
) ≈ (Q, s) and (Q

∞
, c0

∞
) ≈ (Q, c0), 

however, (s
∞
, c0

∞
) is not pair homemomorphic to (s, c0) [14]. 

Hence the above theorem indicates that (↓USC(X), ↓C(X)) is 

not homeomorphic to (s, c0). 

2. Preliminaries 

All spaces under discussion are assumed to be separable 

metrizable spaces. All definitions on this section can be found 

in [15] or [16]. 

Definition 1 A space X is called an absolute retract, 

abbreviated AR, provided that for every space Y containing X 

as a closed subspace, X is a retract of Y, that is, there exists a 

continuous map r: Y → X such that r|X = idX. 

Definition 2 A closed subset A of a space X is said to be a 

Z-set of X if the identity idX can be approximated by 

continuous maps from X to X \ A. A Zσ-set in a space is a 

countable union of Z-sets in the space. A space is called a 

Zσ−space if it is a Zσ−set of itself. We use Z(X) and Zσ(X) to 

denote the family of all Z-sets and the family of all Zσ-sets in 

X, respectively. A Z-embedding is an embedding with a Z-set 

image. 

Definition 3 A subset A of a space Y is called homotopy 

dense in Y if there exists a homotopy h: Y × I → Y such that h0 

= idY and ht(Y)⊂A for every t > 0. 

Definition 4 Let M0 and M1 denote the class of compacta 

and the class of topological complete spaces, respectively. A 

space is called an absolute Fσ-space if it is an Fσ-set in any 

space which contains it as a subspace. A space is called an 

absolute Fσδ-space if it is an Fσδ-set in any space which 

contains it as a subspace. Let M2 denote the class of all 

absolute Fσδ-spaces. Let (M0, M1, M2) denote the class of all 

triples of spaces (M, B, A) such that M⊃B⊃A, M∈M0, B∈

M1 and A∈M2. 

Definition 5 Let Fσ denote the class of all absolute 

Fσ-spaces. Let (X, d) be a copy of Hilbert cube Q and the pair 

of spaces (X, Y)∈(M0, M2)(or res. (M0, Fσ)). We say that (X, 

Y) is strongly (M0, M2) -universal (or res. strongly (M0, Fσ) 

universal)provided for each(M, B)∈(M0, M2) (or res. (M0, 

Fσ)), each continuous map f: M → X, each closed subset K of 

M such that f|K: K→X is a Z-embedding and each ε > 0, there 

is a Z-embedding g: M → X such that g|K = f|K, g
−1

(Y)\K = 

B\K and d(g(m), f(m)) < ε for each m∈M. 

Remark 2. (Q
∞
, c0

∞
) is strongly (M0, M2) –universal [14] 

and (Q,Σ) is strongly (M0, Fσ) universal [15]. 
Definition 6 Let (X, d) be a copy of Hilbert cube Q and the 

triple of spaces (X, Y, Z)∈(M0, M1, M2). We say that (X, Y, Z) 

is strongly (M0, M1, M2) -universal provided for each 

(M, B, A)∈(M0, M1, M2), each continuous map f: M → X, 

each closed subset K of M such that f|K: K→X is a 

Z-embedding and each ε > 0, there is a Z-embedding  

g: M → X such that g|K = f|K, g
−1

(Y) \ K = B \ K, g
−1

(Z) \ K 

= A \ K and d(g(m), f(m)) < ε for each m ∈ M. 

Let Ω2 be the absorbing set in R
∞
 for the class M2, 

constructed in [17]. 

The following lemma is a statement in [18, page 274]. 

Lemma 1. Let (RC
∞
, R

∞
, D) be a triple of spaces with D≈Ω2, 
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then (RC
∞
, R

∞
, D)≈(RC

∞
, R

∞
, Ω2) (triple homeomorphism 

whose definition is similar as pair homeomorphism) if and 

only if (RC
∞
, R

∞
, D) is strongly (M0, M1, M2) –universal, RC= 

[−∞, +∞]. 

Corollary 1. Let (A, B, C) be a triple of spaces with (A, B) ≈ 

(Q, s) and C ≈ c0, then (B,C) ≈ (s
∞
, c0

∞
) if (A, B, C) is strongly 

(M0, M1, M2) -universal.  

Proof. Since (A, B) ≈ (Q, s) ≈ (RC
∞
, R

∞
), there exists a 

homeomorphism h: A → RC
∞ 

such that h[B] = R
∞
. Put D = 

h[C], then (A, B, C) ≈ (RC
∞
, R

∞
, D) and D ≈ c0. If (A, B, C) is 

strongly (M0, M1, M2)-universal then (RC
∞
, R

∞
, D) is also 

strongly (M0, M1, M2)-universal. Note that Ω2 ≈ c0
[17]

, (RC
∞
,R

∞
, 

D) ≈ (RC
∞
, R

∞
, Ω2) by lemma 1. Since (R

∞
, Ω2) ≈ (s

∞
, c0

∞
) [14], 

(B, C) ≈ (R
∞
, D) ≈ (R

∞
, Ω2) ≈ (s

∞
, c0

∞
). 

3. Proof of the Main Result 

In this section, X is always assumed for an bounded open 

interval in E
1
, and Y be the closure of X which is compact. We 

can define a metric d on the product space Y×I as following,  

d((x1,t1),(x2,t2))=Max{|x1-x2|,|t1-t2|} 

for any (x1, t1),(x2, t2)∈Y×I.  

Let dH be the Hausdorff metric on Cld(Y×I). 

3.1. Some Lemmas for Proof of Theorem 3 

Lemma 2 [13, Corollary 3]. There exists homotopy  

H: ↓USC(Y) × I →↓USC(Y) such that 

H0 = id↓USC(Y), and Ht(↓USC(Y))⊂↓C(Y) for each t > 0, and 

dH(H(↓f, t), ↓f)≤t for each f∈USC(Y) and each t∈I. 

Lemma 3 [5, Lemma 8]. Let A be a metric space and  

a, b: A → I two continuous maps with a(y) < b(y) for each y 

∈ A. And let M: A × I → I be a map satisfying the following 

conditions: 

(1) for each fixed y0 ∈ A, M(y0, t): I → I is increasing,  

(2) for every fixed t0 ∈ I, M(y, t0): A → I is continuous. 

Then s: A→ I defined by 

∫−
=

)(

)(

),(

)()(

1

)(

yb

ya

dttyM

yayb

ys  

is continuous and M(y, a(y)) ≤ s(y) ≤ M(y, b(y)) for every 

y∈A. 

Lemma 4 [19, lemma 2.9]. (Qu, c1) ≈ (Q
∞
, c0

∞
), where  

Qu =[0, 1]
∞
, c1 = {(xn) ∈Qu: limn→∞ xn = 1}. 

Lemma 5 [15, Proposition 5.4.6]. (Q,Q\s) ≈ (Q,Σ). 

Lemma 6 [4, Lemma 5]. Let F = E∪Z⊂↓USC(Y) be closed. 

If Z is a Z-set in ↓USC(Y) and for every ↓f∈E there exists a

∈Y such that f(a) = 0, then F is a Z-set in ↓USC(Y). 

3.2. Proof of Theorem 3 

Since (↓USC(Y), ↓USC(X))≈(Q, s) [12], ↓C(X)≈ c0 [13], by 

Corollary 1, it suffices to prove the following lemma. 

Lemma 7. The triple of spaces (↓USC(Y), ↓USC(X), ↓C(X)) 

is strongly (M0, M1, M2) -universal. 

Proof. Without loss of generality, assume that X = (−1, 1), 

Y= [−1, 1]. Let xn = 1/2
n
, x′n = 1/2

n
 − 1 for every n ∈ N

+
, x0 = 

0 and x∞ = −1, then limn→∞ xn = x0 and limn→∞ x′n = x∞. Let (D, 

B, A) be a triple of spaces such that (D, B, A)∈(M0, M1, M2) 

and K be a closed subset of D. Let Φ: D → USC(Y) be a map 

such that ↓Φ: D →↓USC(Y) is continuous and ↓Φ| K: K 

→↓USC(Y) is a Z-embedding. By [7, Lemma 1.1], without 

loss of generality, we may assume that ↓Φ(K) ∩ ↓Φ(D\K) = ∅ . 

For every ε ∈ (0,1), let δ: Y → [0,1) be a map defined by  

δ(y) =(1/5)min{ε,d H (↓Φ(y),↓Φ(K))}. 

Then δ is continuous and δ(y) = 0 if and only if y ∈ K. For 

every k ∈ N
 
+, let 

Dk = {y ∈ Y: 2
 −k

 ≤ δ(y) ≤ 2
 −k+1

}. 

Then ∪ k∈N + Dk= D\K. In what follows, we shall define. 

In what follows, we shall define Ψk:Dk → USC(Y) for every 

k ∈ N +, and then use these maps and Φ| K to define a map Ψ:D 

→ USC(X) such that ↓Ψ: D →↓USC(Y) is a Z-embedding, 

Ψ|K = Φ|K, Ψ 
−1

 (USC(X))\K=B\K, Ψ
−1

 (C(X)) \K=A\K and d H 

(↓Ψ(y), ↓Φ(y)) < ε for each y∈D. This task will be finished in 

four steps.  

It follows from Lemma 3, that there exists a homotopy H: 

↓USC(Y) × I →↓USC(Y) such that 

H0= id↓USC(Y), Ht(↓USC(Y))⊂↓C(Y) and  

dH(Ht(↓f), ↓f) ≤ t for each f ∈USC(Y) and each t ∈ (0,1].  

For each y∈D, and t∈I, let 

↓h(y) = H(↓Φ(y),δ(y)), 

M 0 (y,t) = sup{h(y)(x): |x − x 0 | < t},and 

M∞(y,t) = sup{h(y)(x): |x − x∞| < t}. 

Then h(y)∈C(Y) for each y∈D\K and  

↓h| D \K: D\ K →↓C(Y) is continuous. 

Moreover, dH(↓h(y),↓Φ(y)) ≤ δ(y) for every y∈D. It 

follows from the continuities of δ and H that 

M0, M∞: (D\ K) × I → I satisfies the conditions (1) and (2) in 

Lemma 3. 

Thus 

)0(),(

)(

1

)(

)(2

)(

∞== ∫ oridttyM

y

ys

y

y

ii

δ

δδ
 

is continuous on D\ K and Mi(y,δ(y)) ≤ si(y) ≤ Mi (y,2δ(y)) for 

every y ∈ D \ K. 

By Definition 5 and Lemmas 4 and 5, there exist 

Z-embeddings α: D → Qu and β: D → Q such that 

α
−1

 [c 1] = A and β
−1

 [Q\Σ] = B. If α(y) = (x1, x2, ···,xn, ···) 

∈ Q u and β(y) = (z 1, z 2, ···,z n, ···) ∈Q, then the symbols 

α(y)(n) and β(y)(n) denote x n and z n, respectively. For each n 

∈ N +, define a map V n: D → I by 

Vn (y) = max{|β(y)(i)|: i ∈ {1,2,· · ·,n}} 

for every y∈D. It is easy to check that Vn is continuous and 

lim n→∞ Vn(y) = 1 if and only if y∈B. 

Define continuous maps ϕk: Dk → I by 

ϕk (y) = 2 − 2
k
 δ(y). Since y ∈D k, 2

 −k
 ≤ δ(y) ≤2

 −k+1
. Hence 

0 ≤ ϕ k (y) ≤ 1, ϕ k (y) = 0 if δ(y) = 2
 −k+1

 and ϕk (y) = 1 if δ(y) = 

2
 −k

. 
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Let Yi = {x ∈Y: 2
−i−1

 ≤ |x − x 0 | ≤ 2
 −i

}, and 

Y′i = {x ∈ Y: 2
 −i−1

 ≤ |x − x ∞ | ≤ 2
 −i

}, then 

Y = (1/2, 1]∪∪i∈N + (Y i ∪Y′ i).  

Define φi: Y i → I by φi (x) = 2
 i+1

 (2
 −i

 − |x − x 0 |) for each 

i∈N +. Then φ i (x i) = 0 and φi (x i+1) = 1 for every i ≥ 1. 

Define γi: Y′ i → I by γi (x) = 2
 i+1

 (2
 −i

 − |x − x ∞ |) for each 

i∈N+. Then γi (x′i) = 0and γi (x′i+1) = 1 for every i ≥ 1. 

Step 2: For every k ∈ N+, define a map Ψk on Dk. 

For every k ∈ N+, define a map Ψk: Dk → USC(Y) as 

follows: 

for every y∈D k, 

if x∈(1/2, 1]∪∪i∈{1,2,…,2k}(Y i ∪Y′ i),  

Ψk (y)(x) = h(y)(x). 

Ψ k (y)(x 2k+1) = h(y) (x 2k+1); 

Ψ k (y)(x 2k+2) = (1 − ϕ k (y))s 0(y) + ϕ k (y)h(y) (x 2k+2); 

Ψ k (y)(x 2k+3) = (1 − ϕ k (y))δ(y) + h(y) (x 2k+3) ϕ k(y); 

Ψ k(y)(x 2k+4) = s 0 (y); 

Ψ k(y)(x 2k+5) = δ(y); 

Ψk(y)(x2k+6) = (1 − ϕ k (y))δ(y)α(y)(1) + ϕ k(y)s0(y); 

if m is odd and m ≥ 7, Ψk(y)(x 2k+m) = δ(y); 

if m is even and m ≥ 8, 

Ψ k (y)(x2k+m) = δ(y)[(1 − ϕk(y))α(y)((m+2)/2− 3) 

+ ϕk(y)α(y)(m/2− 3)]; 

Ψk(y)(x0) = δ(y); 

if x∈Y2k+i, i ∈N +,  

Ψk(y)(x) = (1− φi(x))Ψk(y)(x2k+i) + φ i(x)Ψk(y)(x2k+i+1). 

Ψk(y)(x′2k+1) = h(y) (x′2k+1); 

Ψk(y)(x′2k+2) = (1− ϕk(y))s∞(y) + ϕk(y)h(y)(x′2k+2); 

Ψk(y)(x′2k+3) = h(y)(x′2k+3)ϕk(y); 

Ψk(y)(x′2k+4) = s∞(y); 

Ψk(y)(x′2k+5) = 0; 

Ψk(y)(x′2k+6) = (1− ϕk(y))δ(y)V1(y) + ϕk(y)s∞(y); 

if m is odd and m ≥ 7, Ψk(y)(x′2k+m) = 0; 

if m is even and m ≥ 8, 

Ψk (y)(x′2k+m)= δ(y)[(1 − ϕk(y))V ((m+2)/2−3) (y) 

+ ϕk(y)V (m/2 −3) (y)]; 

Ψ k (y)(x∞) = δ(y); 

if x ∈Y′2k+i, i∈N+,  

Ψk(y)(x)=(1 −γi (x)) Ψk(y) (x′2k+i) 

+ γi(x)Ψk(y)(x′2k+i+1). 

Step 3: Checking corresponding properties of maps Ψk′s to 

prepare for defining the map Ψ. 

Claim 1: For every y∈Dk, Ψk(y) is well-defined on Y, 

continuous on Y\{x0, x∞} and upper semi-continuous at x0 and 

x∞. Moreover, lim x→x∞Ψk(y)(x) = δ(y) =Ψk(y)(x∞) if and only 

if limn→∞Vn(y)=1 if and only if y∈B. Therefore, if y ∈ Dk, 

then Ψk(y)∈USC(X) if and only if y∈B∩Dk. Ψk(y) is 

continuous at x0 if and only if limn→∞α(y)(n)=1 if and only if 

y∈A∩Dk. 

The proof of Claim 1 is trivial. 

Claim 2: For each k∈N+, ↓Ψk:Yk →↓USC(Y) is 

continuous. 

It can be proved like the proof of [4, Proposition 1]. 

Claim 3: Ψk(y) = Ψk+1(y) for every y∈Dk∩Dk+1. 

For every y∈Dk∩D k+1, we have δ(y) =1/2
k
.  

Thus, ϕk(y) = 1 and ϕk+1(y) = 0. 

If x∈(1/2, 1]∪∪i∈{1,2,…,2k}(Y i ∪Y′ i),  

Ψk(y)(x) = h(y)(x)=Ψk+1(y)(x). 

Ψ k (y)(x 2k+1) = h(y) (x 2k+1) =Ψk+1(y)(x 2k+1). 

Ψ k (y)(x 2k+2)= h(y) (x 2k+2)= Ψk+1(y)(x 2k+2). 

Ψ k (y)(x 2k+3)= h(y) (x 2k+3)= Ψk+1(y)(x 2k+3). 

Ψ k(y)(x 2k+4) = s 0 (y) = Ψk+1(y)(x 2k+4). 

Ψ k(y)(x 2k+5) = δ(y)= Ψk+1(y)(x 2k+5). 

Ψk(y)(x2k+6)= s 0 (y) =Ψk+1(y)(x2k+6). 

If m is odd and m ≥ 7, 

Ψk(y)(x 2k+m) = δ(y)= Ψk+1(y)(x 2k+m). 

If m is even and m ≥ 8, 

Ψ k (y)(x2k+m) = δ(y)α(y)(m/2−3) =Ψ k+1 (y)(x2k+m). 

Ψk(y)(x0) = δ(y)= Ψk+1(y)(x0). 

If x∈Y2k+i = Y2(k+1)+(i-2),i∈N +,  

Ψk(y)(x) = (1− φi(x))Ψk(y)(x2k+i) + φ i(x)Ψk(y)(x2k+i+1) 

= (1− φi(x))Ψk+1(y)(x2(k+1)+(i-2)) 

+ φ i(x)Ψk+1(y)(x2(k+1)+(i-2)+1) 

=Ψk+1(y)(x). 

Ψk(y)(x′2k+1) = h(y) (x′2k+1)= Ψk+1(y)(x′2k+1); 

Ψk(y)(x′2k+2) = h(y)(x′2k+2) =Ψk+1(y)(x′2k+2). 

Ψk(y)(x′2k+3) = h(y)(x′2k+3) =Ψk+1(y)(x′2k+3). 

Ψk(y)(x′2k+4) = s∞(y) =Ψk+1(y)(x′2k+4). 

Ψk(y)(x′2k+5) = 0 =Ψk+1(y)(x′2k+5). 

Ψk(y)(x′2k+6) = (1− ϕk(y))δ(y)V1(y) + ϕk(y)s∞(y) 

=Ψk+1(y)(x′2k+6). 

If m is odd and m ≥ 7, Ψk(y)(x′2k+m) = 0=Ψk+1(y)(x′2k+m). 

If m is even and m ≥ 8, 

Ψk(y)(x′2k+m)= δ(y)V(m/2 −3) (y) =Ψk+1(y)(x′2k+m). 

Ψk(y)(x∞)=δ(y)=Ψk+1(y)(x∞). 

If x∈Y′2k+i= Y′2(k+1)+(i-2),i∈N+,  

Ψk(y)(x)=(1−γi (x)) Ψk(y) (x′2k+i) + γi(x)Ψk(y)(x′2k+i+1) 

=(1−γi (x)) Ψk+1(y) (x′2k+i) + γi(x)Ψk+1(y)(x′2k+i+1) 

=(1−γi (x)) Ψk+1(y) (x′2(k+1)+(i-2)) 

+ γi(x)Ψk+1(y)(x′2(k+1)+(i-2)+1)= Ψk+1(y)(x). 

Step 4: Defining the map Ψ and checking its properties 

Now we can define a map Ψ: D → USC(Y) as follows: 





∈Ψ
∈=Φ

=Ψ
kk

Dyy

Kyyhy

y

)(

)()(

)(  

Then Ψ|K = Φ|K. Therefore, the following claims show that 

↓Ψ is as required. 

Claim 4: For every y ∈D, dH(↓Ψ(y), ↓Φ(y)) ≤ 4δ(y) < ε. 

It can be proved similarly as the proof of [4, Proposition 1]. 

Claim 5: ↓Ψ: D →↓USC(Y) is a Z-embedding. 

Since D is compact, it suffices to prove the following three 

aspects. 

(1). ↓Ψ is continuous. 

It follows from Claims 2, 3 and 4. 

(2). Ψ is an injection. 

For any y1, y2∈D with y1 ≠ y2, we shall show Ψ(y1) ≠
Ψ(y2). By the symmetry, we only consider the following three 

cases. 

Case 1. y1, y2∈K. This fact is trivial. 

Case 2. y1∈K and y2∈D\K. Then, by Claim 4, 

dH(↓Ψ(y2),↓Φ(y2)) ≤ 4δ(y2). 

On the other hand, it follows from the definition of δ that  

dH(↓Φ(y1),↓Φ(y2)) ≥ dH(↓Φ(K),↓Φ(y2)) ≥ 5δ(y2) > 0. 
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We conclude that Ψ(y1) = Φ(y1) ≠ Ψ(y2). 

Case 3. y1, y2∈D\K. If Ψ(y1) = Ψ(y2), then  

δ(y1)=Ψ(y1)(x∞)=Ψ(y2)(x∞)=δ(y2) ≠ 0. Thus there exists k 

such that y1, y2∈Dk and ϕk(y1) = ϕk(y2). 

On the other hand, for every i∈N+,  

Ψk(y1)(x2k+i) = Ψ(y1)(x2k+i)= Ψ(y2)(x2k+i) = Ψk(y2)(x2k+i). 

Thus, if ϕk(y1)=ϕk(y2)=1, then α(y1)(m)=α(y2)(m) for 

every m∈N+ by δ(y1)=δ(y2) and the definition of Ψk(y1)(x2k+i) 

and Ψk(y2)(x2k+i) for every even number i with i≥8. If ϕ(y1) 

=ϕk(y2) ≠ 1, then α(y1)(m)=α(y2)(m) for every m∈N+ by 

δ(y1)=δ(y2) and the definition of Ψk(y1)(x2k+i) and 

Ψk(y2)(x2k+i) for every even number i with i≥4. Thus α(y1) = 

α(y2) in both cases. Since α: D → Qu is injective, we have that 

y1=y2 which contradicts with the assumption of y1 ≠ y2. 

(3). ↓Ψ(D) is a Z-set of ↓USC(Y). 

↓Ψ(D) is compact by (1). Noticing that, for every y∈Dk, 

Ψ(y)(x′2k+4) = Ψk(y)(x′2k+4)=0, it follows from Lemma 6 that 

↓Ψ(D) is a Z-set. 

Claim 6: Ψ
−1

(USC(X))\K=B\K and Ψ
−1

(C(X))\K=A\K. 

In fact, for every y∈D\K, there exists k such that y∈Dk. It 

follows form the definition of Ψ and Claim 1. We are done. 

4. Conclusion 

For any bounded open interval X in the Euclidean space E
1
, 

↓USC(X) is homeomorphic to s [12] and ↓C(X) is 

homeomorphic to c0 [13]. However in this paper, it is proved 

that (↓USC(X), ↓C(X)) is pair homeomorphic to the pair
 

),( 0

∞∞ cs  which is not pair homeomorphic to the pair (s, c0). 
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