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Abstract: In this paper we have presented a pair of coupled differential equations to represent a prey – predator system. It is 

assumed that the growth of the prey population follows critical depensation function and that of the predator population is 

negative in absence of the prey population. The critical depensation function is special since the growth rate is negative 

initially but positive later on. This function is stable both at the origin and at the carrying capacity while unstable at the critical 

mass quantity. The maximum and minimum rates of the critical depensation model are verified. It can be interpreted here that 

the prey represent fish and the predator represent a kind of birds that mostly feeding on fish to live. We showed the solution of 

the model is positive and bounded. The mathematical model of the system consisting of 7 parameters is constructed and shown 

that the non – dimensionalization decreases the number of model parameters to 4. The deterministic behavior of the model 

around feasible equilibrium points and criteria of the interior positive equilibrium points and their stability are explained. The 

trivial equilibrium point is always stable while the two axial equilibrium points and the lone interior equilibrium point are 

either stable or unstable depending on the conditions imposed on the parameters. The criterion for the existence of the limit 

cycle and the region of existence of interior equilibrium point are identified. Global stability of interior equilibrium points is 

also studied. For the interior equilibrium point of the model (i) the region of existence is identified (ii) Dulac’s criteria is 

applied to find the limit cycle and (iii) Lyaponov function is used to analyze the global stability. Simulation study of the model 

is conducted in support of the analytical analysis. To solidify the analytical results numerical simulations are provided for 

hypothetical set of parametric values. 

Keywords: Predator, Prey, Critical Depensation, Coupled Differential Equations, Equilibrium Point, Global Stability,  

Limit Cycle, Lyapunove Function 

 

1. Introduction 

Mathematical modeling is a key tool that has been 

considered and used for understanding both growth and 

dynamics of a population [1 – 3]. Mathematical models are 

widely used for understanding the present size and growth 

rate of a population and to estimate both past and future 

population sizes. Mathematical modeling plays an important 

role in managing any industry, for example fishing industry 

or a fishery. Also in case of a park where two or more types 

of populations or species live, mathematical modeling can be 

applied so that a balance among the populations can be 

maintained. Further, population models are used to determine 

maximum harvested quantities in case of agriculturists [4]. 

The relationship between the population sizes of species in a 

system is highly non-linear. However, mathematical modeling 

equations are being designed and used to understand that 

relationship. Research in the area of theoretical ecology was 

initiated in 1925by Loteka and Volterra [5]. The Lotka-Volterra 

predator-prey model is one of the earliest prey predator models 

which is based on basic mathematical logic [6]. In this paper 

we have studied the prey – predator model replacing the 

classical model’s exponential growth of the prey population by 

critical depensation growth with carrying capacity �  and 

critical mass quantity	��. In the present model the predator has 

no alternative food except fish as that of the generalized prey – 

predator model [7]. The predicted stability of the present 

mathematical model is well supported by the simulation study 

also. 
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2. Lotka – Volterra Predator – Prey 

Models 

The classical model describing the predator-prey problem 

was originally developed in the 1920s by Vito – Volterra, and 

since then a wide and related studies have been conducted. The 

Lotka – Volterra predator-prey equations are first-order and 

nonlinear differential equations defined as [1, 2, 3, 4, 6, 7, 9]. 

�� ��⁄ 	= 		
	� − 	�	�
                    (1a) 

	�
 ��⁄ 	= −	�
	
 + ��	�	
                  (1b) 

In the classical model as described in (1) the variable ����	 represents the size or density of a prey population 

while 	
��� represents that of a predator population. The 

quantities		
	,		�	,	�
	and	��	are all positive parameters. 

The equation (1a) describes the population dynamics of 

prey in the prey – predator environment. The growth rate of 

prey ��� ��⁄ �	is proportional to its own population �	and the 

declination rate is proportional to the interaction between 

prey and predator	��
�. Here			
	is intrinsic growth rate of 

the prey population while		�	is the predation rate of prey. 

The equation (1b) describes the population dynamics of 

predator in the prey – predator environment. The death rate 

of predator 	��
 ��⁄ �  is proportional to its own population 
	 and the growth rate is proportional to the interaction 

between prey and predator	��
�. Here	�
	is death rate of the 

predator population while	��	 is the growth rate of predator 

due to interaction with prey. 

Equilibrium points and stability. 

Population equilibrium points occur for the model (1) when 

growth rates of population are vanishing. It is well known that the 

equilibrium points for the model (1) are �0	, 0	�	 and 	��	
 	�⁄ �	, ��
 ��⁄ �� . Using non- linear stability 

analysis we conclude that the trivial equilibrium point is unstable 

while the interior equilibrium point is a center which is stable. 

The modified Lotka – VolterraPredator – Prey Models. 

The logistic inclusion predator prey modelis more realistic 

than the the previous model and it is written as 

�� ��⁄ 	= 	
	�	�1 − �� �⁄ �� − 	�	�
      (2a) 

�
 ��⁄ 	= −	�
	
 + ��	�	
                         (2b) 

Here		
	is intrinsic growth rate, 	� is the rate at which the 

predator and prey meet, 	�
	is death rate, 	��	 is the rate at 

which the predator population grows and �	is the carrying 

capacity of the prey population. 

Equilibrium points and stability 

Population equilibrium points occur for the model (2) 

when growth rates of population are vanishing. It is well 

known that the equilibrium points for the model (2) 

are 	�0	, 0�	 , 	��	, 0�	and 	���
 ��⁄ �	, �	
 	�⁄ ��1 − ��
 ���⁄ ���	 . 
Using non- linear stability analysis we understand that the 

trivial equilibrium point is a saddle point and hence is 

unstable. The axial equilibrium point 	��, 0�	 is stable if �� < ��
 �⁄ �	while it is unstable if	�� > ��
 �⁄ �. The interior 

equilibrium point ���
 ��⁄ �	, �	
 	�⁄ ��1 − ��
 ���⁄ ���	 is 

saddle point and unstable if 	�
 > �����  while it is stable 

if	�
 < �����. 
3. The Critical Depensation Model 

The population growth models can be classified into three 

types namely Compensation, Depensation and Critical 

depensation [13]. Compensation growth is a growth type 

where population declination is compensated by increased 

growth rate and it is written in the form 	�� ��⁄ 	=���1 − �� �⁄ ��. Depensation growth is the opposite case to 

compensation growth model and has equation of the 

form 	�� ��⁄ 	= ����1 − �� �⁄ �� . In both of these model 

s���� denotes the population size at time �	, � is the growth 

rate, � is the carrying capacity and  ≠ 1 is any real number 

different from a unit. But the critical depensation model is 

extremely in opposite of the depensation model and is briefly 

explained here in what follows. 

As it is clearly described [9] some populations experience 

reduced rates of survival and reproduction when reduced to very 

low densities. This reduced per – capita growth rate at low 

densities is called depensation. The strong Depensation is called 

critical depensation. Mathematical expression of the strong 

critical depensation is given by the cubic growth model as, 

�� ��⁄ 	= ��	�1 −	�� �⁄ ��	��� ��⁄ � − 1�	            (3) 

Here in the growth model (3),	���� represents the population 

size,	� represents intrinsic growth rate of population, �	is the 

carrying capacity of the population in the environment, �� is 

the critical mass quantity and ��� ��⁄ � is the growth rate of the 

population. In case of the critical depensation model (3) the 

following observations can be made. 

i. Growth rate of the population is negative as long as 

the population size lies below the critical mass 

quantity 	�� . That is, the condition ��� ��⁄ � < 0 

satisfies in the interval	0 < � < ��. 

ii. Growth rate of the population is positive as long as 

the population size lies above the critical mass 

quantity	��	and below the carrying capacity	� . That 

is, the condition ��� ��⁄ � > 0  satisfies in the 

interval	�� < � < �.  

iii. Both the critical mass quantity 	��	 and the carrying 

capacity �	are positive quantities such that	0 < �� < �. 

iv. The per capita growth rate is always a positive 

quantity	���� ��⁄ � �⁄ � > 0. 

v. The per capita population growth rate	���� ��⁄ � �⁄ � 
increases with increasing 	����  over some range of 

population size	�0, ��. 
vi. The critical depensation model (3) has three 

equilibrium points 	� = 0	 , � = �� and 	� =�	 respectively. The equilibrium point � = ��  is 

unstable and the remaining two equilibria points	� =0  and � = �  are asymptotically stable. The 

geometrical representation of these equilibria points 

is shown in Figure 2. 

vii. If the initial population size is assumed to start with 

some value above	��  then the population will grow 

and reach the carrying capacity � over time otherwise 
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it will die out over time. 

viii. Together with the natural positive population growth 

if either harvesting or hunting is introduced then the 

population size can be brought down. As long as the 

population size is maintained above 	��	 then the 

population naturally grows and reaches the carrying 

capacity 	� . That is, the population size continues 

growing and reaches the carrying capacity �	as long 

as the harvested or hunted population quantity 

satisfies the following inequality: 

"Harvestedor	Huntedsize 0 < 1" Presentpopulationsize 0 − " CriticalMass	Quantity		k�0; 
ix. If the population size is brought below 	��	due to 

harvesting or hunting then the population size 

naturally decreases and dies down eventually. That is, 

the population size continues decreasing and reaches 

extinction whenever the harvested or hunted 

population quantity satisfies the following inequality: 

"< �=>?�>�@�	<AB�>�?CD> 0 > 1" 
�>?>B�E@EAF �C@B?CD> 0 − " G�C�CH FI ??	JA B�C�K		��0; 
Implicit solution of the critical Depensation model. 

An implicit solution of the model (3) is found by applying 

separation of variables method. The solution is called 

implicit since the population size variable ����	 is not 

expressed in terms of the dependent variable	�. Application 

of separation of variables on (3) immediately gives us 	L���� ���� − ���� − ����⁄ �	��	 = L ���. The integrand on 

the left hand side can be simplified using partial fraction 

decomposition method. Let 	���� ���� − ���� − ����⁄ � =	�M �⁄ � + �N �� − ��⁄ � 	+ �G �� − ���⁄ �. Here M, N	and G	are 

unknown constants and these are to be determined. We now 

determine the values of the coefficients M, N	 and G  as 

follows. After simplification and comparison of the 

coefficients we obtain 	M � 1 , N � ���� �� � ���⁄ �  and G � ��� �� � ���⁄ � and thus the integral equation takes the 

form L�1 �⁄ � �� �	 ��� �� � ���⁄ � L�� � ��O
�� ��� �� � ���⁄ � L 	�� � ���O
 �� � L ��� . On evaluating the 

integrals we get 	ln � � ��� �� � ���⁄ � ln�� � �� ��� �� � ���⁄ � ln�� � ��� � ��	 � �� � ���O
 ln G� . The 

term	��� � ���O
 ln G��	represents the integral constant.The 

implicit solution can be further simplified on applying 

antilogarithmic function and can be expressed as  

	�POPQ�� � ��PQ�� � ���OP �	G�>R�POPQ�S        (4) 

The result (4) is the required general implicit solution of 

the critical depensation model described by (2). Up on 

substituting the initial condition � � ��	at � � ��	the general 

solution (3) we obtain. 

T UUQVPOPQ T POUPOUQVPQ T UOPQUQOPQVOP 	� 	 >R�POPQ��SOSQ�)     (5) 

The result (5) is the required particular implicit solution of 

the critical depensation model described by (3). 

 

Figure 1. Growth curve of critical depensation model for � � 0.8, �� �0.6, � � 4.8. 

In Figure 1 we have shown the growth curve of the critical 

depensation model for some particular values of the 

parameters as shown. The curve is plotted for the population 

size function 	����	 versus the population growth rate 

function	�Z � ����� ��⁄ �. The growth rate is negative in the 

interval �0	, ���	while it is positive in the interval	�	��	, ��	. In 

the interval 	���	, ��	the growth rate increases up from 0	to 

maximum and then falls down to	0. The maximum growth 

rate i.e., I �	��Z�	occurs when the population size assumes 

the value ���� � 	 � 
 3⁄ �	and the corresponding maximum 

growth rate is given by I �	��Z� � 	 ��� 3⁄ � 
�1 ��1 3�⁄ � 
���1 3��⁄ � 
 � 1�� � 0	where the parameter  
	is 

defined as	 
 �	 \�� � 	��� � 	]�� � ��� � ���^. 
Similarly, the minimum growth rate i.e., ICB	��Z�	occurs 

when the population size assumes the value ���� �	� � 3⁄ �	and the corresponding minimum growth rate is given 

by ICB	��Z� � 	 ��� 3⁄ � ��1 � �1 3�⁄ � ����1 3��⁄ � � �1�� � 0	 where the parameter  �  is defined as 	 � �	\�� � 	��� �	]�� � ��� � ���^. 
Alternatively there is a geometric approach that is useful 

for verifying local stability of equilibrium points in case of 

the first order ordinary differential equation (3). The 

geometric approach involves graphing the direction of flow 

on a phase line diagram as shown in Figure 2 [7]. 

 

Figure 2. Time series plot for critical depensation for � � 0.8, �� � 0.6,� � 2. 
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In Figure 2 we have time series plot for critical 

depensation model. The figure describes the three 

equilibrium points � � 0, � = ��	and � = �	of the model (3). 

(i) The equilibrium point � = 0	is stable (ii) The equilibrium 

point � = ��	is unstable (iii) The equilibrium point � = �	is 

stable since all the solution curves that start with any initial 

value around �	are running towards and approaching � =�	as �	tends to infinity. 

4. The Proposed Prey – Predator Model 

We study the Predator - Prey model considering fish 

population as prey while birds population as predator. The 

newly proposed predator – prey model can be described 

mathematically as 

`U
`S = �� T1 − U

PV T U
PQ − 1V − aUb

cdU            (6a) 

	`b`S = −�K + >	�K                                   (6b) 

In the model (6), the parameter � represents the carrying 

capacity of the prey population,	��	is critical mass quantity of 

the prey populationsuch that 	0 < �� < �	 , �	 and �	 are 

intrinsic growth rates,	e	is maximum up take rate, and	H	is 

half saturation value of the predator. As we observe in the 

proposed prey – predator model (6), the predator cannot 

survive in absence of the prey. The per capita growth rate of 

the prey is decreased by the quantity 	�eK �H + ��⁄ �  in the 

presence of predator. The per capita growth rate of the 

predator is enhanced by the quantity	�>��	in presence of prey. 

The model (6) is designed based on the assumptions as 

described below.  

i. The variable ����	 represents the size or density of 

prey population while 	K���  represents the size or 

density of the corresponding predator population. 

ii. The prey population ����	increases due to the mutual 

benefit between the individuals of the prey population 

with the rate	����� + ��� ���⁄ �	���. 
iii. The prey population ����  decreases (a) with an 

intrinsic growth rate 	�	��	� , (b) with multi species 

intra specific competition rate ���	�� ���⁄ ��f	�	among 

prey and (c) with the rate �e�K �H + ��⁄ �	because of 

the bird predation given by	E��� 	= 	 �e� �H + ��⁄ �. 
iv. The predator population dies out in the absence of the 

prey. 

v. The predator population increases with rate 	�>�K� 
because of the presence of prey population	����. 

4.1. Non-dimensionalization of the Model 

Scaling decreases the number of parameters of the model 

and it simplifies the model equations. Let us replace the old 

variables �, K	 and �	 with a new set of 

variables 	A	, =	 and 	g	 through the transformation equations 

given by	� = �A, K = ���� e⁄ �	=�		and	� = 	 ��1 �⁄ �	g�. Up on 

using these transformation equations of the scaled variables 

in (6), we obtain  

`h
	`i 	= A�1 − A� Thj − 1V − T hk

ldhV ≡ n
�A, =�     (7a) 

`k
`i = −o= + pA= ≡ n��A, =�                              (7b) 

Here in (7) the dimensionless expression of the model,	q =��� �⁄ �	, � = �H �⁄ �	, o = �� �⁄ �	 and p = �>� �⁄ �	 are 

dimensionless parameters. The term �A �� + A�⁄ �	 is called 

functional response term. Further, we note that A	, =	and g	are 

dimensionless variables and either of them does not depend 

on the maximum uptake rate e. 
4.2. Boundedness of Solution of the Model 

Here in what follows it is to be shown that the functions 	n
�A, =�	 and 	n��A, =�  are continuous in the positive 

quadrant. (i) The two functions 	n
�A, =�	and 	n��A, =�	 are 

clearly continuous at the origin	�A	, =� = �0	, 0�. The main 

steps of the proof include the following. The limiting and 

functional values of the functions 	n
�A, =�and 	n��A, =�  at 

origin are vanishing and hence both functions are continues 

at origin.(ii) Also both the functionsn
 and	n�	 are continues 

in the positive quadrant 	rd� = ��A, =�:	A > 0, = > 0�	 and 

this fact is straight forward to verify from the model (7). 

Thus, the two functions 	n
�A, =�and 	n��A, =� are continuous 

on the first quadrant	rd� ∪ �0	, 0� = ��A, =�:	A ≥ 0, = ≥ 0�. 
We further show that for the model (7) together with 

positive initial conditions there exists a unique solution. For 

that, it requires that both 	n
�A, =�and 	n��A, =�are Lipschitz 

functions within the domain 	rd� = ��A, =�:	A > 0, = > 0� . 

We first show that 	n
�A, =�	is a Lipschitiz function as [9]. 

Note that a function v��, K�	is said to be a Lipschitz function 

if the condition |v��, K� − v��, Kx�| ≤ 	z	|K − Kx|	is satisfied. 

Here z	 is any positive finite value and is known as a 

Lipschitz constant. The proof showing that 	n
�A, =�	 is a 

Lipschitiz function is as follows: |n
�A, =� − n
�A, ={�| =|}A�1 − A�~�A q⁄ � − 1� − �A= �� + A�⁄ �� − }A�1 −A�~�A q⁄ � − 1� − �A={ �� + A�⁄ ��| = |�u �� � A�⁄ �||= �={| ≤ 1. |= − ={|	for	�	A	=�, �A, ={	� in the positive quadrant. 

Note that we have used the fact 	|�u �� � A�⁄ �| � 1 . 

Similarly, the function	n��A, =� is also a Lipchitz function. 

Therefore, the solution of the model (6) with non-negative 

initial conditions exists and is unique. We now assume and 

require that the solution of the model (6) with positive initial 

condition is positive. That is, A��� > 0	and =��� > 0	for	� >0 . For this purpose we consider also the positive initial 

conditions as A	�0� = A�	 and 	=	�0� = =� . Here 	A�	 and 	=�	are some positive quantities. For	� > 0, all the solution 

curves of the model (6) are positive otherwise biologically it 

is not acceptable. Thus, the solution of the model (7) is 

invariant under the region 	rd� . That is, the solution is 

positive and remains the region 	rd�[9]. 

Theorem 1 All the solutions of model (7) with positive 

initial condition ~A�	,	=��  are uniformly bounded or 

dissipative within the region < = ��A, =�:	q ≤ 1 − �, 0 ≤A + �1 p⁄ �=	 ≤ �z o�1 − ��⁄ ��	where 	z = o + I	and I	is the maximum value of the function v�A� = 	A�1 − A�~�A q⁄ � − 1�	�9�. 
Proof From the prey equation of the model (7), 
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since	�A= �� � A�⁄ �	is positive quantity, it can be observed 

that ��A �g⁄ � 	� �A�1 − A�~�A q⁄ � − 1� − �A= �� + A�⁄ �� ≤}A�1 − A�~�A q⁄ � − 1��. Also,	A�g� ≤ �1 − ��	for all values 

of	g. Let us now define the function, � = �A + �1 p⁄ �=�. On 

differentiating this and adding �o��	we have ���� ��⁄ � +o�� = }A�1 − A�~�A q⁄ � − 1� − A=~�1 �� + A�⁄ � − 1� +	oA� ≤ }A�1 − A�~�A q⁄ � − 1� + 	oA� ≤ �I + o�1 − ��� . 

Here we have used the fact that the maximum value 

of 	v�A� = 	A�1 − A�~�A q⁄ � − 1�  is I  and 	A	 satisfies the 

relation	q ≤ A ≤ 1 − �.  

Hence, ��� ��⁄ � + o�1 − ��� ≤ z  and 	z = I +o�1 − �� . Thus, it can be concluded that 	0 ≤ ��g� 	≤	�z o�1 − ��⁄ �. Therefore, the model (7) is bounded or 

dissipative with the asymptotic boundary  �z o�1 − ��⁄ � . Hence, the solution of the model (7) is 

bounded or dissipative. 

In Theorem 2 we observe that (i) 

I = v~~1 + ℎ + √ℎ� − ℎ + 1� �3ℎ�� � = 	 
f Tℎf − 2ℎ� −
2ℎ + 1 + √ℎ� − ℎ + 1�2ℎ� − 3ℎ + 3�V > 0	is the maximum 

value of the function v�A� = 	A�1 − A��ℎA − 1�  and (ii) �1 ℎ⁄ � < }~1 + ℎ + √ℎ� − ℎ + 1� �3ℎ�� � < �1 − �� . 

(iii)	0 < � < 1. Here we have used the notation	ℎ = �1 q⁄ �. 
5. The Equilibrium Points 

The equilibrium points of the system (6) are solutions 

points 	�A∗	, =∗�  satisfying the equations 	n
�A∗	, =∗� =0	and	n��A∗	, =∗� = 0 simultaneously. Alternatively, the prey 

zero growth isocline implies A = 0	 or 	��1 − A�	��A q⁄ � −1� −	 �= �� + A�⁄ �� = 0. Similarly, the predator zero growth 

isocline implies that = = 0	 or 	�−o + pA� = 0 . The 

intersection of these two isoclines gives four equilibrium 

points. (i) 	�� = �0	, 0�	 is the trivial equilibrium point, 

(ii) �
 = �1, 0�	 and 	�� = �q, 0�	 are the axial equilibrium 

points and (iv) 	�f =	 ��o p⁄ �, �� + �o p⁄ ��	�1 −�o p⁄ ����o pq⁄ � − 1��	 is the interior equilibrium point. 

However, the equilibrium point 	�f	 is the most interesting 

from the biological point of view.  

Further, the interior equilibrium point 	�f	 is biologically 

acceptable if and only if 	��1 − �o p⁄ ����δ µq⁄ � − 1�� > 0 . 

Equivalently there arise two cases namely (i) �1 − �o p⁄ �� <0	 and ��δ µq⁄ � − 1� < 0  or (ii) �1 − �o p⁄ �� > 0	and 	��δ µq⁄ � − 1� > 0	 . But the first case 

contradicts the fact that 0 < k � ��	 and hence the possibility 

of occurrence of Case 2 is acceptable and this inequalities 

lead to 0 < q < �o p⁄ � < 	1	 or equivalently 0 < k� ��� >⁄ � � �	 in view of the relations q � ��� �⁄ �, o =�d r⁄ �and	p � �ek r⁄ �.Therefore, positive interior equilibrium 

point�f exists if and only if the parametric relation 0 < q <�o ⁄ p� < 	1	holds. Conclusion of these results can be stated 

as the following theorem. 

Theorem 2 The prey predator model (7) with prey 

experiences critical depensation growth has a positive 

interior equilibrium point	�f	if and only if	0 < q < A∗ < 1	or 

equivalently 	0 < q < �o p⁄ � < 	1	 holds true where 	A∗ =�o p⁄ �. More over Positive interior equilibrium point does 

not exist for	�o p⁄ � < q	and �o p⁄ � > 1	. 
5.1. Local Stability of the Equilibria 

The local stability of an equilibrium point is determined by 

linear stability analysis of which by observing the algebraic 

sign of the eigenvalues of the Jacobian matrix. An 

equilibrium point is locally stable if we perturb the initial 

condition slightly, then the system stay in the neighborhood 

of that equilibrium point or for asymptotically stability, the 

system returns to the equilibrium point [11]. The Jacobin 

matrix for (7) is constructed as 	��A, =� = T 

  
� �
  ��V . 

Here  

 =	 �2A~�1 q⁄ � + 1� − �3A� q⁄ � − 1 +�= �� + A�⁄ �~�= �� + A�⁄ � − 1�� ,  
� =	 ��−A� �� + A�⁄ �	 ,  �
 = =p	 and 	 �� = 	Ap − o . We now analyze the local 

stability of the equilibrium points.  

Local stability analysis of 	��  The Jacobian matrix 

��A, =� takes the form ����� = T−1 00 −oV	and this implies 

that both the eigenvalues 	�−1�  and 	~– o�  are negative. 

Hence, the trivial equilibrium point	�� is a stable node. 

Local stability analysis of	�
	The Jacobian matrix ��A, =� 
takes the form ���
� = �1 − �1 q⁄ � �−1 �� + 1�⁄ �0 p − o � and has 

the Eigen values 	�1 − �1 q⁄ ��	 and 	~p– o� . Further, the 

firstEigen value �1 − �1 q⁄ ��	is negative because �1 q⁄ � > 1 

while the other ~p– o� can be positive or negative. Hence, the 

equilibrium point	E
	is (i) stable node if	o > p and (ii) saddle 

point which is unstable if o < p	. 
Local stability analysis of 	��  The Jacobian matrix 

��A, =�	takes the form ����� = 	 �1 − q −�q �� + q�⁄ �0 pq − o �	and 

has the Eigen values �1 − q�	and 	��pq� − o� . Further, the 

first Eigen value �1 − q�	is positive while the other �pq −o�	 can be positive or negative. Hence, the equilibrium 

point	�� is (i) unstable node if	o < pq	and (ii) saddle point 

which unstable if	o > pq. 

Local stability analysis of	�f	The Jacobian matrix takes the 

form	��Ef� = �	e

 e
�e�
 e���	. Here 

e

 =	 �2�δ μ⁄ �~�1 q⁄ � + 1� − 3�1 q⁄ ��δ μ⁄ �� − 1 +~1 − �δ μ⁄ ��~�δ μq⁄ � − 1�~�δ μ⁄ � ~β + �δ μ⁄ ��⁄ −1��	 , 	e
� = �−o �βμ + δ�⁄ �	 , e�
 = �~β + �δ μ⁄ ��~1 −�δ μ⁄ ��~�δ �μq�⁄ � − 1�μ�	 and e�� = 0 . The asymptotic 

stability of Ef	is determined by the trace and determinant of 

the Jacobian matrix 	J�Ef�  because these two quantities are 

the coefficients of the characteristic polynomial. The interior 

equilibrium point is stable if trace is negative while the 

determinant is positive in the above Jacobian matrix. Hence 

we use these conclusions to write the theorem below. 

Theorem 3 The interior equilibrium point Efis stable if and 

only if q < �o p⁄ � < 1 and }�1 q⁄ �~2 − 3�o p⁄ �� + 2� +��o p⁄ − 1��δ �μq�⁄ − 1��1 �1 + �o p�⁄ ��⁄ �� < �p o⁄ �.	 
Proof: As mentioned above the stability conditions are g�	J�Ef� < 0	and	�>�	J�Ef� > 0. g�J�Ef� = 2�o p⁄ �~�1 q⁄ � + 1� − 3�1 q⁄ ��o p⁄ �� − 1 +~1 − �o p⁄ ��~�δ �μq�⁄ � − 1�~�o p⁄ � ~β + �o p⁄ ��⁄ − 1�, 
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	�>�	J�Ef� � T~� � �o p⁄ ��~1 � �o p⁄ ��~�δ �μq�⁄ � �1�pV ���o� ��p � o�⁄ �. 
g�J�Ef� � 0	 ⇔	 

� 2�o p⁄ �~�1 q⁄ � � 1� � 3�1 q⁄ ��o p⁄ �� � 1
�~1 � �o p⁄ ��~�δ μq⁄ � � 1� ��o p⁄ � �β � δμ�� � 1�� � 0	,	 

�>�	J�Ef� � 0	 ⇔ 	0 � q � o p⁄ � 	1. 
Therefore after simplification we conclude that the 

theorem is proved. 

Positive interior equilibrium point and the phase diagram 

 

Figure 3. q � 0.2, � � 0.6, p � 0.8, o � 0.45. 

In Figure 3, we observe that the prey zero growth isocline = � �1 � A�~�A q⁄ � � 1��A � �� is a cubic function and the 

predator zero growth isocline	pA � o � 0 is a vertical line. 

The cubic function intersects the A axis at A � q and	A � 1 

and has a positive maximum value ��< � <� � <f� q⁄ � 
where < � ~~q � √q� � 3� 3⁄ �  i.e. ��= �A⁄ ��A� � 0  if A � ~~q � √q� � 3� 3⁄ � ≡ <  and the corresponding value 

of = is <� � �1 q⁄ ��< � <f� � 1. The intersection of these 

two isoclines in the A= plane gives the following facts: 

i. There is no positive interior equilibrium point for �o p⁄ � � 	q  and 	�o p⁄ � � 	1	 but that exists for 0 � q � �o p⁄ � � 	1. 
ii. The interior equilibrium points are unstable when q � <	 � �o p⁄ � � 1  and they are stable when 	q ��o p⁄ � � < � 1. 

iii. The limit cycle exists at the point 	�<, <� ��1 q⁄ ��< � <f� � 1�. 
We now verify whether or not there exists a limit cycle for 

the model (7) using Dulac’s criteria. According to Dulac’s 

criteria [11] a limit cycle exists for (7) in the positive 

quadrant of A= planeif the expression 
��h ~N�A, =�n
�A, =�� ���k ~N�A, =�n��A, =��is not strictly positive or negative. Here N�A, =� � 	 �1 uv⁄ �  such that N�A, =� � 0	 for 	A � 0	 and = � 0. In case of the present model (7), we have 

��h �Nn
� 	�

��h � 
hk TA�1 � A� Thj � 1V � hkldhV� � �O��h j⁄ �d�
 j⁄ �d
k �

�ldh���  and 

��k �Nn�� � ��k � 
hk ��o= � pA=�� � ��k TO�h �
pV �	0.Thus, on combining we have 

��h �Nn
� � ��k �Nn�� ���
 j⁄ �d
k � ��
 j⁄ �hk � 
�ldh���.	 Thus for positive 	A, =  the 

expression 
��h �Nn
� � ��k �Nn�� � ��
 j⁄ �d
k � ��
 j⁄ �hk �
�ldh���= �jd
jk � �hjk � 
�ldh��� . Therefore by Dulac’s criteria 

the model (7) has no limit cycle in the positive quadrant 

if	�	
d�
 j⁄ �k � 
�ldh��� � ��� j⁄ �hk �. 
5.2. Global Stability of the Interior Equilibrium Point 	� 	 

A powerful tool for determining global stability of an 

equilibrium point is the use of Lyapunov function. The 

Lyapunov function 	¡�A, =� for the model (6) can be 

constructed [5] as ¡�A, =� � 	 �A � A∗ � A∗FB�A A∗⁄ �� 	�	�= � =∗ � =∗FB�= =∗⁄ �� . Now, the total derivative of the 

Lyapunov function is given by 	¢£¢¤ � ¥£¥¦ ¢¦¢¤ � ¥£¥§ ¢§¢¤ �T1 � �o p⁄ � 	
hV `h`S �T1 � ~� � �o p⁄ ��~1 � �o p⁄ ���o �pq�⁄ � 1� 
kV `k`S 	�~� � �o p⁄ ��~1 � �o p⁄ ���o �pq�⁄ � 1��pA= � o=� ��o p⁄ � TA�1 � A�~�A q⁄ � � 1� � ��A=� �� � A�⁄ �V . 

Therefore, the Lyapunov theorem [5] implies that the interior 

equilibrium point	�f�A∗, =∗�	is globally asymptotically stable 

if ~� � �o p⁄ ��~1 � �o p⁄ ���o �pq�⁄ � 1��pA= � o=� ��o p⁄ �~A�1 � A�~�A q⁄ � � 1� � �A=� �� � A�⁄ �	 andthis 

further simplifies to the inequality 	��= �A⁄ � 	� �A∗ =∗⁄ �	 . 
Here �A∗, =∗� is interior equilibrium point. 

6. Simulation Study 

A numerical simulation is carried out for various choices 

of biologically feasible parameter values and for different set 

of initial conditions. 

 

Figure 4. q � 0.3, � � 0.6, p � 0.8, o � 0.45. 
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From the phase diagram given in Figure 4, we observe that 

the interior equilibrium points exist for q � �o p⁄ � � 1	and 

these interior equilibrium points are unstable if q � �o p⁄ � �< � 1	. The trivial equilibrium point is stable while the axial 

equilibrium points are unstable. 

 

Figure 5. q � 0.3, � � 0.6, p � 0.8, o � 0.7. 

From the phase diagram given in Figure 5, we observe that 

the interior equilibrium points exist for q � �o p⁄ � � 1 and 

they are stable for 	q � �o p⁄ � � < � 1 . The trivial 

equilibrium point is stable while the other axial equilibrium 

points are unstable. 

 

Figure 6. q � 0.3, � � 0.6, p � 0.8, o � 0.55. 

From the phase diagram given in Figure 6, we observe that 

the limit cycle exists for interior equilibrium point 	q ��o p⁄ � � < � 1. The trivial equilibrium point is stable while 

other axial equilibrium points are unstable.  

In Figure 7, the parametric values satisfy conditions of 

Theorem 2. We observe from the time series plot the prey 

population increases slowly and it converges to a finite value. 

On the other hand the predator population size decreases for 

some time and it converges. The prey vs Predator plot also 

shows size of the predator decreases and increases as the prey 

size increases. 

 

Figure 7. Time series plot and phase diagram for q � 0.1, � � 0.6, o �0.4, p � 0.8, 	A� � 2, =� � 1. 

7. Conclusions 

The paper studied the prey – predator model replacing the 

classical model’s exponential growth of the prey population by 

critical depensation growth with carrying capacity �  and 

critical mass quantity	�� . The model is meaningful more if the 

prey population is fish and the corresponding predator 

population is a bird since birds are best feeders of fish. We 

showed that the constructed model has a unique and bounded 

solution. The interior equilibrium point 	�f�A∗, =∗�	is positive 

if the condition 0 � 	q	 � 	A∗ � �o p⁄ � � 	1	holds true. The 

maximum and minimum rate values of the critical depensation 

model are determined in this study. The criteria for feasibility 

of equilibrium points, the stability criteria of the interior 

equilibrium point and the condition for the existence and non-

existence of the limit cycle in the positive phase plane are 

explained. The limit cycle exists at the point �<, <� ��1 q⁄ ��< � <f� � 1�  where < � ~~q � √q� � 3� 3⁄ � . The 

simulation study supports the stability of the system predicted 

using the proposed mathematical model describing prey – 

predator system and all parameter values satisfy condition of 

theorem 2. 
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