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Abstract: The numerical studies are performed to examine the mass transfer flow through porous medium with an inclined 

plate. The governing partial differential equations are transformed to a system of dimensionless coupled partial differential 

equation. Finite difference technique is used as a tool for the numerical approach. The corresponding momentum, concentration 

and continuity equation are derived by employing the usual transformation, and finite difference method has been used to solve 

the above equations. The effects on the velocity and concentration distribution of various parameters entering into the problem 

separately are discussed with the help of graphs and tables. 
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1. Introduction 

Investigation of mass transfer flow has attracted the interest 

of many researchers in view of its important applications of 

Mass Transfer include the dispersion of contaminants, drying 

and humidifying, segregation and doping in materials, 

vaporization and condensation in a mixture, evaporation 

(boiling of a pure substance is not mass transfer), combustion 

and most other chemical processes, cooling towers, sorption at 

an interface (adsorption) or in a bulk (absorption), and most 

living-matter processes as respiration (in the lungs and at cell 

level), nutrition, secretion, sweating, etc. In many engineering 

application, combine heat and mass transformation play a vital 

role in fluid condensing or boiling at a solid surface. The 

combine heat and mass transformation consideration arise due 

to buoyancy forces caused by mass diffusions. The study of 

Sparrow et al. (1959) is related to the convection flow about an 

inclined surface in which the combined forced and free 

boundary layer problem has been discussed [1]. Boundary 

layer flow due to continuously moving surface as propounded 

by Sakiadis (1961) and its further varied extensions proved to 

be significant designing and study tools [2]. Gebhart and Pera 

(1971) studied mass transfer effects on free convection flow 

past a semi-infinite plate [3]. Soundalgekar and Ganesan 

(1981) was analyzed natural free convection with mass 

transfer on an Isothermal flat plate [4]. The vertical free 

convection boundary layer flow in porous medium owing to 

combined heat and mass transfer has been investigated by 

Bejan and Khair (1985) [5]. Lai and Kulacki (1990) used the 

series expansion method to investigate coupled heat and mass 

transfer in natural convection from a sphere in a porous 

medium [6]. The next year Lai and Kulacki (1991) studied 

Coupled heat and mass transfer by natural convection from 

vertical surfaces in porous media [7]. Elbashbeshy (1997) 

studied mass transfer along a vertical plate in the presence of 

magnetic field [8]. 

The study of the effect of mass transfer on Newtonian and 

non-Newtonian fluids has become important in the last few 

years. This importance is due to a number of industrial 

processes. For instance the food processing, biochemical 

operations and transport polymers. Flowing over deformable 

boundaries has also gained importance because of its 

immediate practical application in lubrication technology, 

biophysical flows and many other transportation types. 

Besides, the characteristics of the flow of blood through 

arteries and veins are of considerable medical interest. 

Chamkha et al. (2000) studied the effects of Hydro magnetic 

combined heat and mass transfer by natural convection from a 

permeable surface embedded in a fluid saturated porous 

medium [9]. Chamkha and Khaled (2001) investigated the 

problem of coupled heat and mass transfer from an inclined 

plate in the presence of absorption [10]. An analytical solution 

for unsteady free convection in porous media has been studied 

by Magyari et al. (2004) [11]. Elgazery, (2008) numerically 

analyzed the heat and mass transfer by natural convection in 
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power law fluid past a vertical plate immersed in a porous 

medium [12]. Recently Bhuvaneswari et al. (2010) studied 

exact analysis of radiation convective flow heat and mass 

transfer over an inclined plate in a porous medium [13]. Heat 

and mass transfer in porous medium is very much prevalent in 

nature and can also be encountered in many manmade 

technological processes, that is why theory of flow through 

porous media has emerged as a vibrant discipline of intensive 

research activity. 

Hence our aim to study Mass transfer flow through an 

inclined plate with porous medium. The dimensionless 

equations are solved numerically. The effects of various 

physical parameters such as Schmidt number �� , Modified 

Grashof number ��  and Permeability parameter �  on the 

velocity and concentration are shown graphically. The results 

allow us to predict the different behavior for the velocity and 

concentration distributions that can be observed when the 

relevant parameters are varied. 

2. Mathematical Model of Flow 

By introducing Cartesian co-ordinate system, the X-axis is 

chosen along the plane in the direction of the flow and the 

Y-axis is normal to it. Initially it has been considered that the 

plate as well as the fluid is at the same concentration level 

�(��) everywhere in the fluid is same. Also it is considered 

that the fluid and the plate is at rest after that the plate is to be 

moving with a constant velocity. 
� in its own. Plane and 

instantaneously at time � > 0, the species concentration of the 

plate are raised to ��(> ��) , which are there after 

maintained constant, where �� are species concentration at 

the wall of the plate and ��  are the concentration of the 

species far away from the plate. 

Within the framework of the above stated assumptions with 

reference to the generalized equations described before the 

equation relevant to the transient two dimensional problems 

are governed by the following system of coupled non-linear 

differential equations. 

Continuity Equation 

u v
0

x y

∂ ∂+ =
∂ ∂

                       (1) 
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Concentration Equation 
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Where �, �  are Cartesian co-ordinate �, �  and �, � 

component of flow velocity respectively. Here g is the local 

acceleration due to gravity; � is the kinetic viscosity; � is the 

density of the fluid, � is the coefficient of mass diffusivity. 

3. Mathematical Formulation 

Since the solution of the governing equations under the 

initial and boundary conditions will be based on a finite 

difference method it is required to make the said equations 

dimensionless. 

For this purpose it has been now introduced the following 

dimensionless variables; 

0 0

0 0
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Whereτ  represents the dimensionless time, &X Y
 
be the 

dimensionless Cartesian coordinates, Where U and V
 
be the 

dimensionless velocity components and C be the 

dimensionless concentration. 

Using the above relation, we obtain the following 

non-dimensional coupled partial differential equation, 
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Where, 
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= (Modified Grashof Number) 
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k U
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Also the associate initial and boundary condition become 
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4. Numerical Solution 

The explicit finite difference method has been used to solve 

the governed second order nonlinear coupled dimensionless 

partial differential equations with the corresponding initial and 

boundary conditions. To obtain a system of finite difference 

equations, the flow region is divided into a grid or meshes of 

lines parallel to X and Y axes where X -axis is taken along 

the plate and Y -axis is normal to the plate. Here it is 

considered that maxX (=400) i.e. X varies from 0 to 400 and 

regard maxY (=25) as corresponding to Y → ∞ i.e. Y varies 

from 0 to 25. It is also considered that 60m =  and 60n =
grid spacing in the X  and Y  directions respectively. We 

have the constant mesh size along X direction, 

6.67(0 400)X X∆ = ≤ ≤ and the constant mesh size along Y

direction, 0.42(0 25)Y Y∆ = ≤ ≤ with the smaller time-step

0.05τ∆ = . 

Let ' ' ', andU V C  denote the values of , andU V C  at the 

end of a time-step respectively. Using the finite difference 

approximations we obtain the following set of finite difference 

equations, 
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And the initial and boundary conditions with finite 

difference scheme are; 

0 0 0
, , ,
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,0 ,0 ,0
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Where, L → ∞  

Here the subscripts andi j  designate the grid points 

andx y  coordinates respectively and the superscript n  

represents a value of time, nτ τ= ∆  where, 0,1, 2,3,...n =
From the initial condition, the values of U is known at 0τ = . 

Then at the end of the any time-step τ∆ , the new 

concentration 'C , the new velocity ' 'andU V at all interior 

nodal points may be obtained by successive application of 

concentration and momentum equation respectively. This 

process is repeated in time and provided the time-step is 

sufficiently small, hence , andU V C should eventually 

convergent values which approximate the steady-state 

solution of the problem. 

5. Results and Discussions 

To discuss the effects of the associated non-dimensional 

parameters on the flow variables, the numerical solutions of 

the problem are obtained by the explicit finite difference 

method with the help of a computer programming language 

Compaq Visual Fortran. In order to analyze the physical 

solution of the model, we have computed the steady numerical 

values of the non-dimensional Velocity U and Concentration

C  within the boundary layer for different values of Modified 

Grashofnumber ( )mG , Inclination ( )α , Schimdth number 

( )cS  and Permeability parameter ( )k . Hence the velocity 

and concentration profile are drawn for 30,60and80τ = . 

The effect of the Modified Grashof number on the velocity 

field is presented in Fig. 5.1. It is observed that the velocity 

increases with the rise of mG . It is observed from Fig. 5.2 

that the velocity decreases in case of increasing Inclination. 

The same effect on the velocity curve is found in Fig. 5.3 that 

is the velocity decreases with increase of Schimdth number. 

A decreasing effect of Permeability parameter found on Fig. 

5.4. 

 

Fig. 5.1. Velocity profiles for 
0

45α = , 0.94CS = , 0.3k = . 
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Fig. 5.2. Velocity profiles for 1.0mG = , 0.94CS = , 0.3k = . 

 

Fig. 5.3. Velocity profiles for 1.0mG = , 0
45α = , 0.3k = . 

 

Fig. 5.4. Velocity profiles for 1.0mG = , 0
45α = , 0.94CS = . 

 

Fig. 5.5. Concentration profiles for 1.0mG = , 
0

45α = , 0.3k = . 

 

Fig. 5.6. Concentration profiles for 1.0mG = , 0.94CS = , 0.3k = . 

 

Fig. 5.7. Concentration profiles for 1.0mG = , 0
45α = , 0.94CS = . 
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Fig. 5.8. Concentration profiles for 0
45α = , 0.94=CS , 0.3k = . 

Fig.5.5 shows that the steady state concentration of fluid 

decreases with the increase of Schimdt number. In Fig.5.6.we 

see that the fluid concentration remain unchanged with the 

increasing value of Inclination. An unchanged effect of 

Permeability parameter on concentration curves are observed 

in Fig.5.7. The effect of Modified Grashof number on 

concentration profiles are shown in Fig. 5.8. 

6. Conclusions 

Some of the important findings obtained from the 

graphical representation of the results are listed below: 

The velocity distribution decreases with the increase of 

Schmidt number ( cS ) also the concentration distribution 

decreases with the increase of Schmidt number ( cS ). 

The velocity distribution decreases with the increase of 

inclined angle ( α ) while the concentration distribution 

remains unchanged with the variety of inclined angle (α ). 

The Concentration distribution remains unchanged with 

the increase of Modified Grashof number ( mG ) while the 

velocity distribution increases with the increase of Modified 

Grashof number ( mG ). 

The velocity distribution decreases with the increase of 

Permeability parameter ( k ) while the concentration 

distribution remains unchanged with the variety of 

Permeability parameter ( k ). 
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Nomenclature 

cS  Schmidt number 

mG  Modified Grashof number 

k  Permeability parameter 

C  Concentration 

cD  Mass Diffusivity 

u  Velocity component in the x-direction 
v  Velocity component in the y-direction 
w  Velocity component in the z-direction 

∇  Differential operator 

α  Angle of inclination 

β  Co-efficient of thermal expansion 

δ  Boundary layer thickness 
µ  Co-efficient of viscosity 

ϑ  Co-efficient of kinematic viscosity 
ρ  Density of the fluid 
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