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Abstract: This study concerns a magneto hydrodynamic flow between two parallel porous plates with injection and suction in 

the presence of a uniform transverse magnetic field with the magnetic field lines fixed relative to the moving plate with a constant 

pressure gradient. The study is aimed to determine the velocity profiles, the effects of permeability, pressure gradient and induced 

magnetic field on the flow. The nonlinear partial differential equation governing the flow are solved numerically using the finite 

difference method and implemented in MATLAB. The results obtained are presented in tables and graphs and the observations 

discussed on the effects of varying various parameters on the velocity profiles. A change is observed to either increase, decrease 

or to have no effect on the velocity profiles. The effect of magnetic field, time and suction /injection on the flow are discussed. 

The results provide useful information to the engineers to improve efficiency and performance of machines. 

Keywords: Pressure Gradient, Suction and Injection, Magneto hydrodynamic (MHD) 

 

1. Introduction 

A flow in a channel of a hydro magnetic fluid in which the 

motion of the fluid is due to movement of one of the plates of 

the channel, is called MHD Couette flow. MHD flows are 

characterized by a basic phenomenon which is the tendency of 

magnetic field to suppress vorticity that is perpendicular to 

itself which is in opposite to the tendency of viscosity to 

promote vorticity. 

MHD Couette flow is studied by a number of researchers 

due its varied and wide applications in the areas of geophysics, 

astrophysics and fluid engineering. 

Researchers have studied unsteady channel or duct flows of 

a viscous and incompressible fluid with or without magnetic 

field analyzing different aspects of the problem. 

Tao (1960) studied the Magneto hydrodynamic effects on 

the formation of Couette flow and Katagiri (1962) 

investigated unsteady hydro magnetic Couette flow of a 

viscous, incompressible and electrically conducting fluid 

under the influence of a uniform transverse magnetic field 

when the fluid flow within the channel is induced due to 

impulsive movement of one of the plates of the channel. 

Muhuri (1963) considered this fluid flow problem within a 

porous channel when fluid flow within the channel is induced 

due to uniformly accelerated motion of one of the plates of the 

channel. Soundalgekar (1967) investigated unsteady MHD 

Couette flow of a viscous, incompressible and electrically 

conducting fluid near an accelerated plate of the channel under 

transverse magnetic field. The effect of induced magnetic field 

on a flow within a porous channel when fluid flow within the 

channel is induced due to uniformly accelerated motion of one 

of the plates of the channel, studied by Muhuri (1963). The 

work by Muhuri (1969) was later analyzed by Govindrajulu 

(1969). Mishra and Muduli (1980) discussed effect of induced 

magnetic field on a flow within a porous channel when fluid 

flow within the channel is induced due to uniformly 

accelerated motion when one of the plates starts moving with a 

time dependent velocity. In the above mentioned 

investigations, magnetic field is fixed relative to the fluid. 

Singh and Kumar (1983) studied MHD Couette flow of a 

viscous, incompressible and electrically conducting fluid in 

the presence of a uniform transverse magnetic field when fluid 

flow within the channel is induced due to time dependent 

movement of one of the plates of the channel and magnetic 

field is fixed relative to moving plate. Singh and Kumar (1983) 

considered two particular cases of interest in their study viz. (i) 

impulsive movement of one of the plates of the channel and (ii) 

uniformly accelerated movement of one of the plates of the 

channel and concluded that the magnetic field tends to 
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accelerate fluid velocity when there is impulsive movement of 

one of the plates of the channel and when there is uniformly 

accelerated movement of one of the plates of the channel. 

Katagiri (1962) studied the problem when the flow was 

induced due to impulsive motion of one of the plates while 

Muhuri (1963) studied the problem with accelerated motion of 

one of the plates. Both had considered that the magnetic lines 

of force are fixed relative to the fluid. Singh and Kumar (1983) 

considered the problem studied by Katagiri (1962) and 

Muhuri (1963) in a non-porous channel with the magnetic 

lines of force fixed relative to the moving plate. Khan et al. 

(2006) investigated MHD flow of a generalized Oldroyd-B 

fluid in a porous space taking Hall current into account while 

Khan et al. (2007), considered MHD transient flows of an 

Oldroyd-B fluid in a channel of rectangular cross-section in a 

porous medium. The influence of Hall current and heat 

transfer on the steady MHD flow of a generalized Burgers’ 

fluid between two eccentric rotating infinite discs of different 

temperatures was studied by Hayat et al. (2008), in a case 

where the fluid flow was induced due to a pull with constant 

velocities of the discs. 

Various aspect of the flow problems in porous channel have 

been studied, Bég et al. (2009), studied unsteady magneto 

hydrodynamic Hartmann-Couette flow and heat transfer in a 

Darcian channel with Hall current, ionslip, viscous and Joule 

heating effects. Makinde et al. (2012) studied unsteady hydro 

magnetic flow of a reactive variable viscosity third-grade fluid 

in a channel with convective cooling while Vieru et al. (2010) 

studied the Axial Flow of Several Non-Newtonian Fluids 

through a Circular Cylinder. 

Seth et al. (2011), studied the problem considered by Singh 

and Kumar (1983) when the fluid flow is confined to porous 

boundaries with suction and injection considering two cases of 

interest, viz (i) impulsive movement of the lower plate and (ii) 

uniformly accelerated movement of the lower plate. Seth et al. 

(2011) concluded that the suction exerted a retarding influence 

on the fluid velocity whereas injection has accelerating 

influence on the flow while the magnetic field, time and 

injection reduce shear stress at lower plate in both the cases 

while suction increases shear stress at the lower plate. Jha and 

Apere (2011) investigated Hall and ion-slip effects on unsteady 

MHD Couette flow in a rotating system with suction and 

injection. Guchhait et al. (2011) studied the combined effects 

of Hall current and rotation on unsteady Couette flow in porous 

channel. Sheikholeslami et al. (2013) studied Heat transfer of 

Cu-water nanofluid flow between parallel plates while Prasad 

et al. (2012) considered unsteady hydro magnetic couette flow 

through a porous medium in a rotating system. Seth et al. 

(2012) studied the effects of Hall current and rotation on 

unsteady MHD Couette flow in the presence of an inclined 

magnetic field and also in the same year Seth et al 

(2012).considered unsteady MHD Couette flow of class-II of a 

viscous incompressible electrically conducting fluid in a 

rotating system. More researchers, Ahmed and Kalita (2013) 

considered a  sinusoidal fluid injection/suction on MHD three 

dimensional Couette flow through a porous medium in the 

presence of thermal radiation and also Ahmed and Kalita (2013) 

studied Magneto hydrodynamic transient flow through a porous 

medium bounded by a hot vertical plate in presence of radiation. 

Extensive researches have been done, including those cited 

above, on the flow between parallel plates. However, no 

emphasis has been given to the problems analyzed by Seth et 

al. (2011) with consideration when motion is on the upper 

plate. This work presents findings of studies on MHD couette 

flow problem between porous plates with magnetic field lines 

fixed relative to the moving upper plate with suction and 

injection on the plates. 

2. Formulation 

This study considers the flow of unsteady viscous 

incompressible electrically conducting fluid between two 

parallel porous plates 0y =  and y h= of infinite length in 

x  and z directions with a constant pressure gradient in the 

presence of a uniform transverse magnetic field 
o

H applied 

parallel to the y  axis. 

 

Figure 1. Physical model of the problem. 

Initially (when time 0t ≤ ), fluid and the porous plates of 

the channel are assumed to be at rest. When time 0t > , the 

upper plate ( y h= ) starts moving with time dependent 

velocity 
n

o
u t  (where 

o
u is a constant and n  a positive 

integer) in the x  direction while the lower plate is fixed, the 

fluid suction/injection takes place through the walls of the 

channel with uniform velocity 
o

V  where 0
o

V >  for suction 

and 0
o

V <  for injection. A constant pressure gradient is 

applied in the direction of the flow. 

2.1. The Governing Equations 

2.1.1. Equation of Continuity 

The equation of continuity is derived from the law of 

conservation of mass which states that mass can neither be 

created nor destroyed. It is derived by taking a mass balance 

on the fluid entering and leaving a volume element in the flow 

field. The general equation of continuity of a fluid flow is 

given by 
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t

ρ
ρ

→ → ∂  + ∇ =  ∂  
            (2.0) 

Where �� is the velocity in x, y and z directions 

(�� = ��̂ + �	̂ + 
��  ) 

2.1.2. Equation of Motion 

This equation is also known as the momentum equation and 

is derived from the Newton’s second law of motion. The law 

requires that the sum of all the forces acting on a control 

volume must be equal to the rate of change of fluid momentum 

within the control volume. 


���


�
+ ���∇������ = − �

�
∇��� � +  �∇��� + ��       (2.1) 

Where 

���


� 
 is the temporal acceleration, ���∇������ is the 

convective acceleration, ∇��� � is the pressure gradient, �∇��� 

is the force due to viscosity and � ����represents the body forces 

vector in x, y and z directions. 

2.1.3. Electromagnetic Equations 

The electromagnetic equations give the relationship 

between E the electric field intensity, B the magnetic induction 

vector, D the electric displacement, H the magnetic field 

intensity, J the induction current density vector and the charge 

density ��, these are; Griffiths (1999). 

∇ x H =  J                  (2.2) 

∇. B = 0                   (2.3) 

∇ x E = B

t

∂

∂
               (2.4) 

2.2. Non - Dimensional Numbers 

The dimensionless parameters allow the application of the 

results obtained in a model to any other dynamically similar 

case. In this work there are two non-dimensional numbers that 

are used. These are; 

Reynolds number 

Hartmann number 

2.2.1. The Reynolds Number, Re 

The Reynolds number is the ratio of inertial forces to 

viscous forces and is important in analyzing any type of flow 

where there is substantial velocity gradient shear.it is 

expressed as 

Re
VLρ

ϑ
=  

The Reynolds number indicates the relative significance of 

the viscous effects compared to the inertia effect. If the 

Reynolds number of the system is small, the viscous force is 

predominant and the effect of viscosity is important in the 

whole flow field otherwise if the Reynolds number is large, 

the inertia force is predominant and the effect of viscosity is 

important only in the thin layer of the region near solid 

boundary. 

2.2.2. Hartmann Number, M  

The Hartmann number is the ratio of the magnetic force to 

viscous force and is defined as 

2 2

2 0

2

e
H v

M
U

σµ
=  

The Hartmann number gives a measure of the relative 

importance of drag forces resulting from magnetic induction 

and viscous forces in Hartmann flow, and determines the 

velocity profile for such flow. 

2.3. Problem Modelling 

Initially (when time 0t ≤ ), fluid and the porous plates of 

the channel are assumed to be at rest. When time 0t > , the 

upper plate ( y h= ) starts moving with time dependent 

velocity 
n

o
u t  (where 

o
u is a constant and n  a positive 

integer) in the x  direction while the lower plate is fixed, the 

fluid suction/injection takes place through the walls of the 

channel with uniform velocity 
o

V  where 0
o

V >  for suction 

and 0
o

V <  for injection. A constant pressure gradient is 

applied in the direction of the flow. 

The velocity and the magnetic fields are given as 

0
( , , 0)q u v=  and 

0
(0, ,0)H H≡

�
 respectively. 

The magnetic forces 
2

0e
H Velocityσµ= ×  

2 2 2

0 0

0

ˆ0 0 ( )

0 0
e e

i j k

J B H u H u i

H

σµ σµ× = = −     (2.5) 

From the Navier stokes equation 

2u
u u P u F

t
ρ ρ µ

∂
+ ∇ = −∇ + ∇ +

∂
       (2.6) 

2u
u u P u J B

t
ρ ρ µ

∂
+ ∇ = −∇ + ∇ + ×

∂
    (2.7) 

The flow is incompressible (the density ρ , is considered a 

constant) and is considered in one dimension along the x- axis 

hence the Navier stokes equation along the x-axis is given as 

2 2

2 2

u u u P u u
u v J B

t x y x x y
ρ ρ µ

  ∂ ∂ ∂ ∂ ∂ ∂    + + = − + + + ×    ∂ ∂ ∂ ∂ ∂ ∂   
 (2.8) 

For a couette flow 0
P

x

∂
− =

∂
 but for our analysis 

P

x

∂
−

∂
= 

a constant β∗ . The two plates are infinite in length hence 
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0
u

x

∂
=

∂
.The fluid is injected on the lower plate with a 

constant velocity 
0

V  and is also sucked from the upper plate 

at the same constant velocity
0

V .The general equation 

governing the flow reduces to 

2 22
0

2

( )
e
H uu u u

v
t y y

σµβ µ

ρ ρ ρ

∗ −∂ ∂ ∂
+ = + +

∂ ∂ ∂
    (2.9) 

where 
β

β
ρ

∗

=  

2 22
0

2

e
H uu u u

v
t y y

σµ
β υ

ρ

∂ ∂ ∂
+ = + −

∂ ∂ ∂
     (2.10) 

Where 
µ

υ
ρ

=  

The magnetic field lines are fixed relative the moving upper 

plate (The upper plate is accelerating –a function of time) 

hence the velocity is considered as a relative velocity and 

reflects how fast the fluid is moving relative to the plate. ρ

-Density, σ -electric conductivity, 
e
µ -magnetic permeability 

and υ -kinematic viscosity, where 
µ

υ
ρ

= .The general 

equation governing the flow 

( )2 2
2

0 0

2

n

e
H u u tu u u

v
t y y

σµ
β υ

ρ

−∂ ∂ ∂
+ = + −

∂ ∂ ∂
   (2.11) 

With the initial boundary conditions 

0u =  0 y h≤ ≤  0t ≤  

0

nu u t=  at y h=  0t >  

0u =  at 0y =  0t >  

Taking 1n = , the governing equation for the flow becomes 

( )2 22
0 0

2

e
H u u tu u u

v
t y y

σµ
β υ

ρ

−∂ ∂ ∂
+ = + −

∂ ∂ ∂
    (2.12) 

The terms of the governing equation are non dimensionali 

zed according to the following definitions The non 

dimensionless numbers used in non dimensionali zing the 

equation are 
y

y
h

∗ = , 
uh

u
υ

∗ =  and 
2

t
t

h

υ∗ =  to obtain 

2 22 2 2
0

0 03 2 3 2
. . e

Hu u u u t h
V u

hh t h y h y

σµυ υ υ υ
β υ

ρ υ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

 ∂ ∂ ∂  + = + − −  ∂ ∂ ∂  
                   (2.13) 

and multiplying the equation by 
3

2

h

υ
 

2 2 23 2 3
0 0

02 2 2

e
V h H hu u h u t h

u u
t y y

σµ
β

υ ρυυ υ

∗ ∗ ∗ ∗
∗

∗ ∗ ∗

 ∂ ∂ ∂  + = + − −  ∂ ∂ ∂  
                     (2.14) 

But

2 2 2

20e
H h

M
σµ

ρυ
= ,the Hartmann number squared and 

0
u h

υ
, the Reynolds number Re  hence 

3 2 3
20

02 2 2

V hu u h u t h
M u u

t y y
β

υ υ υ

∗ ∗ ∗ ∗
∗

∗ ∗ ∗

 ∂ ∂ ∂  + = + − −  ∂ ∂ ∂  
  (2.15) 

3 2
20

2 2

ReV hu u h u h
M u t

t y y
β

υ υυ

∗ ∗ ∗
∗ ∗

∗ ∗ ∗

 ∂ ∂ ∂  + = + − −  ∂ ∂ ∂  
  (2.16) 

which is the governing equation in non-dimensional form. 

The non-dimensional boundary conditions from using the 

non-dimensional parameters are obtained as 

0u∗ =  0 1y≤ ≤ and 0t ∗ ≤  

Re
t h

u
υ

∗
∗ =  at 1y∗ = ; 0t ∗ >  

0u∗ =  at 0y∗ =  ; 0t ∗ >  

2.4. Finite Difference Technique 

The finite difference approximations for derivatives are one 

of the simplest methods to solve differential equations. The 

principle of finite difference methods is close to the numerical 

schemes used to solve ordinary and partial differential 

equations. It consists in approximating the differential 

operator by replacing the derivatives in the equation using 

difference quotients. The domain is partitioned in space and in 

time and approximations of the solution are computed at the 

space or time points. 

The governing equation together with the boundary 

conditions are solved numerically because of the nonlinear 

nature of the equations that are obtained. The finite 

difference analogues of the PDEs arising from the equation 

governing this flow are obtained by replacing the derivatives 

in the governing equations by their corresponding difference 

approximation taking into account the initial values and 

boundary values set. The following substitutions are done for 

the derivatives using the Crank Nicolson proposed averages 
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as 

, 1 ,

2

i j i j
u u

u
+∗

+
=                (2.17) 

, 1 ,i j i j
u uu

tt

∗
+

∗

−∂
=

∆∂
             (2.18)  

1, 1 1, 1 1, 1,

4( )

i j i j i j i j
u u u uu

yy

∗
+ + − + + −

∗

− + −∂
=

∆∂
    (2.19)  

( ) ( )

2
1, , 1, 1, 1 , 1 1, 1

2 2 2

2 21

2

i j i j i j i j i j i j
u u u u u uu

y y y

∗
− + − + + + +

∗

          − + − + ∂        = +        ∂     ∆ ∆           

             (2.20)  

Replacing in the governing equation, simplifying and rearranging 

( ) ( )

( )
( ) ( )

3
0

, 1 , 1, 1 1, 1 1, 1, 2

2
2

1, 1 , 1 1, 1 1, , 1, , 1 ,2

4 ( )

1 Re
2 2

22

i j i j i j i j i j i j

i j i j i j i j i j i j i j i j j

V h t h t
u u u u u u

y

t M t h
u u u u u u u u M t t

y

β
υ υ

υ

+ + + − + + −

+ + + − + + − +

∆ ∆
− + − + − = +

∆

∆ ∆
− + + − + − + + ∆

∆

      (2.21) 

Letting 0

4 ( )

V h t
A

yυ

∆
= −

∆
 

3

2

h t
B β

υ

∆
=  

( )
2

1

2

t
C

y

∆
=

∆
 

2

2

M t
D

∆
=  

2 Reh
E M t

υ
= ∆  with 0

V h
S

υ
=  representing the 

suction/ injection parameter and then substituting we have 

( ) ( )
( ) ( )
, 1 , 1, 1 1, 1 1, 1,

1, 1 , 1 1, 1 1, , 1, , 1 ,
2 2

i j i j i j i j i j i j

i j i j i j i j i j i j i j i j j

u u A u u u u B

C u u u u u u D u u Et

+ + + − + + −

+ + + − + + − +

− − − + − = +

− + + − + − + +
          (2.22) 

Rearranging 

, 1 , 1, 1 1, 1 1, 1,

1, 1 , 1 1, 1 1, , 1, , 1 ,
2 2

i j i j i j i j i j i j

i j i j i j i j i j i j i j i j j

u u Au Au Au Au B

Cu Cu Cu Cu Cu Cu Du Du Et

+ + + − + + −

+ + + − + + − +

− − + − + = +

− + + − + − − +
          (2.23) 

Rearranging 

, 1 1, 1 1, 1 1, 1 1, 1 , 1 , 1

, 1, 1, 1, , 1, ,

2

2
i j i j i j i j i j i j i j

i j i j i j i j i j i j i j j

u Au Au Cu Cu Cu Du B

u Au Au Cu Cu Cu Du Et

+ + + − + + + − + + +

− + + −

− + − + + + = +

− + + − + − +
       (2.24) 

Collecting the like terms 

( ) ( ) ( ) ( ) ( ), 1 1, 1 1, 1 , 1, 1,
1 2 1 2

i j i j i j i j i j i j j
C D u A C u A C u B C D u Cu C A u Et

+ + + − + + −
+ + − + + + = + − + + + − +  (2.25) 

Rearranging 

( ) ( ) ( ) ( ) ( )1, 1 , 1 1, 1 1, , 1,
1 2 1 2

i j i j i j i j i j i j j
A C u C D u A C u Cu C D u C A u Et B

+ + + − + + −
− + + + + + + = + − + + − + +  (2.26) 

The finite difference equations obtained at any space node, say i and at the time level 
1j

t
+

 has only three unknown 

coefficients involving space nodes at 1i − , i  and i i+  at
1j

t
+

. 

In matrix notation, these equations are expressed as AU B= where U  is the unknown vector of order ( 1)N −  at any time 

level
1j

t
+

.B is the known vector of order ( 1)N − which has the value of U at the 
thn time level and A is the coefficient square 

matrix of order ( 1) ( 1)N N− × −  which is a tridiagonal structure. 

If we let the coefficients of the interior nodes to be 
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( ) ( )
( )

1,

,

1,

( ) ( )

1 2 1 2
j j i j j j

j j i j

j j i j

a A C d C A u g Et

b C D e C D u h B

c A C f Cu

−

+

= − + = − =

= + + = − − =

= + =

                      (2.27) 

For 2, 3, 4....( 1)j N= − , then equation (4.6) becomes 

1, 1 , 1 1, 1j i j j i j j i j j j j j
a u b u c u d e f g h

+ + + − +
+ + = + + + +                       (2.28) 

Equation (4.8) can be represented in system of equations in a tridiagonal matrix form as 

2 2 2

1, 1 2 2 2 2

3 3 3

2, 1 3 3 2 3

3, 1 1 1 1

1 1 1

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

j

j

j N N N

N N N

a b c
u d e f g

a b c
u d e f g

u d e f g
a b c

+

+

+ − − −

− − −

 
         
         
         
         = + + +         
         
         
                 
 

⋱

⋱ ⋱ ⋱ ⋱
⋮ ⋮ ⋮ ⋮ ⋮

⋱ ⋱ ⋱ ⋱

1N

h

h

h
−

   
   
   
   +   
   
   
      

⋮
          (2.29) 

3. Results and Discussions 

The physical situation of the problem and the effects of 

various flow parameters on the flow regime are depicted 

graphically and discussed. The simulations are curried out 

using ISO FLUIDS 3448 which are industrial oils whose 

kinematic viscosities range between 2 and 10.A constant 

pressure gradients between 1 and 5 and Reynolds numbers 

1.The results are as follows; 

From figure 2. The velocity increases with increase in the 

pressure gradient for both the cases of injection and suction. 

Pressure gradient is applied in the direction of the flow hence 

an increase in pressure gradient results in an increase in the 

force in the fluid in the direction of the flow which results in 

increased velocity of the fluid. The velocities for the injection 

case, ( 0)S > are greater than for the suction case 

( 0)S < .Injection increases the pressure which increases the 

force in the fluid hence an increase in the velocities. Injection 

increases the pressure which increase the force in the fluid 

hence an increase in the velocities while suction reduces the 

pressure which reduces the force in the fluid hence a decrease 

in the velocities which explains why the injection velocities 

are greater than the suction velocities. 

From figure 3. The velocity increases with increase in the 

pressure gradient for varying kinematic viscosity. 

There is rapid increase in velocity of the fluid with increase 

in pressure gradient for small kinematic viscosity as compared 

to large kinematic viscosity. The effect of pressure gradient 

decreases with increase in kinematic viscosity. The increase in 

the kinematic viscosity leads to increase in the frictional 

forces which oppose the fluid motion 

From figure 4. The velocity increases with the increase in the 

Hartman number. The Hartmann number gives a measure of the 

relative importance of drag forces resulting from magnetic 

induction and viscous forces hence an increase in the Hartmann 

number reduces the drug forces hence increased velocities. 

 

Figure 2. Varying the pressure gradient. 

 

Figure 3. Varying the kinematic viscosity and pressure gradient. 
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Figure 4. Varying the Hartman number, 2M . 

 

Figure 5. Varying the Injection/Suction, S. 

 

Figure 6. Varying the kinematic viscosity. 

 

 

Figure 7. Surface plots. 

From figure 6. The velocity of the fluid decreases with the 

increase in the viscosity of the fluid. Increase in the viscosity 

of the fluid leads to increase in the viscous forces in the fluid 

hence decrease in the velocity of the fluid. 

From figure 5. An increase in the suction parameter 

( 0)S > leads to a decrease in the velocity of the fluid. An 

increase in the injection parameter ( 0)S < leads to an 

increase in the velocity of the fluid. An increase in the suction 

parameter ( 0)S >  reduces the pressure which reduces the 

force hence decrease in the velocity with increase in the 

suction parameter while an increase in the injection parameter 

( 0)S < increases the pressure which increases the force in the 

fluid hence increased velocities. Thus suction exerts a 

retarding influence on the fluid velocity whereas injection has 

an accelerating influence on it. 

4. Conclusion 

The results leads to a conclusion that the magnetic field, 

pressure gradient, time and injection have an accelerating 

influence on the fluid flow with a constant pressure gradient in 

the direction of the flow on both cases of suction and injection 

while viscosity and suction exert a retarding influence. Fluid 

velocity in both the cases of suction and injection decreases 
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with increase in the suction parameter and increases with the 

increase in the injection parameter. Suction exerts retarding 

influence on the fluid velocity whereas injection has an 

accelerating influence on the fluid velocity. Viscosity exerts a 

retarding influence on the fluid velocity 

Nomenclature 

B Magnetic field strength vector, [wbm
-2

] 

Ho Magnetic flux identity along the y- axis [wbm
-2

] 

g  Acceleration due to gravity vector, [ms
-2

] 

H 
Magnetic field intensity vector in Amperes per 

meter, [Am
-1

] 

J Current density, [AM
-2

] 
e  Unit electric charge, [C] 

E Electric field, [v] 

S  Suction/ Injection 

M Magnetic parameter 

Xi Permeability parameter  

Re Reynolds number 

P  Pressure force, [nm
-2

] 
*P  

Dimensionless pressure force. 
q  Velocity vector, [ms

-1
] 

i , j ,k  Unit vector is the x, y, z directions respectively 

u ,v ,w  Component of velocity vector q, [ms
-1

] 
*u ,

*v ,
*w  

Dimensionless velocity components 

*x , *y ,
*z  Dimensionless Cartesian co-ordinates 

x , y , z  Dimensional Cartesian co-ordinates 

i
F  Body forces tensor, [N] 

i
U  Velocity tensor, [ms

-1
] 

j
x

 Space tensor, [m] 

Ha Hartman number 

o
V  Suction velocity, [ms

-1
] 

Greek 

symbol 
Meaning 

#+
 Porosity 

⍴ Fluid density, [kgm
-3

] 

µ Coefficient of viscosity, [kgm
 -1

s] 
σ  Electrical conductivity, [Ω-

1
 m-

1
] 

µe Magnetic permeability, [Hm
-1

] 
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