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Abstract: In this article we derive the solution of higher order Sylster’s type differential equation on measure chains in terms 

of two fundamental matrices. Later by defining the controllability and observability on measure chains, necessary conditions for 

the controllability and observability of the higher order Sylster’s type differential system on measure chains is established. 
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1. Introduction 

Control theory has emerged into the main core of applied 

mathematical studies as it sets the necessary and sufficient 

conditions for controllability and observability of the designed 

dynamical systems. Many of the present day real world 

problems arises in robotics, industrial engineering, automata 

theory, modeling biological systems and in space dynamics 

are mostly control theoretic in nature as the aim being to 

compel or control the system to behave in some desired 

fashion. These systems can be continuous or discrete nature 

and the researchers earlier used to study them separately. 

At the progress and advancement of knowledge on time 

scales (or measure chains) which includes both continuous 

and discrete systems as special cases make it possible to study 

the complex dynamical systems rigorously. Stephan Barnett [1] 

studied the control theory for both the continuous and discrete 

cases for simple dynamical systems. Many problems of great 

importance in the contemporary world require a quite different 

approach, the aim being to compel or control a system to 

behave in some desired fashion. Basically control theory has 

involved the study of analysis and control of any dynamical 

system. This theory has been successfully applied in a variety 

of branches in the disciplines of engineering and particularly it 

is receiving great impetus from Aerospace engineering. A 

fascinating fact is that all the widely different disciplines of 

applications depend on a common core of mathematical 

techniques of the modern control system theory. The results 

established in this article coincide with the findings of 

[1],[2],[5] and [11] and include them as a sub case of this 

article. 

In this paper we establish the concept of controllability and 

observability of dynamical systems on measure chains. The 

results presented in this chapter generalises the existing results 

on controllability and observability for continuous and 

discrete cases and includes them as a particular case. This 

paper is organised as follows: In section 2, we outline the 

salient features of time scales. Section 3, deals with the 

method of solution of the initial value problem on higher order 

Sylster’s type equation on measure chains 

�∆���� = � 	
��
����������� + ���, �����, ����� = ��



���  

In terms of two fundamental matrix solutions, finally in 

section 4, we obtain the necessary and sufficient conditions for 

the controllability and observability of higher order Sylster’s 

type matrix dynamical systems on measure chains 

� � �∆���� = � 	
��
����������� + ��������, ����� = ��



��� ����  =  ��������   
Where A and B are constant square matrices of order 	 and �, �, �, � ∈ [#$, #
�#
]  are all variable matrics whose 

elements are rd-continuous on a measure chain T = [t0, tN]. We 

firmly believe that these results will have a significant impact 

on robotic and control engineering applications. 
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2. Salient Features of Time Scales 

A measure chain (or time scale) is an arbitrary closed subset 

of real numbers R and it is denoted by T throughout the paper. 

Time scales are not necessarily connected and this topological 

handicap is eliminated by introducing the notion of jump 

operators σ and ρ as follows: 

Definition 2.1: Let T be a measure chain. For t ∈ T define 

the forward jump operator σ : T → T by σ (t) = Inf {s ∈ T : s > 

t } and the backward jump operator ρ : T → T by ρ(t) = Sup {s 

∈ T : s < t } . 

A point t ∈ T is said to be right dense, right scattered, left 

dense and left scattered according as σ(t) = t, σ(t) > t, ρ(t) = t 

and ρ(t) < t respectively. 

The grainness µ : T → [o,∞) is defined by µ(t) = σ (t) - t . 

The set Tk which is derived from the measure chain T as 

follows: 

If T has a left scattered maximum m, then Tk = T - {m}, 

otherwise Tk = T. 

Definition 2.2: Let f : T → R , t ∈ Tk. Then define f∆(t) to be 

the number (provided it exists ) with the property that given 

any ∈>0, there exists a neighbourhood ∪ of t such that 

|[f(σ(t)) - f(s)] - f∆(t) [σ(t) - s] | ≤ ∈ |σ(t) - s | for all s ∈ ∪ 

Then f∆(t) is called the delta derivative of f at t . 

If T = R, the delta derivative is same as that of ordinary 

derivative and for T = Z, f∆(t) = f(t+1) - f(t) = ∆f(t), which is 

the forward difference operator. 

Definition 2.3: We say that f is delta differentiable on Tk , if 

f∆(t) exists for all t ∈ Tk. 

Result 2.1: Assume f, g : T → R are delta differentiable 

functions at t ∈ Tk, then 

(i) f+g : T → R is delta differentiable at t with (f+g)∆(t) = 

f∆(t) +g∆(t). 

(ii) For any constant k, kf : T→ R is delta differentiable at t 

with (kf) ∆(t) = k f∆(t). 

(iii) fg : T x T→ R is delta differentiable at t with �fg�∆�t�  =  f∆ �t�g�t�  +  f�σ�t�� g∆�t� =  f�t� g∆�t�  + f∆ �t� g�σ�t�� .  

Result 2.2: Leibnitz like theorem on measure chains: If f(t) 

and g(t) are continuously 	  times delta differentiable 

functions on a measure chain T=[a,b] then  

( )
0

( ) ( ( )) ( )
n n r r

n
r

r

r

f g t nC f t g tσ
−∆ ∆ ∆

=

⋅ =∑  

Definition 2.4 : A function F : Tk → R is called an 

antiderivative of f : Tk → R, provided F∆(t) = f(t) holds for all t 

∈ Tk . Then the delta integral of f is defined = F(t) - F(a) ∀ t ∈ 

T. 

Definition 2.5: Let f : T → T be a function. We say that f is 

rd - continuous if it is continuous in right dense points and if 

limit f (s) exists as s → t - for all left-dense points t ∈ T. 

Result 2.3 : Rd - Continuous functions possess an anti 

derivative. 

Proof: For the proof we refer [2]. 

3. Solving Higher order Syslster’s 

Equation 

Throughout this article *���  denotes the fundamental 

matrix solution of �∆��� = �����  and Z(t) denotes the 

fundamental matrix solution of �∆��� = �∗�������. 

Theorem 3.1: If *��� is a fundamental matrix solution of �∆��� = �����  then *���  is also fundamental matrix 

solution of �∆���� = �
����. 

Proof: *��� is a fundamental matrix solution of �∆��� =����� 

This implies *∆��� = �*��� 

Delta differentiating on both sides gives 

*∆,��� = �*∆���  ⇒  *∆,��� = �.*��� 

Similarly *∆/��� = �0*��� 

Continuing like this we can conclude that *∆���� =�
*��� 

Hence *���  is also fundamental matrix solution of �∆���� = �
����. 

Theorem 3.2: Any solution of �∆���� = ∑ 	
��
�����������
���         (3.1) 

is of the form  ���� = *����2∗���  where C is any square 

matrix of order 	. 

Proof: Using Lebnitz like theorem on measure chains for 

the 	34 delta derivative of product of functions we have 

�*����2∗����∆� =  *∆�����2∗��� + 	
5*∆�65�������2∗∆��� + 	
,*∆�6,�������2∗∆, ��� + . . . +*�������2∗∆� ��� 

=  �
*����2∗��� + 	
5�
�7*�������2∗������� +  	
,�
�.*�������2∗�������.+ . . . .+ *�������2∗�������
 

=  �
���� + 	
5�
�7�������� + 	
,�
�.��������.  + ⋯ +  ��������
 =  � 	
��
��

��� ��������� 

Hence ���� = *����2∗��� is a solution of (3.1) 

To prove that every solution of (3.1) is of this form, let X(t) be a solution of defined by ���� = *���9��� where 9��� is any 

variable matrix of order 	. 

Then using Leibnitz like theorem we have 

�*���9����∆� =  *∆����9��� + 	
5*∆�65������9∆��� + ⋯ + 	
�*∆�6�������9∆���� + . . . +*������9∆���� 
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=  �
*���9��� + 	
5�
�7*������9∆��� + ⋯ + *������9∆���� 

This is equivalent to R.H.S. of (3.1) if 9∆��� = 9������� 

i.e. 9∗∆��� = �∗9∗������ 

i.e. 9∗ is a solution of �∆��� = �∗������� 

Since Z(t) is the fundamental matrix solution of �∆��� =�∗������� hence 9∗��� = 2����∗��� 

Hence 9��� = ����2∗��� 

Hence ��� = *����2∗��� . This completes the proof. 

Theorem 3.3: Any solution of the initial value problem 

�∆���� = � 	
��
��������� , ����� = ��



���  

is given by 

��:�  =  *[�, ��]��2∗[��, �] 
where *[�, ��] = *���*�7���� and 2[�, ��] = 2���2�7���� 

Proof: From theorem 3.2 any solution of (3.1) is of the form ���� = *����2∗��� where C is any square matrix of order 	. 

Now substituting ����� = �� gives �� = *�����2∗���� 

Hence � = *�7������2∗65���� 

Hence the solution of the above initial value problem is ��:�  =  *[�, ��]��2∗[��, �]  where  *[�, ��] = *���*�7���� 

and 2[�, ��] = 2���2�7����. Hence the proof. 

Theorem 3.4: Let *��� be a fundamental matrix solution of �∆��� = ����� and Z(t) be a fundamental matrix solution of �∆��� = �∗�������. Further suppose that the variable matrix ���� is such that 

�*∆��;�7����∆���2∗��� + *��;����∆��;�7����22∗∆��� �∆<6, = 0                 (3.2) 

for each > = 2,3, … 	. 

Then the particular solution of  �∆���� = ∑ 	
��
����������� + ���, �����
���                            (3.3) 

is 

�B =  *��� CD D … D *�7E�65
F

E5
F

3
F ��∗�G���G, ��G��2∗65�G�∆G∆H
�7 … ∆H7I 2∗��� 

Proof: Any solution of the corresponding homogeneous equation of (3.3) is in the form ���� = *����2∗���. Where C is any 

constant square matrix of order 	. Since such a solution can not be the solution of non homogeneous equation (3.3), by variation 

of parameters formula we can assume the C is a variable matrix and seek the particular solution of (3.3) in the form ���� =*�������2∗��� 

Substituting this in the equation (3.3) and using the condition (3.2) we get 

*����∆������2∗��� = ���, ����� ⇒  �∆������ = *�7������, �����2∗65��� 

By delta integrating 	 times on both sides we get  

���� = CD D … D *�7E�65
F

E5
F

3
F ��∗�G���G, ��G��2∗65�G�∆G∆H
�7 … ∆H7I 

Hence the particular solution of (3.2) is  

�B =  *��� CD D … D *�7E�65
F

E5
F

3
F ��∗�G���G, ��G��2∗65�G�∆G∆H
�7 … ∆H7I 2∗��� 

Theorem 3.5: Any solution of the non homogeneous system (3.2) is of the form 

X(t) =  *����2∗���  + *��� JK K … K *�7E�65FE5F3F ��∗�G���G, ��G��2∗65�G�∆G∆H
�7 … ∆H7L 2∗��� 

Proof: Follows from the theorems 3.2 and 3.4 

Theorem 3.6: Any solution of the initial value problem �∆���� = ∑ 	
��
����������� + ���, �����, ����� = ��
���   

is given by 
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��:�  =  *[�, ��]��2∗[��, �] + *[�, ��] CD D … D *[��,E�65
3M

E5
3M

3
3M �∗�G�]��G, ��G��2∗[G, ��] ∆G∆H
�7 … ∆H7I 2∗[��, �] 

Proof : Follows from the theorem 3.3 and 3.4 

4. Controllability and Observability 

In this section we consider the higher order Sylster’s type 

matrix dynamical systems on measure chains  �∆���� = ∑ 	
��
����������� + ��������, ����� = ��
���   

(4.1) 

and obtain the necessary and sufficient conditions for the 

controllability and observability of the corresponding control 

engineering system  

� � �∆���� = � 	
��
����������� + ��������, ����� = ��



��� ����  =  ��������   

Definition 4.1 : The higher order Sylster’s type time varying 

dynamical system S on measure chain T=[t0 ,tN] is said to be 

completely controllable if “for any initial time t0 and any 

initial state x (to) = xo and any given final state xf, there exists a 

finite time tN > to and a control u(t), to ≤ t ≤ tN such that x (tN) = 

xf”. 

Definition 4.2: The higher order Sylster’s type time varying 

dynamical system defined by S on measure chains is said to be 

completely observable if and only if the knowledge of the 

control u(t) and the out put Q(t) suffice to determine x(t0) = x0 

uniquely for a finite time tN ≥ t0. 

Theorem 4.1: The solution of the equation (4.1) is given by 

��:�  =  *[�, ��]��2∗[��, �] + *[�, ��] CD D … D *[��,E�65
3M

E5
3M

3
3M �∗�G�]��G���G�2∗[G, ��] ∆G∆H
�7 … ∆H7I 2∗[��, �]  

=  *[�, ��] N�� + CD D … D *[��,E�65
3M

E5
3M

3
3M �∗�G�]��G���G�2∗[G, ��] ∆G∆H
�7 … ∆H7IO 2∗[��, �] 

Proof: Follows from theorem 3.6. 

Theorem 4.2: The Lyapunov type matrix dynamical system on measure chains � is completely controllable if and only if the 

symmetric controllability matrix  

P[��, �Q] = CD D … D *[��,E�65
3M

E5
3M

3R
3M �∗�G�]��G��∗�G�*∗[��G�, ��] ∆G∆H
�7 … ∆H7I 

is non singular. 

Then the control U(t) defined by 

���� = −�∗���*∗[��, ����]P�7[��, �Q]T�� − *[��, �Q]�U2∗[��, �Q]V2∗65[��, �] 
defined for t0 < t < tN transfers X(t0) = X0 to X(tN) = Xf. 

Proof: First we suppose that P[��, �Q] is non - singular. Then ���� defined as above exists. We know that any solution of (4.1) 

has the form 

���� =  *[�, ��] N�� + CD D … D *[��,E�65
3M

E5
3M

3
3M �∗�G�]��G���G�2∗[G, ��] ∆G∆H
�7 … ∆H7IO 2∗[��, �] 

put � = �Q and substitute ���� defined as above we will get ���Q� = �W and hence � is controllable. 

Conversely, suppose that � is controllable. We have to show that P[��, �Q] is non-singular. 

Since P[��, �Q] is symmetric, clearly it is positive semi definite. 

Now suppose that there exists some column vector Ψ ≠ 0 such that  

Ψ∗W[t�, t[]Ψ = 0 ⇒ K Ψ∗W[t�, σ�s�]C�s�C∗�s�W∗[t�, σ�s�]Ψ3R3M ∆G = 0 ⇒ K _∗[s, t�]3R3M _[G, ��]∆G = 0  

where  

_[G, ��] = C∗�s�W∗[t�, σ�s�]Ψ ⇒ K `_.`∗3R3M ∆G = 0 Hence _ = 0 on [��, �Q]. 
By our assumption that � is completely controllable, there exists a control V(t) (say) making ���Q� = 0 if ����� = Ψa 
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where a is any non zero 1�	 matrix. 

���Q� = 0 ⇒   �� + CD D … D *[��,E�65
3M

E5
3M

3R3
3M �∗�G�]��G���G�2∗[G, ��] ∆G∆H
�7 … ∆H7I = 0 

⇒ Ψa = − CD D … D *[��,E�65
3M

E5
3M

3R
3M �∗�G�]��G���G�2∗[G, ��] ∆G∆H
�7 … ∆H7I 

Now it can be easily shown that `Ψa` = �Ψa�∗�Ψa� = 0 

Therefore Ψa = 0 Hence Ψ = 0 which is a contradiction. 

Therefore P[��, �Q] is a positive definite matrix hence it is 

non-singular. 

Theorem 4.3: The system � is completely observable if and 

only if the symmetric observability matrix 

c���, �Q� = K *∗3R3M [��G�, ��]�∗�G���G�*[��G�, ��]∆G  

is non singular. 

Proof: Suppose c���, �Q� is nonsingular. 

Without loss of generality suppose that U(t) ≡ 0 ∀ t ∈ [t0, tN] 

Then ���� = *[�, ��]��2∗[�, ��]  

For this the output is 

���� = ����*[�, ��]��2∗[�, ��] ⇒*∗[�, ��]�∗�������2∗65[�, ��] = *∗[�, ��]�∗�������*[�, ��]��  

Delta integrating from �� to �Q we get 

K *∗[G, ��]�∗�G���G�2∗65[G, ��]∆G = c[�, �Q]��3R3M   

Which gives 

�� = c�7[��, �Q] K *∗[G, ��]�∗�G���G�2∗65[G, ��]∆G3R3M   

Therefore � is completely observable. 

Conversely suppose � is completely observable. 

We will show that c���, �Q� is non singular. 

Since  c���, �Q�  is symmetric, clearly it is positive semi 

definite. 

If possible suppose that there exists a column vector Φ ≠ 0 

such that 

Φ∗c���, �Q�Φ = 0. Then K `��G�*[G, ��]Φ`.∆G = 03R3M  

⇒  ��G�*[G, ��]Φ = 0 ∀ s ∈ [t�, t[].  

If �� = Φ9 where K is a matrix of order n, then the output 

is 

���� = ����*[�, ��]��2∗[�, ��] = ����*[�, ��]Φ92∗[�, ��] = 0  

i.e �� can not determined with the knowledge of ���� in this 

case. This contradicts our assumption that � is completely 

observable. 

Therefore  c���, �Q�  is positive definite and hence c���, �Q� is non - singular. 

Observation 4.1: From the theorem (4.2) it is observed that 

the controllability matrix is independent of fundamental 

matrix2 . The fundamental matrix *  alone determines the 

controllability criterion of the dynamical system�. We also 

observe that the controllability criterion can be determined 

using the fundamental matrix 2  alone through properly 

defined controllability matrix. 

Observation 4.2: From the theorem (4.3) it is observed that 

the observability matrix is independent of 2. The fundamental 

matrix * alone determines the observability criterion of the 

dynamical system� . 

5. Summary and Conclusions 

These results coincide with the findings [1],[2],[5] and [11] 

of and include them as a sub case of this article. Hence this 

article generalizes the findings of the article and can be 

applicable to wider range of control engineering problems. 

Using these results we can study further class of differential 

systems on measure chains for their controllability and 

observability. 
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