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Abstract: Analyzing and forecasting the financial market based on the theory of phase space reconstruction of support vector 

regression. The key point of the phase space reconstruction is to choose the optimal delay time, and to find the optimal 

embedding dimension of space. This paper proposes the use of false nearest neighbor method to construct the error function for 

all the variables to determine the appropriate embedding dimension combinations. Kernel function in the SVR is an important 

factor for algorithm performance. Experiments show that the theory of phase space reconstruction based on support vector 

regression has a certain degree of predictive ability of market value at risk. 
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1. Introduction 

In general, Time Series model used in analyzing and 

forecasting financial markets can be divided into single 

variable model and multivariate model according to the 

selection of variables, according to the structure of the model 

and can be divided into linear and nonlinear model. It is now 

widely used now that linear method such as exponential 

smoothing, moving average, moving average (ARIMA), 

multiple regression and autoregressive conditional 

heteroscedasticity. Evaluation of a Time Series model is 

needed to study the fitting validity and forecasting 

effectiveness, A good model must not only be able to have a 

good understanding of phenomena that occur within the Time 

Series, finding the internal law, but also to analyze the extent 

and scope of the impact and the impact of external factors, and 

also need to be extrapolated by model ,correctly predicting the 

trend of Time Series. Nonlinear prediction method based on 

phase-space reconstruction theory 
[1-3]

 is a new forecasting 

method developed in the last 20 years. The method applied to 

financial Time Series with nonlinear and non-stationary 

characteristics and uncertainty, it can accurately predict the 

short-term behavior of financial markets. Based on the 

principle of Takens embedded, if the selection of embedding 

dimension and delay time appropriate, single variable Time 

Series can obtain more ideal prediction effect. Because in 

practical application ,there always exist noise in time series 

data limited in length. It is difficult to ensure the univariate 

Time Series contained sufficient information to reconstruct 

the power system. To resolve this issue, Cao and others 

propose method of phase space reconstruction of multivariate 

Time Series. The method of phase space reconstruction of 

chaotic model and support vector machine in recent years in 

the field of artificial intelligence is very popular, nonlinear 

sequence can be mapped into a high dimensional space, the 

information of nonlinear dynamic characteristics in the 

sequence can be revealed. Therefore, using the theory of phase 

space reconstruction of chaotic theory determine the training 

samples. Finally, applying support vector regression to model 

the training samples, realize the prediction of financial time 

series. 

2. The Phase Space Reconstruction of 

Multivariate Time Series 

Assuming that a system with n measurable variables, Time 

Series corresponding to each variable is 

1 2
( , ,..., ), 1,2,...,

i i i iN
z z z z i N= = , Based on the phase space 

reconstruction theory ,it can be reconstructed as follows. 

( 1)
( , ,..., )

n n n r n d r
V z z z− − −=              (1) 
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Among them, the ,
i i

dτ  respectively is time delay of Time 

Series i and embedding dimension. ( 1) 1n d τ= − + .If d or 

every i
d  is large enough, 1 2

... 2
M

d d d d D= + + + > , D is 

the attractor dimension. When n = 1 for single variable Time 

Series, it is a special case of multivariate Time Series. 

Auto-correlation function and the mutual information 

method is usually used to selected delay time respectively for 

every single variable Time Series that makes up multivariable 

Time Series. Calculated as follows: 

( ) ( )( ) ( )( )
( ) ( )( )1

( ),
( ), log

( )

N

n

P x n x n
I P x n x n

P x n P x n

τ
τ τ

τ=

 +
= + ×  

• +  
∑  (2) 

( ) 0I τ ≥ , ( )P • is the probability ( )I τ  represents the 

information that a sequence is obtained from another sequence. 

Fraer recommends that we could regard τ  which is reached 

the first minimum correspond to the ( )I τ as the embedding 

time delay. 

2.1. To Determine the Embedding Dimension 

Another issue of concern is how to select appropriate 

embedding dimension for multivariable Time Series. The false 

nearest neighbors method, Kennel proposed, is a common 

method for single variable and multivariable Time-Series. The 

basic idea of the method is: The Time Series is normalized, 

using auto-correlation function and mutual-information to 

determine the delay time of each single variable Time Series, 

given a set of embedding dimension to obtain delay vector. 

For every vector, finding its nearest neighbor vector, making 

that: 

( ) ( ){ }arg min : max 1 1,..., ,
n j

n V V j dj i N j nη τ= − = − + ≠  (3) 

Calculating one step prediction error: 

( ) ( )

( )
0

1 2 1. 1 1. 1

0

0
1

1
, ,..., ,

1

                                           max 1 1

N

M n n
n J

i i
i M

E d d d x x
N J

J d

η

τ

+ +
−

≤ ≤

= −
− +

= − +

∑
     (4) 

The measurement of error ( )1 2, , ..., Md d d  depends on the 

choice of 1 2
, ,...,

M
d d d . Making ( )1 2, , ..., ME d d d  a set of 

minimum embedding dimension as the embedding dimension 

of phase space reconstruction, i.e. 

( ) ( )1 2 1 2

1 2

1

, ,..., : , ,..., ,

, ,..., arg min
0

M M

M
M

i

i

E d d d d d d Z

d d d
d

=

∈ 
 =  ≠ 
 
∑

 (5) 

The reason of the choice of embedding dimension that 

makes prediction error is minimum is that when the 

embedding dimension is too small, will not be able to get a 

proper embedding, the predicted results will be very poor, so 

the prediction error will be large; when embedding dimension 

is the optimal embedding dimension, suitable embedding and 

may determining the mapping iF reduce the prediction error; 

and when the embedded dimension is more than the optimal 

embedding dimension, especially when the system exists 

positive Lyapunov index or noise, the increase of the 

prediction error will be far beyond the acceptable range, 

because the historical data used in the prediction process is 

associated very small with now or even completely unrelated. 

2.2. Improved Method of Determining Embedding 

Dimension 

Construction of error function: ( )1 2, , ..., ME d d d  just for 

the variable 1
z , the appropriate embedding dimension finally 

got may only applies to the variable 1
z  to the reconstruction 

of phase space, and it does not necessarily apply to other 

variables. Therefore, this article will build error function for 

all variables. First, for each vector, finding the adjacent vector, 

and we will define the following error function which based 

on this definition. 

( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1 1 2 1

1 2

1 1 1

, , , , , ,
, , ,...,

,..., ,..., ,..., ,...,

M
n i M i Mn
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i n i M i Mn

V d d d d V d d d d
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η

η

+ +

=

−
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−∑                         (6) 

Further definition, 

( ) ( )
0

1 1

0

1
,..., ,..., , ,..., ,...,

1

M

i M i M

i J

E d d d a n d d d
N J =

=
− + ∑                             (7) 

Making, 

( ) ( )( )1 1 1,..., ,..., arg min ,..., ,..., : ,..., ,...,i M i M i Md d d E d d d d d d Z= ∈                       (8) 

The algorithm in the global phase space reconstruction can 

determine the appropriate embedding dimension combination, 

is an ideal method of determining multi variable embedding 

dimension. It can be used to calculate the phase space 

dimension of single variable Time Series, is also applicable to 

the single variable case. 
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2.3. The Calculation of the Maximum Lyapunov Exponent 

Getting the time delay and embedding dimension can 

calculate the maximum Lyapunov index, to test the existence 

of chaotic phenomena of Time Series, if the Lyapunov index is 

the regular indicates the existence of chaotic phenomena. The 

Lyapunov index estimation expressions are as follows: 

( ) ( )
( )1

1

1 1
, log

M k
j

j j

d i k
i k

k t M k d k
λ

−

=

+
=

∆ − ∑         (9) 

where k is a constant, t∆  is the sample period, ( )jd k  is the 

first j  distance of the adjacent points on the basic track after 

i  discrete time step, M  is the number of reconstructed 

phase space point. 

3. Study on Nonlinear Prediction 

Algorithm of Multivariate Time Series 

Stochastic process followed a large sample theory, and 

require research sample size tends to infinity, and obtain 

statistical conclusions in the conditions of mass. In fact, we are 

unable to get an infinity of sample, even for large-scale 

analysis of sample data processing also need larger price, 

usually, in the condition of limited, we wish get accurate 

predictions as much as possible. The Hurst index and 

Lyapunov index can't be used as the main basis of regression 

prediction. 

In data driven, neural network as a nonparametric 

weakening model
[4]

, fault tolerance is excellent, for the 

incomplete data of complex system; it has the strong learning 

capability, and dominate the earnings prediction of Time 

Series. Used for Time Series prediction of neural network can 

be divided into two kinds: one kind is Jordan and Elman 

network, building the space-time mechanism in the additional 

layer, storage sample values in the past time point.
[5]

 Another 

is to use time window for processing the internal structure of 

the neural network does not change, the input sample values in 

the past, neural network gives the predicted value of the next 

point in time.
[6-7] 

The neural network can effectively predict earnings Time 

Series, but, because this approach has inherent flaws, making 

their learning generalization performance degradation, such as 

over-fitting problem cannot be solved. Vapnik proposed a new 

neural network, a better solution to this problem. This neural 

network is called support vector machines (SVMs), follow the 

structural risk minimization principle, you can get the global 

optimal solution. With the introduction of non-sensitive loss 

function, SVMs extended to the areas of return and it is not 

previously could only deal with classification of primary 

issues, so called support vector regression (SVR). SVR was 

introduced to Time Series to predict stock returns. Her 

research proved that SVR Time Series forecast earnings are 

feasible and effective. 

Kernel function mainly translate nonlinear problem into a 

linear problem through a certain way, then treated, the specific 

linearization method is to map the input data from 

low-dimensional space to a high dimensional feature space. 

Therefore the kernel function plays a decisive role to 

prediction performance of support vector, its construction or 

selection mode is particularly important. In the different time 

granularity, wavelet function can describe arbitrary position of 

the Income Time Series, so it can be used to analyze the 

fluctuation characteristics of return Time Series. The SVMs 

and wavelet theory combined with each other to build wavelet 

kernel function used to predict stock returns Time Series is 

worth studying.
[8-9] 

3.1. Construction of Wavelet Kernel Function 

This section mainly introduces some basic theory of 

multi-resolution analysis and wavelet transform research 

foundation, and to construct a wavelet kernel function. 

Defined the continuous wavelet transform of ( )f z  as 

follows, 

( ) ( )

( ) ( )( )

1/ 2

2

, ,

                              0,

f

x b
WT a b a f x dx

a

a f z L R

ψ
∞−

−∞

− =  
 

≠ ∈

∫
      (10) 

( )xψ  to meet the permit conditions: 

( ) 2
ˆ

C dψ

ψ ω
ω

ω
∞

−∞
= < ∞∫              (11) 

where ( )ψ ω  is the Fourier transform of ( )xψ , then the 

inverse transformation is 

( ) ( ) ( )1

, 2
,a b f

da
f x C t WT a b db

a
ψ ψ

∞ ∞−

−∞ −∞
= ∫ ∫ ,       (12) 

where Cψ  is a constant, ( )ψ ω  is a continuous function of R, 

(11) shows that the value of ψ  at the origin is zero, that is: 

( ) ( )ˆ 0 0x dtψ ψ
∞

−∞
= =∫ ,              (13) 

3.2. Regression Analysis 

Setting the training set ( ) ( ) ( )}{ 1 1
, ,..., , ,..., ,

i i n n
x y x y x y , in 

which 
h

i
x R∈ , i

y R∈ , the regression function of support 

vector machine can be expressed as: 

( ) ( )f x w x bψ= +i ,               (14) 

w and b can be obtained by minimizing the 

( )2 *

1

1

2

n

i i

i

w C ξ ξ
=

+ +∑ ,              (15) 

In the end can be converted into 
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in which 
*,

i i
ξ ξ  are slack variables, and C is punish parameter. 

By introducing Lagrange multipliers, finally get the decision 

function: 

( ) ( ) ( )*

1

,
n

i i i

i

f x a a k x x b
=

= − +∑ ,          (17) 

( ) ( ) ( ),i ik x x x xψ ψ=               (18) 

Among them, i
α  and 

*

i
α  is the Lagrange multiplier, 

( ),ik x x is the kernel function. Training the pre-treatment 

sample data by SVMs regression method to calculate the 

support vectors i
x , and the parameters

i
α

、

*

i
α  and b. The 

obtained results into the formula (3.13), and then put 

pre-treatment test set samples into the model. Obtaining the 

prediction value mapped to high dimension interval, and map 

the resulting inverse to the original range to obtain the final 

result. In the prediction of the actual process, the main 

prediction steps are as follows: 

1) according to the theory of phase space reconstruction of 

chaotic system to obtain optimal embedding dimension 

and time delay of training historical data to generate 

training samples. 

2) normalized generated training samples to improve the 

convergence speed, shorten training time. 

3) Select the applicable SVM and kernel function. 

4) training generated training samples using support vector 

machine to obtain prediction model. 

5) using the trained support vector machine forecasting 

model to forecast. 

3.3. The Experimental Data and the Preprocessing 

This experiment using two simulated stock returns Time 

Series, each Time Series contains the same number of samples, 

collected 3120 samples. Autoregressive integrated moving 

average model (ARIMA) is a mainstream method of the 

financial Time Series prediction, using the difference 

operation to complete the Time Series smoothing, the choice 

of the model to simulate the generation first sequence. As 

shown in Figure 3.1 for the ARIMA model of the Time Series 

waveform, the following expression describes the model of 

ARIMA (1, 1, 1) 

( )( ) ( ) { } ( )1 11 1 1 , , 0,1i i i i
B B Y B Nφ θ ξ ξ− − = +      (19) 

Mackey-Glass delay differential equation is a common 

mathematical model of producing simulation data. 

Mackey-Glass equation was first used to describe white blood 

cells produce process.
[10]

 In the field of financial chaos 

phenomenon is widespread and the chaotic Time Series on the 

time axis is neither convergence nor divergence, besides the 

motion trajectory is difficult to describe, because it is affected 

by the initial condition is very serious. because Mackey-Glass 

data set has certain ability to describe the chaos phenomenon, 

gradually at an important position in the field of standard in 

the financial research. 

The definition of Mackey-Glass delay differential equations 

as follows: 

1

t d

i c

t d

bxdx
ax

dt x

−

−

= +
+

                 (20) 

in which the autoregressive parameter is 1
φ . the moving 

average parameters is 1
θ  and the lag operator denoted as B. 

According to Figure.2 that the ARIMA sequence has the 

characteristics of non periodic arrangement form, also can be 

observed violent decay of autocorrelation curve. 

Figure 3 describes the waveform curve of Mackey-Glass 

data sets in simulation experiment. Figure 3 describes 

Autocorrelation characteristics of Mackey-Glass data sets in 

simulation experiment. Parameter is set to a = 0.2. Compared 

with autocorrelation characteristics of ARIMA Time Series, 

Mackey-Glass Time Series has a certain periodicity, and there 

is no attenuation of zero point of autocorrelation. In summary, 

Mackey-Glass Time Series makes it relatively easy to 

regression prediction. The correctness of this conjecture has 

been verified in the experiment, from Table 1 it is not difficult 

to see that the minimum standard mean square error are 

appeared in the sequence. 

There are five components of the input vector, 4 of which 

are yield; another is the closing price after conversion. 

Because the data have a relatively uniform and symmetry 

distribution approaching normal distribution after processing, 

So that the prediction performance is effectively improved ,in 

the experiment, the closing price of the original data is 

converted into a corresponding return rate. Subtracting the 

mean can eliminate the trend term in the price, in the original 

closing price conversion process, also can avoid the loss of 

useful information. 

 

Fig. 1. The ARIMA time series. 



116 Hong Zhang et al.:  Study on Financial Time Series Prediction Based on Phase Space Reconstruction and 

Support Vector Machine (SVM) 

 

Fig. 2. Autocorrelation function of ARIMA time series. 

 

Fig. 3. The Mackey-Glass time series. 

 

Fig. 4. Autocorrelation function of Mackey-Glass time series. 

3.4. Performance Indicators and Results Analysis 

This paper uses regular mean square error, mean absolute 

error, root mean square error square and several other 

statistical indexes as a measure of the prediction and 

evaluation of performance standards. Before the training, the 

mean standard deviation, skewness and kurtosis of the indexes 

see Table 1. After processing the data, get the statistical 

performance, according to these statistical properties can be 

obtained conclusion. The experimental results shown in this 

article: each index all have mean close to zero, compared with 

the normal distribution has some deflection. The best 

prediction results are from March 2011 to March 2015 for the 

fourth time sliding. As shown in Table 2, in five real stock 

returns, there all exist the minimum of three indicators (RMSE, 

NMSE, MAE) in the wavelet kernel. Through further 

comparison, the prediction performance of each kernel in 

addition to AXJO, indicators of other real index (SSMI, 

CAC40, FTMIB and DAXINDX) are inferior to the wavelet 

kernel. Therefore, wavelet kernel was compared with the 

Gaussian kernel can be as the key. For the simulated data, 

perhaps due to the dynamic nature of ARIMA Time Series is 

weaker, its Gauss nuclear is optimal, and so the good 

performance of wavelet kernel cannot be fully reflected. On 

the whole, the optimal is wavelet kernel, followed by the 

Gauss kernel, third is polynomial kernel, and the worst 

performance is the linear kernel. There is another view of the 

special circumstances need to distinguish between: the 

comparison results can be drawn based on the prediction set 

NMSE paired t test. The t value for the one-sided test proved 

that the wavelet kernel is better than the Gauss kernel at 0.1 

significant level. 

Table 1. Sample statistical characteristics. 

Stock indices Mean S.D. Skewness Kurtosis 

ARIMA -0.2415 0.4855 0.4187 2.6954 

MGLASS 0.1548 0.4875 -0.4471 2.1547 

FTMIB -0.2145 0.4365 1.3025 3.2548 

SSMI -0.2589 0.4521 1.1054 3.2154 

CAC40 0.0874 0.3218 0.8444 2.5481 

AXJO 0.1547 0.4196 -0.4852 2.9654 

DAXINDX -0.3218 0.5698 0.6487 2.7542 

Table 2. Prediction set results. 

Stock indices 
Linear kernel 

NMSE RMSE MAE 

ARIMA 2.5652 0.0985 0.0548 

MGLASS 0.3452 0.2964 0.1584 

FTMIB 1.7545 0.8543 0.2857 

SSMI 1.4522 0.2857 0.2874 

CAC40 0.9874 0.3878 0.1587 

AXJO 0.9852 0.2859 0.8574 

DAXINDX 1.1485 0.3848 0.5845 

Stock indices 
Polynomial kernel 

NMSE RMSE MAE 

ARIMA 0.5412 0.0854 0.3332 

MGLASS 0.1574 0.1658 0.3214 

FTMIB 1.4952 0.2841 0.5241 

SSMI 1.0542 0.2541 0.2145 

CAC40 0.9854 0.1985 0.1452 

AXJO 0.8745 0.8412 0.8541 

DAXINDX 1.3255 0.4412 0.2541 

Stock indices 
Gaussian kernel 

NMSE RMSE MAE 

ARIMA 0.5421 0.9512 0.1285 

MGLASS 0.7007 0.4702 0.2686 

FTMIB 0.3410 0.5844 0.0656 

SSMI 0.0010 0.3130 0.7025 

CAC40 0.7197 0.2335 0.3291 
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Stock indices 
Linear kernel 

NMSE RMSE MAE 

AXJO 0.3185 0.3260 0.0361 

DAXINDX 0.1086 0.2011 0.6611 

Stock indices 
Wavelet kernel 

NMSE RMSE MAE 

ARIMA 0.5533 0.8553 0.1086 

MGLASS 0.4322 0.2339 0.9551 

FTMIB 0.4353 0.1252 0.3199 

SSMI 0.1288 0.2402 0.7868 

CAC40 0.0493 0.5928 0.4421 

AXJO 0.8696 0.6229 0.9996 

DAXINDX 0.0239 0.4784 0.5587 

4. Summary 

Financial Time Series has unique features, such as dynamic 

characteristics and nonlinear characteristics, although the 

study of its dynamic characteristics are not mature, 

inconclusive, but the nonlinear characteristics of Financial 

Time Series has been widely recognized, Therefore, based on 

the nonlinear Time Series modeling principle, studies the 

application of neural network and support vector machine in 

financial Time Series Prediction. In order to make the results 

fully authentic, the research object selected in this paper is 

mainly for the foreign large stock market, selecting the 

following five stock index data sets: FTMIB, SSMI, CAC40, 

AXJO and DAXINDX. Two simulated stock, first modeling 

using ARIMA model, through the Mackey - Glass chaos 

differential equation to get the required data sets, and then 

select the dimension of input and the data preprocessing, so 

that the data in the conversion process most likely to avoid 

losses. Select the most appropriate parameter by dividing the 

data set and some other methods, making the prediction 

performance of the model is the most outstanding, Using 

selected statistical indicators to measure whether the 

prediction performance is the best of the model. Finally, we 

make a summary of the experimental data analysis and draw 

the conclusion that wavelet kernel compared with other 

gaussian kernel kernel function, more close to the real 

situation of earnings forecast curve, so you can think it has 

better performance of earnings forecasts. 
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