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Abstract: The present numerical study is devoted to investigate the mixed convection flow and heat transfer in a lid-driven 

cavity with wavy bottom surface. The cavity upper wall is moving with a uniform velocity by unity and the other walls are no 

slip. The cavity vertical walls are insulated while the upper surface is maintained at a uniform temperature higher than the 

wavy bottom surface. The physical problem is represented mathematically by a set of governing equations and the developed 

mathematical model is solved by employing Galerkin weighted residual method of finite element formulation. The wide 

ranges of governing parameters, i. e., the Reynolds number (Re), the Grshof number (Gr) and the number of undulations (λ) 

on the flow structure and heat transfer characteristics are investigated in detail. It is found that these parameters have 

significant effect on the flow fields; temperature distributions and heat transfer in the cavity. Furthermore, the trend of skin 

friction and Nusselt number for different values of the aforementioned parameters are presented in this investigation. 
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1. Introduction 

Combined forced and free convection flow in lid-driven 

cavities or enclosures occurs because of two competing 

mechanisms. The first is due to shear flow caused by the 

movement of one of the walls of the cavity while the 

second is due to buoyancy flow produced by thermal 

non-homogeneity of the cavity boundary. The fundamental 

problem of combined forced and natural convection heat 

transfer in a cavity has received considerable attention from 

researchers. This problem is often encountered in many 

engineering and industrial applications, such as solar ponds 

[1], cooling of electronic devices, heat exchangers, 

materials processing, crystal growth, float glass production 

[2], dynamics of lakes [3], metal coating and casting, and 

among others. Prasad and Koseff [4] have investigated 

combined forced and natural convection heat transfer in a 

deep lid-driven cavity flow problem. Investigation has been 

carried out for various values of Richardson number 

between 0.1 and 1000 and they found that the heat transfer 

within the cavity is independent of the Richardson number. 

Augmentation of flow and heat transfer in geometries 

with roughen surfaces is a topic of fundamental importance. 

This interest stems from its significance in many 

engineering and industrial applications such as cooling of 

electrical and nuclear components. Sometimes surfaces are 

intentionally roughened to enhance heat transfer. Das and 

Mahmud [5] conducted a numerical investigation of natural 

convection in an enclosure consisting of two isothermal 

horizontal wavy walls and two adiabatic vertical straight 

walls. Adjlout et al. [6] has studied laminar natural 

convection in an inclined cavity with a heated undulated 

wall, i.e., smooth wave-like pattern. Their results concluded 

that the hot wall undulation affects the flow and heat 

transfer rate in the enclosure in which the local Nusselt 

number distribution results in a decrease of heat transfer 

rate as compared with the square enclosure. Moreover, 

Kumar [7] conducted a study of flow and thermal field 

inside a vertical wavy enclosure filled with a porous media. 

The author has illustrated that the surface temperature was 

very sensitive to the drifts in the surface undulations, phase 

of the wavy surface and the number of waves considered.  

The flow within a lid driven cavity consisting of hot 

upper wall and cool sinusoidal bottom wall is an important 

circumstance encountered quite frequently in practice. In 

all the applications having this kind of situation, heat 
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transfer occurs due to the temperature difference across the 

fluid layer, one horizontal solid surface being at a 

temperature higher than the other. If the upper plate is the 

hot surface, then the lower surface has heavier fluid and by 

virtue of buoyancy, the fluid would not come to the lower 

plate. Because in this case the heat transfer mode is 

restricted to only conduction. Convection is the heat 

transfer mechanism affected by the flow of fluids. The 

amount of energy and matter are conveyed by the fluid can 

be predicted through the convective heat transfer. The 

convective heat transfer splits into two branches; the 

natural convection and the forced convection. Forced 

convection regards the heat transport by induced fluid 

motion which is forced to happen. This induced flow needs 

consistent mechanical power. However, natural convection 

differs from the forced convection through the fluid flow 

driving force, which happens naturally. The flows are 

driven by the buoyancy effect due to the presence of 

density gradient and gravitational field. As the temperature 

distribution in the natural convection depends on the 

intensity of the fluid currents which is dependent on the 

temperature potential itself, the qualitative and quantitative 

analysis of natural convection heat transfer is very difficult. 

Numerical investigation instead of theoretical analysis is 

more needed in this field. 

The problem of mixed convective heat transfer in a 

cavity subjected to sinusoidal cool boundary at the bottom 

surface has not yet been dealt much in the literature. 

Khanafer et al. [8] carried out a numerical study on natural 

convection heat transfer inside a porous cavity with a 

sinusoidal vertical wavy wall. Their results showed that the 

amplitude of the wavy surface and the number of 

undulations affect heat transfer characteristics inside the 

cavity. Al-Amiri et al. [9] performed the effects of mixed 

convection heat transfer in lid-driven cavity with sinusoidal 

wavy bottom surface. They observed that the average 

Nusselt number increases with the increasing values of 

Reynolds number and amplitude of the wavy surface. 

The objective of the present study is to examine the 

momentum and energy transport processes in a lid-driven 

cavity with wavy bottom surface. The cavity is sustained 

under a vertical temperature gradient by subjecting the 

upper lid to a relatively higher temperature than the wavy 

bottom wall. The results are shown in terms of parametric 

presentations of streamlines and isotherms for various 

considered pertinent dimensionless parameters. These 

dimensionless groups include the Reynolds number, 

Grashof number, the wavy surface amplitude, and number 

of undulations offered by the wavy bottom surface. Finally, 

the implications of the above dimensionless parameters are 

also depicted on the dimensionless local heat flux. 

2. Mathematical Formulation 

A two dimensional square cavity of height and length L 

with sinusoidal bottom surface, as shown in Fig. 1, is 

considered. The upper wall of the cavity is allowed to move 

in its own plane at a constant speed U0 and the other walls 

have no-slip condition. The cavity bottom wall is kept at a 

low temperature, Tc, and the upper wall is kept at a high 

temperature, Th. The left and right walls are considered to be 

adiabatic. Such an imposed temperature condition will 

render a thermal stratification in the cavity. The 

thermo-physical properties of the fluid are assumed to be 

constant, except the density in the buoyancy term. The 

density varies linearly with temperature as

( ) ( )
c c

g T Tρ ρ β− = − , where g is the acceleration due to 

gravity and β is the coefficient of thermal expansion, ρ is the 

fluid density. In general, the cavity fluid is assumed to be 

Newtonian and incompressible, unsteady and laminar flow. 

It is further assumed that viscous dissipation is neglected in 

the study. 

 

Fig 1. Cavity geometry and boundary condition 

With abovementioned assumptions, the governing 

equations for conservations of mass, momentum and 

energy can be written as 

Mass conservation equation: 
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where u and v the fluid velocity components in the x- and y- 

directions, p the pressure, x, y the coordinate directions, T 

the temperature, β the volumetric thermal expansion 

coefficient, ρ the density of the fluid and α the thermal 

diffusivity. 

The governing equations (1)-(4) are non-dimensionalized 

using the following dimensionless variables: 

2

0 0 0

, , , , , c

h c

T Tx y u v p
X Y U V P

L L U U T TU
θ

ρ
−

= = = = = =
−

                    (5) 

Introducing the above non-dimensional scales into the 

governing equations, we obtain the non-dimensional form 

of the equations as follows: 
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In the above equations 0Re
U L

υ
= , Pr

υ
α

= and 

3

2

g TL
Gr

β
υ
∆=  are respectively the non-dimensional 

Reynolds number, Prandtl number and Grashof number. 

The shape of the bottom wavy surface profile is assumed to 

mock the following pattern (1 (2 ))Y A Cos Xλπ= −  where 

A is the dimensionless amplitude of the wavy surface and λ 

is the number of undulations. 

The dimensionless boundary conditions are: 

1, 0, 1    for 0 1, 1

0, 0      for 0 1, (1 (2 ))

0, 0   for 0 1, 0 & 1

U V X Y

U V X Y A Cos X

U V Y X X
X

θ
θ λπ

θ

= = = ≤ ≤ =
= = = ≤ ≤ = −

∂= = = ≤ ≤ = =
∂

  (10) 

Since the convective heat transfer coefficient: h and 

Nusselt number Nu, depend on the temperature gradient at 

a flat surface, )(
n
T

∂
∂−  where n is normal direction to the 

surface. Therefore, we can obtain the rate of heat flux from 

each of the walls. The corresponding average Nusselt 

number at the heated wall is defined as: 

0

1
s

av
Nu Nudx

S
= ∫              (11) 

S is the total chord length of the wavy surface and s is the 

coordinate along the wavy surface. 

3. Numerical Scheme 

The governing equations along with the boundary 

conditions are solved through the Galerkin weighted 

residual finite element method. The formulation of this 

method and computational procedure is well described by 

Taylor and Hood [10] and Dechaumphai [11]. The 

computational domain is discretized employing the uniform 

mapped mesh grid system. Then the Galerkin weighted 

residual technique is used to convert the nonlinear 

governing partial differential equations into a system of 

integral equations that can be solved numerically. The 

integration involved in each term of these equations is 

performed by using Gauss’s quadrature method which leads 

to a set of non-linear algebraic equations. These equations 

are then modified by imposing boundary equations which is 

transferred into linear algebraic equations by 

Newton-Raphson iteration. Finally, these linear equations 

are solved by applying Triangular Factorization method. 

4. Results and Discussions 

In this section, numerical results are presented for 

different values of Re, Gr, A, λ . Prandtl number was 

treated as 0.71 for all cases.  The basic features of flow and 

heat transfer in the lid driven cavity are analyzed with the 

help of streamlines patterns and isotherms contour. Also, the 

local Nusselt number, Skin friction, average Nusselt 

numbers along cooled wavy bottom surface for various 

undulations are plotted. 

Numerical validation: To validate the present numerical 

code, the results for mixed convection flow in an enclosed 

cavity with heated upper wall have been compared with 

those obtained by Iwatsu et al. [12]. The comparison of the 

results obtained from present code with those of Iwatsu et al. 

[50] is demonstrated for two different Grashof number, 

Gr=102, 106 at Re=103 in Fig. 2 and Fig. 3 respectively. As 

seen from these figures the obtained results show very good 

agreement with the documented study. 

In addition, the results acquired by present code also has 

been validated by comparing the average Nusselt number 

with that of the results obtained by Iwatsu et al. [12] and 

Mamun et al. [13], is shown in the Table-1. It is noted that 

Iwatsu et al. [12] considers a square cavity with heated upper 

moving lid and Mamun et al. [13] considers a trapezoidal 

cavity with heated upper moving lid. From the above table 

we see that the present result have a good agreement with 

those of  Iwatsu et al. [12] and Mamun et al. [13].   

From the above discussion, we can say that the present 

code is valid for laminar mixed convection flow and heat 

transfer in a lid-driven cavity. 
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Fig 2. Comparison of streamlines contour (left) and temperature contour (right) obtained by present code ( lower) and Iwatsu et al. ( upper ) at Re=103,  

Gr=102 and 0=λ  

 

Fig 3. (a) Comparison of stream lines contour (left) and temperature contour (right) between present code (lower) and Iwatsu et al. (upper) at Re=103, Gr 

=106, λ=0. 
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Table 1. Comparison of average Nusselt number with those of Iwatsu et al. and Mamun1et.al. 

Re 210=Gr  
410=Gr  

610=Gr  

 Present Iwatsu Mamun Present Iwatsu Mamun Present Iwatsu Mamun 

100 2.01 1.94  1.38 1.34  1.02 1.02  

400 3.97 3.84 3.97 3.72 3.62 3.75 1.18 1.22 1.18 

1000 6.28 6.33 6.25 6.23 6.29 6.32 1.64 1.77 1.70 

 

Fig 4. Stream line contour at ,10,10Re 42 == Gr A=0.05 (a) 0=λ  (b) 1=λ  (c) 2=λ  (d) 3=λ . 

 

Fig 5. Isotherms contour at ,10,10Re 42 == Gr A=0.05 (a) 0=λ  (b) 1=λ  (c) 2=λ  (d) 3=λ . 
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The effect of varying Grashof number Gr on the   

streamlines contour and isotherms in a cavity for various 

undulations numbers with Reynolds number �� � 10�  is 

presented graphically in Figs 4-7. Here, the ratio of Grashof 

number and square of Reynolds number is unity, i.e., Gr/Re
2
 

which means Richardson number Ri = 1. So, according to 

the definition of fluid flow in the cavity the buoyancy effect 

balances the effect of moving upper wall and, hence the total 

heat transfer in the cavity lead by mixed convection which is 

the combined mechanism of forced convection and natural 

convection. When the buoyancy effect is comparable to the 

effect of heated sliding wall, the streamlines contour over 

the whole cavity region is occupied by two primary vortex as 

shown in Fig. 4. On the contrary, the conventional cavity 

flow with cooled sliding upper wall and heated lower wall 

the flow in the whole cavity region is occupied with a single 

primary vortex as discussed in [9]. It observes from the Figs. 

4(b)-(d) that varying the number of undulations λ from 1 to 3 

does not affected the main cavity flow except a minor vortex 

that appears in the bottom left corner due to the wave from 

the bottom surface. 

On the other hand, the effect of varying the number of 

undulation on the isotherms contour is shown in Figs. 

5(a)-(d) at Gr/Re
2 

= 1.It can be seen that the isotherms are 

clustered near the bottom surface which indicates that the 

temperature gradients are strong in this region. However, we 

see that the isotherms on the upper right corner of the cavity 

are weak which indicates that temperature gradients in this 

region are weak. It can be seen from the Figs. 5(a)-(d) that 

the isotherms do not affected by the variation of undulations 

numbers at the bottom surface except the vicinity of the 

wavy bottom surface. 

Next, the streamline contour and isotherms contour are 

illustrated in Figs 6-7 respectively for various undulations at 

Grashof number, Gr=10
6
. Here, the ratio of Grashof number 

and square of Reynolds number is 100 which means the 

Richardson number Ri =100. So, according to the 

defininition of fluid flow in the whole cavity would be lead 

by free convection flow dominated by buoyancy force. 

Therefore, the impact of the mechanically drien top lid 

penetrates only a small distance towards the interior region. 

From Fig. 6(a) it is observed that the flow over the whole 

cavity is divided into four circular region when wavy surface 

is not employed at the bottom surface. It appears from Figs. 

6(b)-(d) that empolyed the undulation numbers affect the 

distribution of steramlines contour in the vicinity of the 

wavy lower wall by dividing into two, four and six parts for 

one, two and three undulation numbers respectively. In this 

case flow lead by buoyancy force and increasing viscous 

effect produced  by the wavy lower boundary, and hence, 

cavity flow in the vicinity of the lower boundary divided at 

the peaks of wavy surface  depending on the number of 

undulations employed at bottom surface. 

On the other hand, the influence of number of 

undulations on the isotherms contour is demonstrated in 

Figs 7 (a)-(d) with Richardson number, Ri = 100, i.e. the 

buoyancy effect outweighs the effect of sliding wall. This 

reflects the fact that heat transfer is mostly conductive 

except the upper portion of the cavity. The Figures show 

that varying the number of undulations does not change 

isotherm patterns except the vicinity of bottom wavy 

surface. 

 

Fig 6. Stream line contour at ,10,10Re 62 == Gr A=0.05 (a) 0=λ  (b) 1=λ  (c) 2=λ  (d) 3=λ . 
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Fig 7. Isotherms contour at ,10,10Re 62 == Gr A=0.05 (a) 0=λ  (b) 1=λ  (c) 2=λ  (d) 3=λ . 

 

(a) 

 

(b) 

 

(c) 

Fig 8. Local Nusselt numbers along the wavy bottom wall for various 

undulation, at the wavy bottom wall � � 0.05, �� � 10� (a) �� � 10� 

(b) �� �  10� (c) �� �  10� 

Figs. 8(a)-(c) display the local Nusselt numbers for 

various undulations with different Grashof numbers along 

the wavy bottom surface. The figure shows that the vertical 

temperature gradient along the arc length generally drops in 

the direction of lid motion due to the formation of thermal 

boundary layer over the surface. It appears that the 

employed number of undulation affects the distribution of 

the local heat flux along arc length of the bottom surface by 

producing a corresponding number of peaks and valleys, 

which correspond to the imposed n values. It is worth 

pointing out that the highest local heat flux is achieved with 

Gr/Re
2
 = Ri = 0.01 which is likely attributed to the heat 

transfer augmentation offered by the mechanically sliding 
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lid. It is also observed that increasing the values of Gr for a 

fixed Re, i. e. increasing values of Ri is found to decrease 

the highest peak for a given undulation number. 

 

(a) 

 

(b) 

 

(c) 

Fig 9. Variation of average Nusselt number along wavy bottom wall for 

various undulation, A=0.05 (a) 
210=Gr (b) 

4
10=Gr  (c) 610=Gr . 

The effect of the number of undulations on the average 

Nusselt number along wavy bottom surface for various 

Grashof number with various Reynolds numbers is 

presented in Fig. 9. 

 

(a) 

 

(b) 

 

(c) 

Fig 10. Variation of skin friction along bottom wavy wall for various 

undulations, �� �  10� (a) �� � 10� (b) �� � 10� (c) �� � 5 � 10� 
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(a) 

 

(b) 

 

(c) 

Fig 11. Local Nusselt number variation along wavy bottom line for various 

amplitude of the wavy surface, �� �  10�, (a) �� � 10� (b) �� � 10� (c) 

�� � 5 � 10�. 

From Fig. 9, it is observed that average nusselt number 

increases with the increasing values of Reynolds number for 

any given undulation number. Moreover, average Nusselt 

number profile remain same for 0=λ and 1=λ , whereas  

the average Nusselt number peaks at 2=λ which reflects 

the high local Nusselt number as reported in Fig. 8. But, the 

average Nusselt number profile alter and less inflation occur 

when 3=λ .It is observed that large value of average Nusselt 

number can be obtained by lower value of Grashof number, 

i.e. smaller value of Richardson number. On the other hand, 

average Nusselt number increases with the increase of 

Reynolds number, Re for any values of Grashof number, Gr.  

The effect of Reynolds on the variation of skin friction 

along the wavy wall surface for various number of 

undulations are illustrated in Figs. 10(a)-(b). In this case, 

Grashof number is considered to be Gr = 10
6
 which is 

sufficiently high. This implies that the buoyancy could 

accelerate the fluid traversing along the lid surface with the 

primary vortex. Therefore, the velocity of the fluid close to 

the lid surface could be faster than the moving speed of the 

lid. In that case, the skin friction may become negative. 

Recall the Fig. 6 we can see that there is no vortex at the 

bottom surface without employing the undulation number. 

As a result the skin friction is zero at the bottom surface for 

λ=0 at Reynolds number, Re=10
2
.  However, the skin 

friction is not zero for higher values of Reynolds number as 

the vortex may appear at bottom surface even the 

undulations not employed. When wavy bottom surface is 

considered the stream lines patterns characterized by a pair 

of counter rotating vortex (in Fig. 6). Therefore, the Fig. 

10(a)-(b) represents the skin friction that shows the number 

of peaks and valleys which corresponds to the number of 

undulations imposed at bottom surface of the cavity. Hence, 

skin friction at bottom wall simply follows the streamlines 

contour. Meanwhile, for high values of Reynolds number i.e. 

Re = 5×10
3 
the influence of lower minor vortices becomes so 

stronger that it suppressed the cavity flow of the lower 

bottom surface. As a result, the effect of undulation number 

on the skin friction does not follow the same tendency as 

discussed in Fig 10(a) and (b).  

Fig.11 shows the effect of the amplitude on the local 

variation of Nusselt number along wavy bottom surface of 

the cavity. The results in Fig. 11 demonstrates higher local  

Nusselt number with an increase in the amplitude of the 

wavy surface due to the increase of velocity gradients near 

the top lid which subsequently increase the rate of heat 

transfer.  It is also observed that the inflation of the 

amplitude of the wave increase the rate of heat transfer (local 

Nusselt number) in the concave up region and it becomes 

highest at the upper peak point. On the other hand, the rate of 

heat transfer decreases in the concave down region and it 

becomes lowest at the lower peak point. Moreover, the heat 

flux along the wavy surface increases with the increase of 

Reynolds number, Re. 

5. Conclusion 

This paper presents a numerical study to examine the 

effects of wavy bottom surface on the mixed convection heat 
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transfer in a lid-driven cavity heated from top for various 

pertinent dimensionless groups. Insulated boundary 

conditions are imposed to vertical side walls. The governing 

equations are solved using the Galerkin finite element 

method. Comparisons with previously published work on 

special cases of the problem were made and found to be in 

good agreement. Graphical results for various parametric 

conditions were presented and discussed. It was found that 

the heat transfer mechanisms and the flow characteristics 

inside the cavity are strongly dependent on the number of 

undulations, Grashof number and Reynolds number. When 

the ratio of Grashof number and square of Reynolds number 

(Richardson number) is greater or equal to unity then the 

streamline contours over the whole cavity region is occupied 

by several primary vortex. In this case, heat transfer is 

mainly through conduction except the upper portion of the 

cavity. The isotherms are not affected by the variation of 

undulation numbers at the bottom surface except the vicinity 

of the wavy bottom surface. The skin friction and local 

Nusselt number increase with increasing values of Reynolds 

number for any values of undulation number. Finally, the 

prediction of the local and average Nusselt number is found 

to increase with larger values of Grashof number and higher 

amplitude of the wavy surface. Thus, the wavy lid-driven 

cavity can be considered as an effective heat transfer 

mechanism at larger wavy surface amplitudes and higher 

Grashof number. 
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