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Abstract: Energy equation for dusty fluid turbulent flow has been derived in terms of correlation tensors of second order. 

In presence of dust particles, mathematical modeling of turbulent energy is discussed including the correlation between the 

pressure fluctuations and velocity fluctuations at two points of the flow field, where the correlation tensors are the functions 

of space coordinates, distance between two points and time. To reveal the relation of turbulent energy between the two points, 

one point has been taken as origin of the coordinate system.  
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1. Introduction 

In a turbulent fluid the behavior of dust particles depend 

on the concentration of the particles and on the size of the 

particles with respect to the scale of turbulent fluid. The 

turbulent flow can be found in many areas of industry, such 

as the production of the composite materials, environmental 

engineering, chemical engineering, textile industry, paper 

making and so on. At great concentration there is an 

interaction between the particles through collisions and 

through the effects on the flow of the fluid in the 

neighborhood of the particles. Bracco et al. [4] described a 

scenario in which turbulence mediates a process by 

aggregating particles into anti-cyclonic regions. The 

simulation result of this study suggested that the 

anti-cyclonic vortices form as long-lived coherent structures, 

the process becomes more powerful because such vortices 

trap particles effectively. Turbulence driven by magneto 

rotational instability crucially affects the evolution of solid 

bodies in protoplanetary disks. The vertical structure of 

turbulence was found as well characterized by the vertical 

magnetic flux and three critical heights derived from the 

linear analysis of magneto rotational instability in a stratified 

disk [16]. 

Turbulence is maintained by the turbulent energy 

production, where the dissipation and the buoyancy flux act 

as sinks for the turbulent energy. Numerical models for 

turbulent fluid-particle flows were reviewed by Crowe et al. 

[6]. The review was structured according to the turbulence 

models used for the continuous phase: turbulence energy 

dissipation models, large-eddy simulations, direct numerical 

simulations, and discrete vortex models. Oakey [15] 

examined the rate of dissipation of turbulent energy from 

simultaneous temperature and velocity shear microstructure 

measurements. Spectra of turbulence were examined for 

both temperature gradient and velocity shear. Saito and Saito 

and Lemos [19] derived a macroscopic two-energy equation 

model for turbulent flow in a highly porous medium and 

applied to a porous channel bounded by parallel plates 

Macroscopic continuity, momentum and energy equations 

are presented local non-thermal equilibrium is considered by 

means of independent equations for the solid matrix and the 

working fluid.  

Pan et al. [18] studied the clustering of inertial particles in 

turbulent flows and discussed its applications to dust 

particles in protoplanetary disks. Radial distribution 

function was computed using numerical simulations, which 

measures the probability of finding particle pairs at given 

distances, and the probability density function of the particle 

concentration. It was found that the particles of different 

sizes tend to cluster at different locations, leading to flat 

radial distribution functions between different particles at 

small scales. Johansen et al. [11] considered vertical plane of
 

a protoplanetary disk including the
 
Coriolis force and the

 

radial advection of the
 
Keplerian rotation flow. Dust

 
grains, 

treated as individual
 
particles, move under the

 
influence of 

friction with
 

the gas, while the
 

gas was treated as
 

a 

compressible fluid. The
 
friction force from the

 
dust grains on 
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the
 
gas leads to a

 
vertical shear in the

 
gas rotation velocity. 

As
 
the particles settle around

 
the midplane due to

 
gravity, the 

shear increases,
 
and eventually the flow

 
becomes unstable to 

the
 

Kelvin-Helmholtz instability. Hussainov et al. [10] 

explored experimental results dealing with the modulation 

of grid-generated turbulence by coarse glass particles in a 

vertical downward channel flow. Distributions of the mean 

velocity, the turbulence intensity along the channel axis and 

in different cross-sections obtained by Laser Doppler 

Anemometer were also presented. Bosse [3] investigated the 

gravitational settling of an initially random suspension of 

small solid particles in homogeneous turbulence. Results 

were presented for both one-way coupling, when the fluid 

flow is not affected by the presence of the particles, and 

two-way coupling, when the particles exert a feedback force 

on the fluid. For light particles the turbulence leads to a rapid 

redistribution of particles such that their density per unit 

mass is approximately constant with height. Hodgson and 

Brandenburg [9] investigated the formation of planetesimals 

by studying the transport of dust particles in a local three 

dimensional simulation of accretion disc turbulence. The 

polar mesospheric winter echoes dust particles that influence 

the radar backscatter most likely have sizes around 3 

nanometer. Havnes and Kassa [7] discussed the charging of 

nanometer-sized particles and found that the photo 

detachment effect, where photons of energy less than the 

work function of the dust material can remove excess 

electrons, probably is dominant at sunlit conditions. 

Kvasnak et al. [13] designed, constructed, and used an 

experimental set-up to study the wall deposition rate of 

particles in a turbulent channel flow. The deposition rate of 

spherical particles was found to increase with diameter. The 

deposition velocities for compact dust components were 

found to closely resemble those of equivalent spherical 

particles.  

Nickovic et al. [14] developed an integrated modeling 

system to describe the dust cycle accurately in the 

atmosphere. The dust modules of the entire system 

incorporated the state of the art parameterizations of all 

major phases of the atmospheric dust life such as production, 

diffusion, advection, and removal. These modules also 

included the effect of the particle size distribution on aerosol 

dispersion. Direct determination of the irreversible turbulent 

flux of salinity in the ocean has not been possible because of 

the complexity of measuring salinity on the smallest scales 

over which it mixes. Kishore and Sarker [12] determined the 

rate of change of vorticity covariance in magneto 

hydrodynamic turbulent flow of dusty incompressible fluid. 

The influence of dust particles on the turbulence in a vertical 

pipe at moderate particle concentrations was studied by 

Pakhomov et al. [17]. The radial profiles of the axial and 

radial velocity components and of the turbulent kinetic 

energy of the carrier (gas) and the dispersed phases were 

measured using two-component laser Doppler anemometer.  

Hinze [8] derived an expression for turbulent motion in 

terms of correlation tensor of second order at two points of 

the flow field, where the correlation tensors were the 

functions of space coordinates, distance between two points 

and time. Chandrasekhar [5] introduced an independent 

variable in order to differentiate between the effects of 

distance and location. In the limiting case of zero viscosity 

and infinite electrical conductivity there exist two distinct 

modes of turbulence were shown; these had been 

distinguished as the velocity mode and the magnetic mode 

respectively. Ahmed and Sarker [2] derived an equation for 

turbulent fiber motion in terms of second order correlation 

tensor, where the correlation tensors were the functions of 

space coordinates, distance between two points and time. In 

presence of dust particles, they derived another equation of 

turbulent fiber motion in terms of second order correlation 

tensor [20]. Ahmed [1] also derived another equation in 

terms of second order correlation tensor for the derivation of 

turbulent energy in a rotating frame. However, there are few 

studies relevant to the dusty fluid turbulent energy although 

it is prevalent in the industry. In view of all these works, the 

main aim of the study is to derive an energy equation for 

dusty fluid turbulent flow at two pints of the flow field in 

terms of correlation tensor of second order, where the 

correlation tensors are the functions of space coordinates, 

distance between two points and time.   

2. Mathematical Model of the Problem 

Let us assume that the fluid is incompressible. The energy 

equations of motion and continuity for turbulent flow of a 

viscous incompressible fluid are: 
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In presence of dust particles, the equations of motion are 

given by 
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where ( )txui ,  is the fluid velocity components; p is the 

unknown pressure field; υ  is the kinematical viscosity of 
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the fluid; ρ  is the density of the fluid particle; ijlε , the 

three-dimensional permutation symbol, where ε  is the 

dissipation by turbulence per unit of mass; jΩ , the rotation 

vector; ( )txvi , , the solid particles (dust) velocity 

components; ( )txp , , the unknown pressure field; 

3/4 3

sss Rm ρπ= , the mass of a single spherical dust 

particles of radius 
sR ; =υ constant is the molecular 

kinematical viscosity; vRK s ρπ6= , the Stoke’s drag 

formula; N, the number density of dust particles; 

fKN =ρ/ , has dimension of frequency and t is the time. 

Let A  and B  be two points in the flow field, and let 

a  and b be two given directions at the points A  and B  

respectively, where aU  and bU  are the velocity 

components along these directions. We assume that the 

mean velocity iU  is constant throughout the region 

considered and independent of time, and we put 

( ) ( )
BjjjAiii uUUuUU +=+= , . 

The value of each term can be obtained by using the 

equations of motion for ju  at the point B  and for iu  at 

the point A . The energy equation of motion for iu  at the 

point A is obtained from Equation (3), 
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Multiplying Equation (7) by ( )
Bju  we obtain 
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Where ( )
Bju  can be treated as a constant in a 

differential process at the point A . 

Similarly, the energy equation for ju  at the point B  is 

obtained as 
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Since for an incompressible fluid 0k
j

k B

u
u
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the above equation can be written as 
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Where ( )
Aiu  can be treated as a constant in a differential 

process at the point B . 

Addition of Equation (8) and Equation (10) gives the 

result 
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To expose the relation of turbulent energy in presence of 

dust particles at the point B  to those at point A , it will give 

no difference if we take one point as the origin of A  or B  

of the coordinate system. 

Let us consider the point A  as the origin. In order to 

differentiate between the effects of distance and location, we 

introduce as new independent variables, 
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Using the above relations and taking ensemble average on 

both sides, Equation (11) becomes 
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Equation (12) represents the mean motion for turbulent 

energy in presence of dust particles and pressure-velocity 

correlation. 

It is noted that the coefficient of kU  has been vanished. 

The Equation (12) describes the turbulent energy motion in 

presence of dust particles, where the motions with respect to 

a coordinate system moving with the mean velocity kU . 

Equation (12) contains the double velocity 

correlation ( ) ( )
BjAi uu , double correlations such 

as ( )
BjA up , triple correlations such as ( ) ( ) ( )

BjAkAi uuu  

where all the terms apart from one another. The correlations 

( )
BjA up  and ( )

AiB up form the tensors of first order, 

because pressure is a scalar quantity and the triple 

correlations ( ) ( ) ( )
BjAkAi uuu  and ( ) ( ) ( )

BjBkAi uuu  

form the tensors of third order. The double and triple 

correlations at the two points A  and B  in the flow field 

have been shown in Figure 1 and Figure 2 respectively, 

where r is the distance between two points A and B . 
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Figure 1(a). Double correlation between pressure at A  and velocity 

components at B . 
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Figure1(b). Double velocity correlation between the velocities au at  

A and bu  at B . 
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Figure 2. Triple velocity correlation among the velocities at the points A  

and B . 

We designate the first order correlations by ( )
BAjpk

,, , 

second order correlations by ( )
BAjiQ

,,  and third order 

correlations by ( )
BAjiks

,, . Therefore, we set 
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( ) ( ) ,
,, BAiBApi puk = ( ) ( )

BjABAjp upk =
,, ,
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,,

. 

Where, the index p indicates the pressure and is not a 

dummy index like i  or j  so that the summation 

convention does not apply to p . 

Also the terms ( ) ( )
BjAlkikl uuΩε  and 

( ) ( )
AiBlkjkl uuΩε  form the correlation tensors of second 

order, we designate these by jiD , and jiH ,  respectively. 

Thus we set 
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and ( ) ( ) ( )
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,, . 

If we use the above relations of first, second and third 

order correlations in Equation (12) then we obtain 
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Where all the correlations refer to the two points A  

and B . 

Now for an isotropic turbulence of an incompressible flow, 

the double pressure-velocity correlations are zero, that is, 

( ) ,0
,, =
BAjpk ( ) 0

,, =
BApik . 

In case of isotropy, the statistical features have no 

directional preference and perfect disorder persists. The 

velocity fluctuations are independent of the axis of reference, 

i.e. invariant to axis rotation and reflection. 

From the definition of isotropy, 
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The isotropic turbulence in a bounded domain is a model 

where in the turbulence is unaffected by the boundaries 

enclosing the fluid, and furthermore the statistical moments 

are spatially invariant and independent of orientation. 

Isotropic grid turbulence is a similar idealization, in that the 

turbulence is enclosed by wind tunnel walls and the 

homogeneity of the turbulence in the central region is known 

to be unaffected by the wall boundary layers. In an isotropic 

turbulence it follows from the condition of invariance under 

reflection with respect to point A , 

( ) ( ) ( ) ( ) ( ) ( )
BiAjAkBjBkAi uuuuuu −=  

or, ( ) ( )
BAikjBAkji ss

,,,, −=  

In absence of isotropic turbulence, physical properties 

will be different in different directions according to the 

direction of measurement. Anisotropic turbulence tends 

toward local isotropy, in that the statistics of velocity 

differences tend toward invariance under rotation as the 

distance between the velocities becomes smaller. For 

non-isotropic (anisotropic) turbulence, constant or 

non-constant average velocity of pressure field will not be 

zero. Anisotropy is the property of being directionally 

dependent. It can be defined as a difference, when measured 

along different axes, in a material's physical or mechanical 

properties (absorbance, refractive index, conductivity, 

tensile strength, etc.). 

Thus Equation (13) can be written as 
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order; we designate these by jiS , . Also, the 

terms ( )
jiji HD ,, + , we designate this by jiL , . 
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Equation (15) is the energy equation for dusty fluid 
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turbulent flow in terms of correlation tensor of second order. 

In absence of dust particles, 0=f , then Equation  (15) 

reduces to 
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Equation (16) describes the energy motion for turbulent 

flow in terms of the correlation tensor of second order. 

If there are no effects of the dissipation ε  by the 

turbulence per unit mass, 0, =jiL so that the Equation (16) 

takes the form 
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Equation (17) represents the turbulent motion in terms of 

correlation tensors of second order which is the same as 

obtained Hinze [7]. 

3. Results and Discussion 

The resulting Equation (15) has been developed for dusty 

fluid turbulent energy in terms of second order correlation 

tensor. Thus the Equation (15) represents the energy 

equation of turbulent motion in terms of correlation tensors 

of second order in presence of dust particles. In this 

equation, all the terms jijijijiji LGFSQ ,,,,, ,,,,  are the 

second order correlation tensors where, 

jiQ , and jiS , represents the velocity correlations at the two 

points  A and B of the flow field, jiF , and jiG ,  

represents velocity correlations between the fluid velocity 

components and solid particles (dust) velocity components 

at the two points whereas jiL , represents the correlation 

between turbulent energy and velocity of the fluid particles. 

An interaction between the dust particles through collisions 

and through the effects on the flow of the fluid is shaped in 

the neighborhood of the particles. But in absence of the 

dissipation ε  by the turbulence per unit mass and without 

any effect of dust particles to the fluid velocity, the 

resulting Equation (15) reduces to the Equation (17) which 

represents the turbulent motion. 

4. Conclusion 

The dust particles into a turbulent carrier flow decrease 

the level of turbulence of the gas phase because of particles 

involvement into fluctuation motion. The amplitude of 

turbulent fluctuations of particle velocity in the axial 

direction is much higher than that in the radial direction. 

Connection of the turbulent flow and particle motions can be 

described in different ways, when considering particles in a 

flow. One-way coupling is the simplest approach, where the 

particles follow the flow due to the forces acting on the 

particles, i.e. the particles are light. The second is the 

two-way coupling, where forces are exerted in both 

directions, i.e. the fluid act on the particle and the particle 

acts back on the fluid, e.g. due to wakes behind particles. In a 

three-way coupling, in addition to what was previously 

mentioned, the particles interact with each other through 

hydrodynamic forces; this is of increased importance for 

larger concentrations. 

In presence of dust particles, the equation of motion of 

turbulent energy has been derived by averaging procedure, 

which includes the effect of dust particles and the 

correlations between the pressure fluctuations and velocity 

fluctuations at two points of the flow field. If there is no 

effect of dust particles in the flow field, the resulting 

Equation (15) reduces to Equation (16) which represents the 

energy motion for turbulent flow in terms of the correlation 

tensor of second order and in absence of the dissipation ε  

by the turbulence per unit mass the Equation (16) reduces to 

Equation (17) which gives the turbulent motion in terms of 

correlation tensors of second order that is the same as 

obtained Hinze (1975). 
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