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Abstract: The initial value problems for autonomous systems of differential equations are the main object of this paper. 

Different variants of the concept reachable sets for the solutions of such systems are introduced. Several conditions for their 

existence are found and some properties are studied. 
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1. Introduction 

The main goal of this paper is the initial value problem for 

a system of autonomous differential equations. Let us 

consider a nonempty set Φ in the phase space G of such 

system. If a trajectory of the system crosses the set Φ then 

the starting point ��  of the trajectory is called a starting 

(initial) point of reachability and Φ  is called a set of 

reachability. Some basic properties of the starting points set 

of reachability are studied in the paper. 

The results obtained are applied in the investigation of 

differential equations with variable - time impulses. The 

impulsive systems are several types, depending on the way 

of determining the impulsive moments. The obtained results 

concern the impulsive systems in which the impulsive 

moments coincide with the moments at which the trajectory 

crosses the impulsive set (in this case – reachable set Φ). 

Such type impulsive systems are discussed in [4] - [7]. There 

are many applications of impulsive equations (see [1], [4], [8] 

- [14]). 

2. Preliminaries 

The Euclidean norm and dot product in �� are denoted 

by �. �  and �. , . 
  respectively. For the points � ���
, ��, … , ���  and � � ��
, ��, … , ���  in �� , we 

have 

��, �
 � �
�
 � ���� � � � ���� , 
��� � ���, �
�
 �� � ���
�� � ����� � � � �����. 

The Euclidean distance between nonempty sets � and �, 

where  �, � � ��, is denoted by 

���, �� � ������ � ��;   � ! �, � ! �". 
An open ball with center �� ! ��  and radius # �$%�&' ( 0 is denoted by 

*+���� � �� ! ��;  �� � ��� , #". 
�- and .� are notations for the closure and boundary of 

the set X. 

Consider the following initial value problem 

01
02 � ����, ��0� � ��,                (1) 

where function �: 4 5 ��,set 4 � �� , 4 6 7 and 4 is a 

domain (open connected set); �� ! 4. Let ��';  ��� be the 

solution of problem (1). Let 8�9, ��� be the trajectory of 

system (1) which lies between the points ��0; ��� � �� 

and ��9; ���, where 9 ! �. It is given by 

8�9, ��� � :�� � ��'; ���;  0 ; ' , 9",      if  9 > 0,�� � ��'; ���;  9 , ' ; 0",      if  9 , 0.? 
In particular, 

8�∞, ��� � �� � ��'; ���;  0 ; ' , ∞" 

and 

γ��∞, ��� � �� � ��'; ���; �∞ , ' ; 0". 
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Definition 2.1. 

If: 

1. ��B � 4, C � 4, ��B 6 7  and  C 6 7. 
2. For each point �� ! ��B,  the solution ��';  ��� of 

the initial value problem (1) is defined and is unique 

in the interval D0, ∞�. 

3. E' �& FGH�I 

�J�� ! ��B��K9 � 9���� ( 0�: ��9; ��� ! Φ. 

Then: 

- The set C is said to be positive reachable from set  ��B via system (1); 

- ��B  is said to be a starting set of positive 

reachability of C via system (1); 

- Every point �� ! ��B is said to be a starting point of 

positive reachability of C via system (1). 

By analogy, we define the concepts of negative reachable 

set from the set  ��L via system (1), starting set of negative 

reachability of Φ  and starting point of negative 

reachability of Φ via system (1). 

The terms introduced above will be applied only to 

system (1) in the next research, so we will omit this detail. 

For convenience, we denote by ��B and ��L the sets of all 

starting points of positive and negative reachability, 

respectively. Finally, the set �� � ��L M ��B M Φ is said to 

be an initial set of reachability. 

Assume that  

Φ � �� ! N;  O��� � 0" � 4, 
where N � 4, N is a domain and the function O: N 5 �. 

The following conditions are introduced: 

H1. There exists a constant PQRS ( 0, such that 

�J�T, �TT ! 4� U ����T� � ���TT�� ; PQRS��T � �TT�. 
H2. For each point �� ! 4, the solution of problem (1) 

exists and is unique for all ' in �. 

H3. The function O ! P
DN, �V. The set Φ � �� !N;   O��� � 0" 6 7 and 

�J� ! Φ� U �WXGIO���, ����
 ( 0. 
H4. The set C is connected. 

Further, the function Y: ∆5 �, whereY�'� � O[��'; ���\ 

and ∆� �' ! �;  ��'; ��� ! N" will be used repeatedly. If 

the point �� ! N, then the function Y  is defined in a 

neighborhood of 0 , i.e. 0 ! ∆ . It is clear that Y�0� �O[��0; ���\ � O���� in this case. 

3. Main Results 

Theorem 3.1. 

Assume that: 

1. The condition H2 holds. 

2. The set C  is positive reachable from the set ��B 

and point �� ! ��B. 

Then the trajectory 8�9, ��� � ��B , where the positive 

constant 9 is chosen such that ��9; ��� ! Φ  and ��';  ��� ] Φ for 0 ; ' , 9. 
Proof. Consider an arbitrary point �2^  on the curve 8�9, ���. For example, �2^ � ��'^;  ��� ! 8�9, ��� ! 4 for 0 ; '^ , 9. We have 

9 � '^ ( 0 and ��9 � '^; �2^� � ��9; ��� ! Φ. 

Therefore �2^ ! ��B. 

The theorem is proved. 

Corollary 3.1. 

Assume that: 

1. The condition H2 holds. 

2. The set C is negative reachable from the set ��L 

and point �� ! ��L. 

Then the trajectory 8�9, ��� � ��L , where the negative 

constant 9 is determined so that ��9; ��� ! C  and ��';  ��� ] C for 9 , ' ; 0. 
Theorem 3.2. 

Assume that: 

1. The condition H2 holds. 

2. The function O ! PDN, �V. 
3. The set C is positive reachable from the set ��B. 

 Then ��B 6 7. 

Proof. Let the point  �� ! Φ, i.e. O���� � 0. Since the 

function O  is defined in the open set N  and the point ��0; ��� � �� ! Φ � N, it follows that 

�K# � $%�&' ( 0�: Y � O[��';  ���\: D�#, #V _ �. 
In other words, the point ���#; ��� � �L+ ! N � 4. In 

this way we have 

�K�L+ ! ��B��K# � $%�&' ( 0�:                
��#; �L+� � ��0; ��� � �� ! Φ. 

This means that �L+ ! ��B. 
The theorem is proved. 

Corollary 3.2. 

Assume that: 

1. The condition H2 holds. 

2. The function O ! PDN, �V. 
3. The set C is negative reachable from the set ��L. 

 Then ��L 6 7. 

Theorem 3.3. 

Assume that: 

1. The condition H2 holds. 

2. The function O ! PDN, �V. 
3. The set C is positive reachable from the set ��B. 

 Then Φ � . 

Proof. Let �� be an arbitrary point from Φ. Then from 

Definition 2.1 it follows that �� ! 4. We have: 

1. �K# � $%�&' ( 0�: Y�'� � O[��';  ���\ !PD�#, #V; 
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2. Then from Theorem 3.1 and Theorem 3.2 it follows 

that �J'; �# ; ' , 0�: ��';  ��� ! ��B; 

3. ��0; �� � � ��; 

4. It is valid 

lim25�,L+b2b�Y�'� � Y�0� 

c  lim25�,L+b2b� O[��'; ���\ � O[��0; ���\ � O����  

d lim25�,L+b2b���'; ��� � ��. 
From the four relations above, we obtain that point �� !
, i.e. Φ � . 

The theorem is proved. 

Corollary 3.3. 

Assume that: 

1. The condition H2 holds. 

2. The function O ! PDN, �V. 
3. The set C is negative reachable from the set ��L. 

 Then C � . 

Theorem 3.4. 

Assume that: 

1. The conditions H1, H2 and H3 hold. 

2. The set C is positive reachable from the set��B. 

 Then ��B is open set. 

Proof. If ��B � 4, the statement of this theorem is trivial. 

Let ��B � 4, ��B 6 7 and ��B 6 4. Assume that the point �� ! ��B. Using condition 2 of the theorem and Definition 

2.1, we have 

�K9 � 9���� ( 0�: 
�e � ��9; ��� ! N and O[��9; ���\ � 0. 

As ��9; ��� ! N and O is defined in the open set N, it 

follows that the function Y is defined in a neighborhood of 

the point 9. Therefore, 

�K#e � $%�&' ( 0�: Y: D9 � #e , 9 � #eV 5 �. 
We have 

Y�9� � O[��9; ���\ � 0.   (2) 

Furthermore, it is valid 

II' Y�9� � II' O[��9; ���\ 

� �WXGIO[��9; ���\, �[��9; ���\
 ( 0.  (3) 

From (2) and (3), we have 

�K'T, 'TT; 9 � #e , 'T , 9 , 'TT , 9 � #e�: 
Y�'T� , 0,   Y�'TT� ( 0. 

This means that  

��'T; ��� ! N,   ��'TT;  ��� ! N, 
O[��'T;  ���\ , 0, O[��'TT;  ���\ ( 0.  (4) 

From (4) and using the continuity of function O , it 

follows that 

[K#f , 0 , #f , #e\:    (5) 

- *+g[��'T;  ���\ � N; 

- *+g[��'TT;  ���\ � N; 

- hJ� ! *+g[��'T;  ���\i U O��� , 0; 
- hJ� ! *+g[��'jT;  ���\i U O��� ( 0. 

According to the theorem of continuous dependence of 

the solutions of differential equations on the initial condition 

(see Theorem 7.1 of Chapter 1 of [2]), it follows that: 

[K#1k � $%�&' ( 0\: [J��̂,   ���̂ � ��� , #1k\ U 

� ��̂ ! 4; 
�   ���'; ��̂� � ��';  ���� , #f , when 0 ; ' ; 9 � #e. 

From the last inequality, for ' � 'T  and ' � 'TT , we 

obtain 

���'T; ��̂� � ��'T;  ���� , #f 

and 

���'TT; ��̂� � ��'jT;  ���� , #f . 

By (5), we conclude that 

��'T; ��̂� ! *+g[��'T;  ���\ U O[��'T; ��̂�\ , 0 

and 

��'TT; ��̂� ! *+g[��'TT;  ���\ U O[��'TT; ��̂�\ ( 0. 
Consider the function Y^: ∆^5 �,  where Y^�'� �O[��'; ��̂�\ and ∆^� �' ! �;  ��'; ��̂� ! N". By means of 

two inequalities above, we get the conclusion Y^�'T� , 0 

and Y^�'TT� ( 0. Then 

�K9^ � 9^���̂�, 'T , 9^ , 'jj�: 
O[��9^; ��̂�\ � Y�9^� � 0, 

i.e.  ��9^;  ��̂� ! Φ. This implies that the point ��̂ ! ��B . 

Therefore, the set ��B is open. 

The theorem is proved. 

Corollary 3.4. 

Assume that: 

1. The conditions H1, H2 and H3 hold. 

2. The set C is negative reachable from the set ��L. 
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 Then ��L is open set. 

Theorem 3.5. 

Assume that: 

1. The conditions H1, H2 and H3 hold. 

2. The set C is reachable from the sets ��B and ��L. 

 Then the set �� � ��L M ��B M Φ is open. 

Proof. Let �� be an arbitrary point in ��. By Theorem 

3.4 and Corollary 3.4, we establish that ��L M ��B is open set. 

Assuming �� ! ��L M ��B , it follows that ��  is an inner 

point of ��, so in this case the theorem is proved. 

 Let �� ! Φ. We have 

 

Therefore, 

�K9 � $%�&' ( 0�: 
 

Since ��L l N and ��B l N are open sets, we have �Km � $%�&' ( 0�: 
*n[���9; ���\ � ��B l N and *n[��9; ���\ � ��L l N. 

From the theorem of continuous dependence, it follows 

that 

�K# � $%�&' ( 0�: 
 

when �9 ; ' ; 9. 
In particular, for ' � �9, we have 

����9; ��̂� � ���9; ���� , m 

c ���9; ��̂� ! *n[���9; ���\ 

U ���9, ��̂� ! ��B l N U O[���9, ��̂�\ , 0 

c Y^��9� , 0, 

where the function Y^�'� � O[��';  ��̂�\, for ��';  ��̂� ! N. 

In the same way, we obtain 

O[��9; ��̂�\ ( 0 c  Y^�9� ( 0. 
From the continuity of function Y^, we find 

�K9^;  �9 , 9^ , 9�: Y^�9^� � 0 

c O[��9^; ��̂�\ � 0. 

From the last equality, we conclude that one of the 

following statements is valid: 

- If 9^ , 0, it follows that the set Φ is negative reachable 

from the point ��̂ i.e. ��̂ ! ��L; 
- If 9^ ( 0, we have ��̂ ! ��B; 

- If 9^ � 0, then ��̂ ! Φ is satisfied. 

Thus, we find that ��̂ ! ��L M ��B M Φ � ��. 

 Finally, for the point �� ! Φ, it is shown that 

�K# ( 0�: [J��̂ ! *+����\ 

U ���̂ ! ��� c *+���� � ��. 
The latter indicates that the point �� is an inner point of ��. 

The theorem is proved. 

Theorem 3.6. 

Assume that: 

1. The conditions H1-H4 hold. 

2. The set Cis reachable from the sets ��L and ��B. 

 Then the set �� � ��L M ��B M Φ is connected. 

Proof. Given two arbitrary points ��
, ��� ! ��. Consider 

the case ��
, ��� ! ��B. The other cases are treated similarly. 

From Definition 2.1, it follows that: 

�K9
 � 9
���
� ( 0�: �eq � ��9
;  ��
� ! Φ 

and 

�K9� � 9������ ( 0�: �er � ��9�;  ���� ! Φ. 
Since Φ is a connected set, there exists a continuous 

curve Γ[�eq , �er\ with endpoints �eq  and �er, such that 

Γ[�eq , �er\ � Φ � ��.    (6) 

Consider the curve 

 

From Theorem 3.2 and inclusion (6), it follows that 

 Obviously, the points ��
, ��� ! . Since 

�eq � ��9
;  ��
� ! 8�9
;  ��
� l Γ[�eq , �er\ 

and 

�er � ��9�;  ���� ! 8�9�; ���� l Γ[�eq , �er\, 

we find that the curve  is continuous. So, we establish that 

the set �� is connected. 

The theorem is proved. 

The following corollary is obtained using Theorems 3.2, 

3.5 and 3.6. 

Corollary 3.5. 

Assume that:  

1. The conditions H1-H4 hold. 

2. The set C is reachable from the sets ��L and ��B. 

Then the set �� is nonempty domain. 
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4. Applications 

Example 4.1. 

The Lotka-Volterra (LV) model describes the dynamics of 

an isolated community of type prey-predator without 

external influences fairly adequately. The corresponding 

initial value problem has the form: 

0t
02 � uv � �t�u, w� � u�X
 � x
w�,    (7) 

0y
02 � wv � �y�u, w� � �w�X� � x�u�,   (8) 

u�0� � u�, w�0� � w�,    (9) 

where: 

- u � u�'� ( 0 and w � w�'� ( 0 are the prey and 

predator biomasses, respectively at the moment ' > 0; 

- X
 � $%�&' ( 0  and X� � $%�&' ( 0  are specific 

growth factors, relevant to the first species (prey) and the 

second (predator),respectively; 

- x
 � $%�&' ( 0 and x� � $%�&' ( 0  are the 

coefficients indicating interspecies competition. In the 

common case, they are different for the prey and predator; 

- u� ( 0  and w� ( 0  are the prey and predator 

biomasses at the initial moment ' � 0. 

It is known that, the initial value problem (7), (8), (9) 

possesses: 

1. An unstable (saddle) stationary point �0, 0�. 

2. A stable stationary point �u��, w��� � [X� x�� , X
 x
� \. 

3. A first integral of the form z�u, w� � x
w � x�u � X
 ln w � X� ln u 

�X
[ln r
 q
� � 1\�X�[ln r� q�� � 1\ 

� ~�u, w� � ~�u��, w���, 

where ~�u, w� � x
w � x�u � X
 ln w � X� ln u; 

4. For any point  

�u, w� ! �B � �B, �u, w� 6 �u��, w���, 

the inequality z�u, w� ( 0  is valid. It is fulfilled z�u��, w��� � 0; 

5. For any constant $ > 0, the implicitly defined curve 

8� � ��u, w�: z�u, w� � $" 

is a trajectory of system (7), (8) with properly chosen initial 

condition (z�u�, w�� � $ is sufficient); 

6. For any constant $ ( 0, the set  

N� � ��u, w�: z�u, w� , $" 

is a simply connected domain located in �B � �B  with 

contour .N� � 8�; 

7. For any constant $ ( 0, it is fulfilled �u��, w��� ! N�; 

8. If 0 , $
 , $�, then 8�q � N�r. 

Let $� be an arbitrary positive constant. We define the 

phase space of system (7), (8) as follows: 4 � N�� . Let the 

function O�u, w� � w � w�� be defined in the domain 

N � �Et � �B� l 4, 

where the endpoints of the open interval 

Et � �u; utR� , u , ut�1" 

satisfy the inequalities 

u�� � �r�r , utR� , ut�1 , 

~�ut�1 , w��� � ~�u��, w��� , $� 

c x�ut�1 � X� ln ut�1 , X�[1 � ln r� q�� \ � $� 

The reachable set Φ has the form Φ � ��u, w�;  w � w��, u ! Et
 
We will show that the system considered satisfies the 

conditions H1-H4. Actually, the conditions H2 and H4 are 

verified immediately. The condition H1 follows from the 

continuous differentiability of the right hand side of system 

(7), (8) in �B � �B and the fact that the closure of phase 

space 4� � �B � �B is compact. For �u, w� ! Φ, we have 

�WXGIO�u, w�, ��u, w�
 
� ��0, 1�, [�t�u, w���, �y�u, w���\
 
� �w���X� � x�u� � w��x��u � u��� 

> X��utR� � u��� ( 0, 

Whereby, it is shown that condition H3 is valid. Therefore, 

system (7), (8) satisfies the propositions proved in the 

previous section. More precisely, the initial sets ��L , ��B 

and ��  are nonempty and open. Beside this ��  is 

connected. We derive that 

��L � ��B � �� � Φ � [N���� � N����\ � Φ, 

Where $tR� � z�utR� , w���and$t�1 � z�ut�1 , w���. 

Example 4.2. 

Consider the Volterra-Gause-Witt (VGW) model, which 

describes the properties of predator-prey type of interaction 

between two species provided without external influences. 

The populations of both species are isolated. We have 

0t
02 � X
u h�
 � t

� � W��w�i,        (10) 

0y
02 � �X�w[�� � W
�u�\,            (11) 

u�0� � u�, w�0� � w�,    (12) 

where: 

- u � u�'� ( 0 and w � w�'� ( 0 are the prey and 

predator biomasses, respectively at the moment ' > 0; 

- X
 � $%�&' ( 0  and X� � $%�&' ( 0  are specific 

growth factors. They show the inherent capacity (rate) of the 

mass increasing, corresponding to each of the species of 
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community; 

- �
 � $%�&' ( 0 and �� � $%�&' ( 0 are coefficients 

indicating the capacity of the environment. Upon reaching 

these values of the biomass community, the direction of 

growth of the respective type is changed; 

- �  is a positive coefficient, indicating the level of 

saturation of the prey. It is clear that for � _ ∞, the VGW 

model is transformed into the LV model; 

- The functions W
, W�: �B _ �B are analytic and they 

render an account the level of interspecies competition; 

- u� ( 0 and w� ( 0 are the biomass quantities of the 

prey and predator at the initial moment ' � 0. 

We will explore the concrete realization of system (10), 

(11). Assume that X
 � X� � 1 2� ; �
 � �� � 1; � � 3 2� ; 

W
�u� � 3 20� u; W��w� � w.The system becomes 

0t
02 � t

� �1 � �t
� � w�,         (13) 

0y
02 � � y

� �1 � �t
�� �.           (14) 

Introduce the function O�u, w� � 1 2� � w, where �u, w� ! �0, 1� � �0, 1� � N. It is clear that the reachable 

set is Φ � ��u, w�; w � 

� , 0 , u , 1�.  Verifying the 

conditions H1-H4 is simple. Indeed, the right hand side � of 

system (13), (14) is continuously differentiable in � � � 

and therefore, also in 4 � �0, 1� � �0, 2� . Since 4  is a 

bounded domain, then � is a Lipchitz function in 4. The 

conditions H1 and H2 are valid. Obviously, the set Φ is 

connected, i.e. the condition H4 is fulfilled. The function O 

is differentiable in N. Moreover for �u, w� ! Φ, we have 

�WXGI O�u, w�, ��u, w�
 
� ��0, �1�, �u4 � u�

3 , � 14 � 3u80 �� 

� 14 � 3u80 ( 1780 ( 0, 
whence, condition H3 is valid. 

Using the results, obtained from the previous section, we 

conclude that the initial sets ��L,  ��B and �� are nonempty 

and open. Moreover, �� is connected. 
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